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Abstract. We present a synchronous robotic testbed called SyROF that allows
fast implementation of robotic swarms. Our main goal is to lower the entry bar-
riers to cooperative-robot systems for undergraduate and graduate students. The
testbed provides a high-level programming environment that allows the imple-
mentation of Timed Input/Output Automata (TIOA). SyROF offers the following
unique characteristics: 1) a transparent mechanism to synchronize robot maneu-
vers, 2) a membership service with a failure detector, and 3) a transparent service
to provide common knowledge in every round. These characteristics are funda-
mental to simplifying the implementation of robotic swarms. The software is or-
ganized in five layers: The lower layer consists of a real-time publish-subscribe
system that allows efficient communication between tasks. The next layer is an
implementation of a Kalman filter to estimate the position, orientation, and speed
of the robot. The third layer consists of a synchronizer that synchronously exe-
cutes the robot maneuvers, provides common knowledge to all the active partici-
pants, and handles failures. The fifth layer consists of the programming environ-
ment.

1 Introduction

In natural disasters, the response time for the search-and-rescue team is a critical factor
to minimize the casualties. A swarm of robots, e.g. drones can be used to concurrently
sweep the region to minimize the response time without risk to the search-and-rescue
team [12]. Some researchers have followed a centralized approach where the robots are
supervised and operated from a central control [5], [2]. However, these solutions are
not scalable and are prone to failure. More robust solutions focus on fully autonomous
systems, where the robots self-coordinate their actions without the help of preexisting
infrastructure [1]. However, the implementation of these systems requires an interdisci-
plinary team with expertise in robotics, distributed systems, wireless sensor networks,
etc, making the systems accessible only for experienced research teams. In this paper
we present a testbed, called Synchronous Robotic Framework (SyROF), that gives ac-
cess to undergraduate computer science/engineer at California State University Long
Beach to rapidly implement and demonstrate robotic swarms. In essence, SyROF pro-
vides the look-compute-move model proposed by Suzuki and Yamashita in their sem-
inar paper [14]. In our framework, robots broadcast their state infinitely often. Then,
every participant robot obtains the state of every other active robot using a membership
service, which can be used to compute its next movement. In the look-compute-move
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model, we can distinguish two main variants: 1) the fully synchronous FSYNC, where
all robots start the cycles at the same time [6], and 2) the asynchronous ASYNC, where
no assumption is made about the cycles. We choose to implement FSYNC to reduce
the complexity of implementing cooperative algorithms. The power of the model has
been shown in [3], [18], [17]. However, SyROF can also be used to implement the
asynchronous variant. We implement a synchronizer to execute the synchronized cycle.
In FSYNC every robot has common knowledge, i.e., every robot knows that every other
robot knows, and so on, the state of the participant robots. Thus, the output of any de-
terministic function is identical in all robots. However, their output can be conflicting
if robots do not attain common knowledge. We consider wireless networks where mes-
sages can be dropped at any time which makes it impossible to attain common knowl-
edge deterministically. To overcome the impossibility, we consider the stream consen-
sus protocol proposed by Morales-Ponce et al., [8] that guarantees common knowledge
at almost every time with period of disagreement of bounded length.

In this paper we describe the design of SyROF testbed that consists of multiple as-
sorted mobile robots including omnidirectional robots, drones and rovers. Each robot
is equipped with a microprocessor, a gyroscope/accelerometer sensor, a flow sensor, a
GPS like sensor and a Bluetooth chip. We design and implement a real-time publish-
subscribe system as a base system. Then we design and implement a Kalman filter to
compute the state of the robot that reduces the noise of the sensory data. Then we imple-
ment a synchronizer to synchronize the task of the robots. On top of the synchronizer,
we implement a programing interface, called virtual machine, that allows implement-
ing Timed Input/Output Automata. The main software architecture is shown in Figure 1.
Our design allows adding external sensors such as small computers for more complex
applications.
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Fig. 1. Software architecture

The paper is organized as follows: in Section 2, we present the architecture of the
robots. The formal requirements of the system are then presented in Section 3, fol-



lowed by the related work in Section 4. We present the design for the real-time publish-
subscribe system in Section 5, then we present the design of the Kalman filter in Sec-
tion 6 and the membership service and synchronizer in Section 7. The programming
interface is presented in Section 8. Finally, we conclude the paper in Section 9.

