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Abstract—In this paper, we study gossip algorithms in com-
munication models that describe the peer-to-peer networking
functionality included in most standard smartphone operating
systems. We begin by describing and analyzing a new syn-
chronous gossip algorithm in this setting that features both a
faster round complexity and simpler operation than the best-
known existing solutions. We also prove a new lower bound
on the rounds required to solve gossip that resolves a minor
open question by establishing that existing synchronous solutions
are within logarithmic factors of optimal. We then adapt our
synchronous algorithm to produce a novel gossip strategy for
an asynchronous model that directly captures the interface of a
standard smartphone peer-to-peer networking library (enabling
algorithms described in this model to be easily implemented on
real phones). Using new analysis techniques, we prove that this
asynchronous strategy efficiently solves gossip. This is the first
known efficient asynchronous information dissemination result
for the smartphone peer-to-peer setting. We argue that our
new strategy can be used to implement effective information
spreading subroutines in real world smartphone peer-to-peer
network applications, and that the analytical tools we developed
to analyze it can be leveraged to produce other broadly useful
algorithmic strategies for this increasingly important setting.

Index Terms—gossip, distributed algorithms, peer-to-peer net-
works

I. Introduction

In this paper, we study gossip in smartphone peer-to-peer

networks, an interesting emerging networking platform that

makes use of the peer-to-peer libraries included in standard

smartphone operating systems (for examples of these networks

in practice, see: [23], [1], [22], [18], [17], [11], [12]). We begin

by improving the best-known synchronous gossip algorithms

in this setting, and then build on these results to describe

and analyze the first efficient asynchronous solution. The

model in which we study this latter algorithm captures the

interfaces and guarantees of an actual peer-to-peer networking

library used in iOS, meaning that our gossip solution can be

directly implemented on commodity iPhones. To emphasize

this practicality, in Appendix D we provide the SWIFT code

that implements this algorithm in iOS—a rare instance in the

study of distributed algorithms for wireless networks in which

the gap between theory and practice is minimal.

Below we briefly summarize the models we study and the

relevant existing bounds in these models, before describing the

new results proved in this paper.

The Mobile Telephone Model (MTM). The mobile telephone

model (MTM) [13] extends the well-studied telephone model

of wired peer-to-peer networks (e.g.,[10], [14], [16], [5],

[9], [15]) to better capture the dynamics of the peer-to-peer

network libraries implemented in existing smartphone oper-

ating systems. In recent years, multiple distributed algorithm

problems have been studied in the MTM setting, including:

rumor spreading [13], load balancing [7], leader election [20],

network capacity [8], and gossip [19], [21].

As we elaborate in Section III, in the MTM, time proceeds

in synchronous rounds. At the beginning of each round, each

wireless device (which we will call a node) can advertise a

small amount of information to its neighbors in the peer-to-

peer network topology (defined by an undirected graph). After

receiving advertisements, nodes can attempt local connections.

In more detail, in each round, each node can send and accept

at most one connection proposal. If a node u’s proposal is

accepted by neighboring node v, then u and v can perform a

bounded amount of reliable communication using this connec-

tion before the round ends.

This scan-and-connect network architecture—in which

nodes can broadcast small advertisements to all of their

neighbors, but form pairwise connections with only a limited

number at a time—is a defining feature of existing smart-

phone peer-to-peer libraries. In the peer-to-peer libraries that

depend on Bluetooth, for example, the advertisements are

implemented as low energy beacons that contain at most tens

of bytes, whereas the pairwise connections are implemented

as reliable, high throughput links that can achieve up to

2 Mbits/sec [3]. These libraries, therefore, allow devices to

broadcast advertisements to all neighbors, but severely restrict

the number of concurrent pairwise connections allowed. In

iOS, for example, this limit is 7 (the MTM typically reduces

this bound to 1 to simplify the model description and analysis).

Mobile Telephone Model vs. Classical Telephone Model.