2 Robot Architecture

We design the main components of the system to be compatible with different robotic
models. Currently, we have built the testbed with omnidirectional robots that are able to
move in any direction without rotations. However, the components and software were
designed to support different robot models, such as rovers that can rotate and move
forward and backward, non-holonomic mobile robots, drones, etc.

The main components of SyROF are implemented in a Cortex M4 with a real rime
operating system. In particular, we use Teensy 3.2 and FreeRTOS for the omnidirec-
tional robots that allows executing tasks in bounded time. SyROF uses different sensors
to compute the robot’s state. Namely, an MPU-9265 (Inertial Measurement Unit or
IMU) to obtain the robot’s orientation, a PMW390 (optical flow sensor) to compute
the distance traversed by the robots, an NRF51822 (bluetooth module) to communicate
and a DWM1000 (an ultra-wide band sensor) to compute the robot’s absolute position.
SyROF also controls all the actuators. To simplify the connections, we design a printed
circuit board (PCB) depicted in Figure 2.

Fig. 2. Autopilot PCB

Many robotic applications can be enhanced with the use of computer vision and
machine learning algorithms. However, these algorithms require more computational
power. Hence, we design the system to be highly configurable to include different sen-
sors and actuators including external small computers. Throughout the paper we assume
that robots are in communication range and that the clock drift of the process is bounded
by a constant.

3 Requirements

In this section, we list the main functional requirements of SyROF.



– Provide a membership service. In robotic swarms, every robot needs to be aware
of every other robot that is participating in the system. This requirement adds dy-
namism to the system by allowing robots to join and leave at any time.

– Synchronize robotic primitives. The time to complete a maneuver (or primitive)
is non-deterministic due to inaccuracies in the actuators and sensors, battery lev-
els, etc. Robots should synchronize primitives to provide the look-compute-move
FSYNC model.

– Provide common knowledge infinitely often, even with communication faults. Com-
mon knowledge is attained when every robot knows the state of all participant
robots. If all robots communicate successfully, they must switch to cooperative
mode and provide their state including position, speed, intentions, etc., to every
other robot. If any robot does not receive the message of at least one robot, all
robots must switch to autonomous mode.

– Provide a high level programming environment to implement cooperative robotic
systems using Timed Input/Output Automata (TIOA). The programming environ-
ment should provide instructions to control the actuators, read sensory data, provide
complex queries.

4 Related Work

Testbed for lowering the entrance barrier to multi-robot systems have been proposed
previously, see for example [9], [13], where the the authors present a testbed, called
GRITSBot and Kilobots, respectively, using inexpensive robots. In GRITSBot, a central
server is responsible for executing the code in each robot. Moreover, it requires a precise
tracking system to determine the position of each robot. Thus, user can design and
test robotic synchronous system. However, any failure in the server affects the whole
system. Unlike GRITSBot, in SyROF all the robots have the same role and, therefore,
there is no single point of failure. In the Kilobot testbed robots asynchronously runs its
own code. However, those robots do not have enough computational power to estimate
their positions. Unlike Kilobots, our proposed testbed, robots can estimate their own
position and synchronize the primitives.

Another closely related framework is ROS (Robot Operating System) [11]. A sys-
tem built using ROS consists of several processes connected in a peer-to-peer topology.
ROS has been very successful and many packages for a great variety of applications are
available including SLAM (Simultaneously Localization and Mapping). However, ROS
does not provide support to synchronize robotic primitives nor common knowledge
guarantees. Our framework provides a new high-level platform-independent program-
ming language that provides users with synchronous executions of robotic primitives
and common knowledge in realtime. Moreover, SyROF can be integrated with ROS to
extend its functionalities without compromising the realtime execution.

Our synchronization mechanism is based on consensus among all robots. Many
papers have based their systems on consensus where processes need to agree on specific
tasks [4,?,?]. Another approach is to use of tuple spaces. Processes insert tuples in a
common space that can be read by every process [10], but, there is no guarantee that a
process is able to read.



5 Real-Time Publish-Subscribe System

In this section we present the design of the real-time publish-subscribe system that
simplifies the implementation of robotic systems. The publish-subscribe system can be
logically separated into three parts- the Broker, Publishers, and Subscribers as shown
in Figure 3. Each process can be either publisher or subscriber or both.

– The Broker. The main functionality of the broker is to disseminate data from the
publisher to subscribers that are interested in the topic. Thus, it plays a key role
for the expected functionality of the system. Publishers register through the Broker
using unique identifiers and subscribers subscribe to the publisher with the Broker
using the identifiers. It is assumed that identifiers are unique.

MPU 9250

Flow
Breakout

DWM1000

RTPubSub Kalman Filter 

Publishers Subscribers Broker 

Fig. 3. Publish Subscribe System

– Publishers. They are dedicated to produce data without knowing which processes
consume it. For example, publishers can read data from sensors, execute an algo-
rithm to filter data, etc. When a publisher is created, it registers as publisher using
a unique identifier. When data ready, it notifies the broker.

– Subscribers. They are dedicated to consume data. When a subscriber is created, it
subscribes to the topic that it is interested in using their unique identifier. It can
subscribe to more than one topic. When a publisher publishes the data, the broker
notifies all the subscribers that have declared interest in it. Subscribers can also play
the role of publisher.

In this paper we report the implementation in FreeRTOS. However, the design can
be also implemented in other real-time operating systems. FreeRTOS is based on co-
routines to emulate a multiprocessor system. Essentially, a co-routine can have multiple
entry points and maintains its state between activations. In FreeRTOS, each process ex-
ecutes a task that does not return during the execution of the program. To switch to other
tasks, an operating system method must be invoked such as vTaskDelayUntil, vTaskDe-
lay, etc. Since we are interested in providing a system for time-critical applications,
each task must complete a step of computation in bounded time.



5.1 Broker Interface

The real-time publish-subscribe system interface is presented in Interface 1 which con-
sists of three methods

– registerPublisher. Register a publisher into the real-time publish-subscribe system
using a unique id. First, the publisher task instantiates a FreeRTOS queue using the
operating system method xQueueCreate and passes the handler to the system as
well as the size of the tuple. The Broker inserts these values into a list of publishers.
The function returns the handler (index) of the publisher which is later used to
publish new data.

– subscribe. Register a subscriber to a given publisher. Before the subscriber calls
subscribe, it creates a task and a queue that stores the publisher produced tuple.
In FreeRTOS, xCreateTask and xQueueCreate are used to create the task and the
queue, respectively. These values are passed as parameters to the function subscribe
and the Broker inserts these two values into a publisher queue.

– publish. Publishers use the function publish to publish new data. To avoid blocking,
the broker notifies the main broker task. When the broker receives the notification,
it reads the data from the publisher using the queue handler and then copy it to all
the subscribers using their queue handlers.

Interface 1 Publish-Subscribe Interface
1: uint8 t registerPublisher(uint8 t id, uint8 t size, QueueHandle t queueHandler)
2: bool subscribe(uint8 t id, uint32 t taskHandler, QueueHandle t queueHandler)
3: uint8 t publish(uint8 t index)

6 Kalman Filter

In this section we present the implementation of the Kalman filter [7]. The Kalman
filter estimates the state of the system in real-time from noisy sensory information,
assuming that the noise follows a Gaussian distribution. The Kalman filter is critical
for the correct functionality of our testbed. Sensors suffer from errors occurring due to
many reasons. For instance, GPS sensors might suffer deviation while the device does
not have a direct sight-of-view to the satellite. Furthermore, odometric values must be
accurate to determine the actual position of the vehicle.

6.1 Kalman Filter Design

Let ∆ be the rate at which the Kalman filter runs and X(t) = (x(t),y(t), ẋ(t), ẏ(t),θ(t))
be the robot’s state at time t where x(t) and y(t) are the absolute position, ẋ(t) and
ẏ(t) are the speed and θ(t) the orientation of the robot. Since the current state only
depends on the previous state, we omit t. Let P be the covariance matrix of X at time



t. P represents the uncertainties in the current state. Let ua be the motor thrust and uθ

be the steering angle. Based on the dynamic model, we can compute the new state as
follows:

x̂ = x+∆
(ẋ)2

2

ŷ = y+∆
(ẏ)2

2
ˆ̇x = ẋ+∆

µ2
a

2 cos(∆ µ2
θ

2 )

ˆ̇y = ẏ+∆
µ2

a
2 sin(∆ µ2

θ

2 )

θ̂ = θ +∆
µ2

θ

2

It can be simple written as X̂ = f (X)+ f (U). Let J be the Jacobian matrix of f (X)
and Q be the covariance matrix representing the process noise. The estimation of co-
variance matrix at time t +1 is defined as P̂ = FPFT +Q.