The MTM can be understood as a modification of the classical

telephone model of peer-to-peer networks [10], [14], [16],

[5], [9], [15]. The MTM differs from its predecessor in two

ways: (1) it allows nodes to broadcast small advertisements to

all neighbors; and (2) it bounds the numbers of concurrent

connections allowed at each node. As elaborated in [6],

[13], this second difference prevents existing telephone model
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results from applying to the mobile telephone setting, as

the best-known telephone model analyses specifically depend

on the ability of nodes to service an unbounded number of

incoming concurrent connections (the standard analysis of

PUSH-PULL rumor spreading, for example, depends on the

ability of many nodes to simultaneously pull the rumor from a

common informed neighbor). On the other hand, the addition

of advertisements to the MTM means that results in this new

model do not apply to the classical telephone setting, which

not include this behavior. Fundamentally new techniques are

needed to study the MTM.

The Asynchronous Mobile Telephone Model (aMTM). The

mobile telephone model includes synchronized rounds. This

assumption simplifies analyses that probe the fundamental

capabilities of scan-and-connect style peer-to-peer networks. It

also introduces, however, a gap between theory and practice, as

real smartphone peer-to-peer networks are not synchronized.

To help close this gap, in [21], the authors introduced the

asynchronous mobile telephone model (aMTM), which, as we

elaborate in Section IV, eliminates the synchronous round as-

sumption from the MTM, and allows communication events to

unfold with unpredictable delays, controlled by an adversary.

To increase the practicality of the aMTM, the authors of [21]

also provide a software wrapper around the network libraries

offered in iOS that matches the interface from the formal

specification of the aMTM—simplifying the task of directly

implementing algorithms analyzed in the aMTM on iPhones.

Existing Results. Work on the MTM began with [13], which

studied rumor spreading, and described a strategy that uses a

1-bit advertisement to compensate for connection bounds to

spread a rumor in at most O((1/α) log2 n log2 ∆) rounds, with

high probability, in a network with n nodes, maximum degree

∆, and vertex expansion α (see Section II). The paper also

proved that there exist graphs with good graph conductance, φ,

for which efficient rumor spreading is impossible. This creates

a separation from the classical telephone model where both

vertex expansion and conductance are known to be good mea-

sures of the ability to spread a rumor efficiently in a graph. In

the classical model, for example, the canonical PUSH-PULL

rumor spreading strategy requires Θ((1/α) log2 n) rounds for

graphs with vertex expansion α [15], and Θ((1/φ) log n) rounds

for graphs with conductance φ [14].

The more general problem of gossiping k rumors in the

mobile telephone model was first studied in [19], which de-

scribed an algorithm that spreads the rumors in O((k/α) log5 n)

rounds,1 with high probability. This algorithm was one-shot, in

the sense that it cannot accommodate on-going rumor arrivals,

or detect when it has terminated. In recent work [21], a simpler

gossip algorithm was described and analyzed that improves

1In [19], the algorithm is listed as requiring O((k/α) log6 n) rounds,
but that result assumes a single bit advertisements in each round—
requiring devices to spell out control information over many rounds
of advertising. To normalize with this paper, in which tags can contain
log n bits, this existing strategy’s time complexity improves by a log
factor.

this bound to O((k/α) log2 n log2 ∆) rounds, and can handle

on-going rumor arrivals.

By comparison, the best-known gossip solution in the clas-

sical telephone model requires O(D + polylog(n)) rounds [4].

This result was considered a breakthrough as it removed

the dependence on graph properties such as expansion or

conductance. The solution in [4], however, requires unbounded

concurrent connections and unbounded message size (allowing

all rumors in the set difference between two nodes to be

delivered during a given one-round connection2).

The aMTM was introduced in [21], which analyzes a basic

asynchronous rumor spreading algorithm, and prove it requires

O(
√

(n/α) · log2 nα · δmax) time, with high probability, where

δmax is a sum of the maximum delays on the relevant commu-

nication events (as is standard in asynchronous models, δmax

is unknown to the algorithm and can change from execution

to execution). For gossip, however, the paper establishes only

a crude deterministic bound of O(n · k · δmax) time to gossip

k rumors. Finding an efficient gossip algorithm in the aMTM

was left as the core open question of [21], as such an algorithm

could be directly deployed as an information spreading routine

in real smartphone peer-to-peer networks.