Let Z = (gyroz, f lowx, posx, posy) be the sensor readings at time t. Let R be the
covariance matrix measuring the noise. We use the following equations to deduce h(X̂).

f lowx = ˆ̇x
f lowy = ˆ̇y
posx = x̂
posy = ŷ
gyroz = ˆ̇

θ

Let F be the system state matrix. We can summarize the Kalman filter as:
Model forecast

X̂ = f (X)+ f (U)
P̂ = FPFT +Q

(1)

Step correction
K = PFT (FPFT +R)−1

X = X̂T +K(Z−h(X̂))
P = (I−KJh)P̂

(2)

6.2 Implementation

We implement the described Kalman filter using the real-time publish-subscribe sys-
tem. Thus, we create dedicated tasks for each sensor. Namely, IMU that consists of
reading the gyroscope/accelerometer data, optical flow that reads the offset between
two consecutive images and ultra-wideband that reads the ranging between the sensor
and the fix stations. We register these tasks as publishers and publish the data at the
updated refresh time. The core of the Kalman filter is implemented using two tasks:

1. The state task. The state subscribes to IMU, optical flow and ultra-wideband. When
a publisher publishes new data, the state updates Z and sets the uncertainties of the
sensor in R, accordingly.



TIOA 2 Synchronization protocol

1: Signature:
2: ext SendP〈Id, mbrInP, OM, Progress 〉
3: ext SendW 〈 Id, mbrInW, OM, Wait 〉
4: ext SendV 〈 Id, mbrInV, OM, Vote 〉
5: ext Recieve〈 Id, information,OM, state 〉
6: ext FailureDetector
7: ext GoToAutonomous
8: ext GoToCooperative
9: State:

10: int Progress
11: int Wait
12: int Vote
13: analog now ∈ R initially 0
14: analog nextSend ∈ R initially 0
15: discrete in f romation, is the the set of

member which can be list of nodes in
Progress, Wait or Vote

16: discrete OM, Operation Mode initially /0
17: discrete state ∈ {Progress,Waite,Vote},

state of the nodes
18: discrete memberInP, is a list of the mem-

ber in Progress state
19: discrete memberInW , is a list of the

member in Wait state
20: discrete memberInV , is a list of the mem-

ber in Vote state
21: discrete messageLost, is a list to keep

track of message lost for each process
22: Actions:
23: external SendP〈Id, mbrInP, OM, Progress
〉

24: precondition:
25: state=Progress∧ nextSend← now+α

26: effect:
27: nextSend← now+α

28: external SendW 〈 Id, mbrInW, OM, Wait 〉

29: precondition:
30: state =Wait∧ nextSend← now+α

31: effect:
32: nextSend← now+α

33: external SendV 〈 Id, mbrInV, OM, Vote 〉
34: precondition:
35: state =Vote∧ nextSend← now+α

36: effect:
37: nextSend← now+α

38: external receive〈 Id, information,OM,
state 〉

39: precondition:
40: f ull(Chanel) = True
41: effect:
42: if state = PROGRESS
43: mbrInP← mbrInP∪{id}
44: if state =Wait
45: mbrInW ← mbrInW ∪{id}
46: if state =Vote
47: mbrInV ← mbrInV ∪{id}
48: external FailureDetector
49: precondition:
50: f ull(Chanel) = False
51: effect:
52: messageLostId← messageLostId +1
53: external GoToAutonomous
54: precondition:
55: messageLost >K

56: effect:
57: OM← 1
58: external GoToCooperative
59: precondition:
60: OM = 1 ∨ receive OM = 0 f rom all

other Nodes
61: effect:
62: OM← 0
63: internal Progress
64: precondition:
65: actionCompleted = True
66: effect:
67: state←Wait
68: mbrInW ←{Id}
69: internal Wait
70: precondition:
71: mbrInP = mbrInW ∨|mbrInV |> 0
72: effect:
73: state←Vote
74: mbrInV ← mbrInV ∪{Id}
75: internal Vote
76: precondition:
77: mbrInW = mbrInV
78: effect:
79: state← Progress
80: mbrInV ← /0
81: mbrInP←{id}



(a) MPU 9250: The MPU returns the linear acceleration as a unitary vector. To
convert to m/s2, we multiply by G = 9.81m/s2. The MPU also returns the
angular speed in degree per seconds. Therefore, we simple convert to radians.

(b) Flow Breakout (Optical flow): It returns the difference of pixels in x and y from
two consecutive images. As depicted in the Figure 4, the Flow Breakout sensor

D C B
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h

xP a

a+ x

cb

β

θ
α

Fig. 4. Flow Breakout data with orientation α .

measures the lateral velocity of the sensor in both directions, that is δx and δy.
The effective viewing angle of the sensor θ is assumed to be equal to 25◦. Since
there will be a slight orientation in the sensor’s axis we are adding an angle α

to be the angle of orientation. Let h be the height of the sensor from the ground.

Observe that β =
π−θ

2
−α and a+x can be calculated using β as we already

know the height of the sensor. That is, a+ x = hcot(β ). The Flow Breakout
sensor measures the lateral velocity in pixels per second. The number of pixels
in the x and y axis of the image frame is 30 each. Therefore, the normalized
speed is x = hcot(β )−a

30 .
(c) DWM1000 (Ultra-wide band): The sensor returns the distance to a fixed num-

ber of anchors. An anchor is a station at a well known position. We compute
the position using simple trigonometry.
We consider four anchors with a layout depicted in Figure 5 where anchor
a0,a1,a2,a3 are located at (0,0,0), (1,1,0), (0,1,1) and (1,0,1), respectively.
Let p = (x,y,z) be the robot position and let [p1, p2, p3] denote the plane deter-
mined by the three points p1, p2, p3.
Consider any two different anchors ai,a j, the line segment (ai,a j) and its per-
pendicular line segment (q, p) such that q is on (ai,a j). Observe that the per-
pendicular line has an angle of 45o and dist(ai,a j) =

√
2. Let dist(ai,q) = b,

dist(q,a j) =
√

2−b, dist(q, p) = c, dist(ai, p) = di and dist(a j, p) = d j where
di and d j are returned by DWM1000. From the Pythagorean theorem, b2+c2 =

d2
i and (

√
2−b)2 + c2 = d2

j . Therefore, b =
d2

i −d2
j +2

2
√

2
.

Observe that q = (x,y) is the intersection of the perpendicular lines of (a0,a1),
(a2,a3) in the plane XY , q = (x,z) is the intersection of the perpendicular lines
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Fig. 5. Upper: Layout, Lower: Plane xy.

of (a0,a2), (a1,a3) in the plane XZ and q = (y,z) is the intersection of the
perpendicular lines of (a0,a3), (a1,a2) in the plane Y Z.
Let y = x−m0,1 be the equation of the perpendicular line (a0,a1) passing

through p. Since the angle is 45o, m0,1 =
d2

0−d2
1+2

2 ; see Figure 5. Similarly,
let y =−x+m2,3 be the equation of the perpendicular (a2,a3) passing through

p. Therefore, m2,3 = 1− d2
2−d2

3+2
2 . Similarly we can compute for the other per-

pendicular; see Figure 5.
We can now compute the position using the following equations:

x =
m0,1+m2,3

2 =
m0,2+m1,3

2
y =

m0,1−m2,3
2 =

m0,3+m1,2
2

z = m0,2−m1,3
2 =

m0,3+m1,2
2

2. The Kalman task executes at a fixed rate. First it updates the state using equa-
tion 1 and 2 and then it sets high uncertainties in R for the new calculations. Recall



that in the Kalman filter the weight of each sensor information depends on the un-
certainties. Once a new sensory reading is completed the uncertainties matrix R is
adjusted. Observe that if one step of the Kalman filter is executing without reading
the sensory data, the state will be determined by the model. This approach allows
the Kalman filter to handle sensors reading at different rates and reduces the main-
tenance time.