New Result #1: Improved Synchronous Gossip. Our ulti-

mate goal in this paper is to design and analyze an efficient

and simple gossip strategy for the aMTM. The first step toward

this goal is to identify an efficient synchronous strategy that

can be adapted to asynchrony. The existing synchronous gossip

algorithm from [21] is not a good candidate for this purpose

because it requires nodes to advertise whether or not they were

involved in a connection at any point during the previous

log n rounds. This behavior cannot be easily adapted to an

environment with no rounds.

In Section III, we overcome this issue by describing a

simpler strategy we call random diffusion gossip that does

not depend on round history. This algorithm has each node

continually advertise two pieces of information about its

current rumor set: a hash of the set and its size. When faced

with multiple neighbors with different rumor set hash values, a

node will randomly select a recipient of a connection proposal

from among those with the smallest rumor set sizes. This

strategy is easily adapted to asynchrony as it does not explicitly

use rounds.

As we show, in addition to being both round-independent

and pleasingly straightforward in its operation, random dif-

fusion gossip is more efficient than the solution from [21],

requiring only O((k/α) log n log2 ∆) rounds to spread k rumors.

The source of this speed-up is a new and improved version

of the core technical lemma from [13], which bounds the

performance of a random matching strategy in bipartite graphs.

Notice that this gossip result also improves the best known

result for rumor spreading (i.e., for k = 1).

Finally, we note that these synchronous gossip bounds are

all of the form Õ(k/α) (where Õ suppresses polylogarithmic

2This explains why the rumor count, k, is not needed in the time
complexity



factors in n and ∆). As argued in the previous work on gossip,

it might be possible to leverage pipelining to achieve results in

Õ(k+ (1/α)), which would make the existing gossip strategies

for this model far from optimal in certain cases. In Section III,

we resolve this open question by proving that Ω(k/α) is indeed

a lower bound for spreading k rumors in the mobile telephone

model.

New Result #2: Asynchronous Gossip. Our synchronous ran-

dom diffusion gossip algorithm’s operation is easily adapted

to our asynchronous model. Adapting its analysis, however, is

more complicated. Like most algorithms studied in the MTM,

our synchronous analysis of random diffusion gossip relies on

the synchronized behavior of the devices in the network: fixing

for each round a set of potentially productive connections, and

then arguing that a reasonable fraction of these connections

will succeed in parallel during the round.

Our first step toward enabling an asynchronous analysis is

to divide time into intervals of a length proportional to δmax.

These phases are not used by the algorithm (as δmax is a priori

unknown), but instead meant only to facilitate our analysis. As

in the synchronous setting, we fix a set of potential connections

at the beginning of each interval. We show that amidst all the

chaotic, asynchronous behavior that occurs during the interval,

for each such connection from some node u to some node v in

this set, one of two things will happen: there will be a point

at which u selects a connection from a set that includes v and

that is not too large (keeping the probability of v’s selection

reasonable), or some other node will end up connecting with

v before u even gets a chance to learn about v.

To make use of this probabilistic analysis, we leverage

a rebuilt version of the core randomized matching lemma

from [13] (discussed above), that we make not only more

powerful but also significantly more friendly to asynchrony.

In more detail, this new version includes two crucial changes.

First, the original lemma follows the behavior of a randomized

matching strategy over multiple rounds to achieve the needed

result. Our new version, by contrast, requires only a single

round, which is necessary to apply to our interval structure,

as in the asynchronous setting too much can change in the

network between intervals to enable a coherent multi-interval

graph analysis. Second, the original version relied on the

precise probabilities of particular connections occurring, using

both upper and lower bounds on these values to prove its

claim. Our new version only requires the loose lower bounds

on connection probabilities established by our asynchronous

analysis.

Combining these techniques, we are able to translate

the synchronous complexity bound directly to the asyn-

chronous setting, proving that k rumors spread in at most

O((k/α) log n log2 ∆ · δmax) time.

II. Preliminaries

Here we define useful notation and results that we use

throughout the analysis that follows.

Range Notation. We use the notation [m] for 1 ≤ m to

signify the range of integers 1, . . . , ⌈m⌉. In contrast, we use

the notation [a, b], for a ≤ b, to denote the real numbers from

a to b.