We show a sketch of the code that receives the data to populate the matrices Z and
R.

void stateTask(void* args)
while (true)

if (xTaskNotifyWait(0xffffffff, 0xffffffff, &publisherId,
portMAX_DELAY) == pdTRUE)

switch (publisherId)
case MPU_DATA:

xQueueReceive(mpuQueue, &gyroAcc,
(TickType_t )0); // gyroAcc contains the data

of the IMU
case FLOW_DATA:

xQueueReceive(flowQueue, &flowData,
(TickType_t )0); // flowData contains the data

of the flowdeck
case DWM_DATA:

xQueueReceive(dwmQueue, &dwmData,
(TickType_t )0); // dwmData contains the data

of the DWM100

The task of the Kalman Filter is executed at the frequency of FREQUENCY KF .
It executes one step of the Kalman filter, update the variables for the next step and
publish the new state. After publishing the data, the matrices Z and R are reset to high
uncertainties.

void kalmanTask(void* args)
while (true)

vTaskDelayUntil(&lastWakeTime,
FREQUENCY_KF / portTICK_RATE_MS);

if (ekf_step(&ekf)) // Executes the Kalman Filter
xQueueOverwrite(stateQueue, &state);

// insert in the queue
publish(stateId); // publish

// reset the Matrices Z and R

7 Membership and Synchronizer Service

In this section, we describe the protocol which allows the synchronization of Timed
Input/Output Automata. We present the Algorithm as a Timed Input/Output Automata
in Protocol 2. Let R = {r1,r2, ...,rn} denote the set of robots. The protocol relies on
three states: PROGRESS where robots are performing a maneuver, WAIT where robots
have completed the maneuver and VOT ING where robots are voting to start the next
instruction. Let Mi, initially set to /0, be the set of boolean values that indicates when a
robot ri has completed the maneuvers, and let vi denote the number of rounds in voting
of robot ri

For simplicity of presentation, we assume that every robot is aware of the rest of
the robots. Later we explain how to remove this assumption. Every robot broadcasts its
id, state of the automata and the number of rounds it has been in the VOT ING state.



While robots are in the state PROGRESS, they are performing a maneuver. When a
robot completes it maneuver, it changes its state to WAIT and waits for the other robots
to complete their maneuver. When a robot ri receives the WAIT state from robot rk,
it sets a Mi[k] = true. Robot ri changes its state from WAIT ING to VOT ING when
∧n

i=1Mi = T RUE or if it receives the VOT ING state from a robot rk in which case it
sets vi = vk. Robot ri increases vi and when vi = K, it changes to PROGRESS, sets
Mi = /0, vi = 0 and start a new maneuver.

In the following theorem we show that if the number of consecutive rounds with
message lost in the system is less than K, all robots start a new maneuver at the same
time. We assume that all the maneuver take a bounded number of rounds and at least K
rounds.

Theorem 1. If the number of consecutive rounds with message lost in the system is
less than K, Algorithm 2 satisfies the following properties:
1) Safety: If a robot is in WAIT state, then eventually all robots reach WAIT state.
Further, if a robot changes its state to IN PROGRESS at round r, all other robots
change the state to IN PROGRESS at round r, and
2) Liveness: Each robot executes infinitely often in IN PROGRESS state.

Proof. We first prove that property (1) holds under the assumptions. Consider any robot
ri that reaches the WAIT state. Observe that, ri remains in WAIT until it receives that all
other robots are in the WAIT state since ∧n

i=1Mi = FALSE or it receives VOT ING from
a robot. Therefore, the earliest time that a robot can change its state to VOT ING is when
all robots are in WAIT for at least one round. Let m1 be the round where the last robot
changes its state to WAIT . Observe that there is a round in the interval [m1,m1 +K]
where all robots receive the message with the state WAIT , since the number of consec-
utive rounds with message lost in the system is less than K. Consider the first robot ri
that listens the WAIT from all other robots in round m2 ∈ [m1,m1 +K]. Therefore, ri
changes its state to VOT E and broadcasts vi + j in each round j ∈ [m2 +m2+K]. Ob-
serve that ri changes its state to PROGRESS when vi + j >K. When any other robot,
say rk, receives the message from ri at any round during the interval [m2,m2 +K] it
changes its state to VOT ING and set vk = vi + j. Therefore, every other robot changes
its state to PROGRESS when vi + j >K.

It is not difficult to see that Property (2) holds under the assumptions that the number
of consecutive rounds with message loss is less than K.

Observe that from Theorem 1, robots reach a consensus to start a new maneuver
at the same time. Therefore, it provides a synchronous robot system. Although one
can expect that the number of consecutive rounds with message loss is less than K,
in practice we can have communication faults, i.e., the number of consecutive rounds
with message loss is at least K. Therefore, properties (1) and (2) may not hold. In-
deed, it is known that the consensus problem cannot be solved deterministically if mes-
sages can be lost. To alleviate the problem, we consider two operation modes. Namely
COOPERAT IV E mode where every robot receives the message from every other robot
and AUTONOMOUS mode where at least one robot does not receive the message from
other robot. Observe that if there is a partition among the robots such that some robots



are in the AUTONOMOUS mode and others are in COOPERAT IV E mode, a coop-
erative robotic application may not be completed successfully or robots may collide.
Therefore, the goal is to let robots agree on the operation mode. However, it is again a
consensus problem and consequently there is no deterministic algorithm that can solve
it. However, we can minimize the number of rounds where robots do not agree using the
protocol proposed in [8]. In this protocol, when a robot does not receive a message at
round r from another robot or when it receives AUTONOMOUS operation mode from
any other robot, then it changes its operation mode to AUTONOMOUS. The robots
return to COOPERAT IV E operation mode when they receive the AUTONOMOUS op-
eration mode from every other robot.

Lemma 1. Stream Consensus [8] Robots may disagree in at most two continuous
rounds.

Consider the case where robots are in WAIT or VOT ING state. Observe that if the
robots change to AUTONOMOUS operation mode due to message loss, then it is safe
to start the next maneuver when they change to COOPERAT IV E operation mode. From
Lemma 1, robots may start within two rounds of difference. However, when robots are
in the PROGRESS state, they always send COOPERAT IV E as the operation mode and
do not execute the Stream Consensus protocol. The following theorem summarizes the
the previous discussion and is presented without a proof.

Theorem 2. Protocol 2 allows the robots to start a new maneuver within at most two
rounds of difference. Further, all robots have common knowledge before starting a new
maneuver.

Now, we show how to remove the assumption that robots need to know the number
of active robots. Indeed, during the PROGRESS state, robots implement a member-
ship service. More precisely, robots maintain the set membersi of participating robots
that they receive messages from. Further, robots maintain the set membersInWaiti of
robots that are in the WAIT state. Robots broadcast membersInWaitk while they are
in the WAIT state. A robot decides to change its state to VOT ING when it receives
membersInWaitk = membersi from every other robot.

8 Virtual Machine

In this section we present the implementation of the programming interface that is used
to implement robotic applications in the framework which consists of three callback
functions and one method to send messages; see Interface 3.

– init. It is called when the system starts. It is used to initialize the local state of the
robot.

– newRound. It is called at the beginning of each application round. In other words,
when the robots change their state to PROGRESS. This function allows setting the
robot’s commands. Application rounds are suggested to be of 1 or 2 seconds to let
the robot make progress. The function receives the local dynamic map that contains



Interface 3 Programming Interface
1: void *init()
2: uint8 t (*newRound)(CarCommand *command, LDMap *ldmap, uint8 t globalState,

uint32 t clock)
3: uint8 t (*endOfRound)(LDMap *ldmap, uint8 t globalState, uint32 t clock)
4: void sendMessageData(uint8 t *payload)

the state of all the participant robots at the end of previous round. If the operation
mode in the local dynamic map is COOPERAT IV E, then all robots agree in the
content of the local dynamic map. It also receives the globalState and the local
clock.

– endOfRound. The function receives the local dynamic map that contains the state
of all the participant robots in the end of the round, i.e., when the robot complete
the maneouver. It also receives the globalState, and the local clock. The TIOA is
responsible for performing the transitions of globalState accordingly.

– sendMessageData. It allows to broadcast up to 9 bytes in each round.

We enhance SyROF by implementing a set of local and distributed queries to sim-
plify the design of cooperative robotic applications:

– NumberOfMembers. Returns the number of active members performing the current
primitive.

– Leader. Returns the leader defined as the robot with minimum id.
– ShortestEnclosingCircle. Returns the center and the radius of the shortest circle that

contains all the robots.
– ConvexHull. Returns the list of active robots in the convex hull.
– MinWeightedMatching. Given a set of points, it returns the matching point for each

robot that minimizes the maximum sum of distances from each point to its destina-
tion.

9 Conclusion

In this paper, we present the current work on SyROF, a testbed that allows undergrad-
uate students to implement and demo collaborative robotic applications. SyROF pro-
vides a synchronous robotic system to implement cooperative applications. We expect
that the testbed lowers the barriers for the students of computer science and computer
engineering at CSULB. We plan to perform extensive experiments with different robots.
The implementation has demonstrated that SyROF is feasible.
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