Graphs and Vertex Expansion. Fix an undirected graph G =

(V, E). For node u ∈ V , we use the notation N(u) to denote

u’s neighbors in G and deg(u) = |N(u)| to denote u’s degree

in G. Let ∆ = maxu∈V deg(u) be the maximum degree of any

node in G. For a given subset of nodes S ⊆ V , let ∂S = {v |
v ∈ V \ S ,N(v) ∩ S , ∅} denote the boundary of S . We then

let α(S ) = |∂S |/|S | and define the vertex expansion of a graph

G as α = minS⊂V,|S |∈[n/2] α(S ).

Let B(S ) represent a bipartite graph with bipartitions (S ,V \
S ) and let v(B(S )) represent the size of the maximum matching

over B(S ). We leverage the following lemma from [13].

Lemma II.1. (Lemma 5.4 of [13]). Let γ =

minS⊂V,|S |∈[n/2]{3(B(S ))/|S |}. It follows that γ ≥ α/4.

Useful Probability Results. Many of our results are described

as holding with high probability (or, w.h.p.), which we define

to mean with a failure probability polynomially small in the

network size n. To help achieve these results, we sometimes

apply concentration bounds, often using the following presen-

tation of the Chernoff bound.

Theorem II.2. Let X1, . . . , Xn be a series of independent

random variables such that Xi ∈ [0, 1] where X =
∑n

i=1 Xi

has expectation E[X] = µ. For ε ∈ [0, 1], Pr[X ≤ (1 − ε) · µ] ≤
exp(−(1/2) · ε2µ).

In several places in our analysis, we tame correlated random

variables by applying the following stochastic dominance

result. This general idea is common, but we prove the result

from scratch here in the exact form we need for the sake of

completeness. The full proof resides in Appendix A1.

Lemma II.3. Let X1, . . . , XT be a sequence of T random

indicator variables where Xi = 1 with some unknown prob-

ability qi. Assume ∀i ∈ [T ], it always holds that qi ≥ p, for

some constant probability p. Next, define the total number of

successes as Y =
∑

i∈[T ] Xi. It follows that Y = Ω(pT ) with

probability at least Ω(1 − exp(−pT )).

III. Synchronous Gossip

In this section, we analyze new upper and lower bounds for

gossip in the synchronous MTM.

A. The Mobile Telephone Model

The mobile telephone model (MTM) (introduced in [13])

describes a peer-to-peer network of wireless devices. The

network is modeled as an undirected graph G = (V, E), where

each device u is represented by a vertex in the graph. We

will use the term node to refer to both the device and the

corresponding vertex in the graph. If two devices u and v are

within communication range in the network, we connect the

corresponding nodes with an undirected edge {u, v} ∈ E. We

denote the number of nodes in the graph as n = |V |.
Time in the MTM proceeds in synchronous rounds with

all nodes beginning at round 1. In each round, each node



begins by broadcasting an advertisement containing O(log n)

bits to its neighbors in G. After receiving advertisements, each

node can decide to send a connection proposal to at most one

neighbor. Any node that receives one or more proposals must

accept exactly one. We allow the model to arbitrarily select

which proposal is accepted in this case. (That is, we do not

necessarily assume that each node successfully receives all

incoming proposals and is therefore able to make a careful

decision on which to accept.)

Finally, if some node v accepts a connection proposal from

neighboring node u, then u and v are considered connected.

They can then perform a bounded amount of interactive and

reliable communication before the round concludes. Notice,

this model definition limits each node to participating in

at most 2 connections per round (one outgoing and one

incoming).

B. The Gossip Problem

The gossip problem we study assumes that k ≥ 1 gossip

rumors (also called tokens in the following) are distributed

arbitrarily to nodes at the beginning of the execution (that

is, some nodes can start with many tokens, some can start

with none). The problem is solved once all nodes know all k

rumors. Nodes do not know k in advance. We treat the gossip

tokens as comparable black boxes. The only way for a node u

to communicate a token to node v is if u and v are connected.

In the synchronous setting, we limit nodes to communicating

at most a constant number of tokens over a given connection

in a single round. (Later, when we study this problem in the

asynchronous setting, we instead bound the maximum time

required to transmit a single token over a connection.)

C. The Random Diffusion Gossip Algorithm

Here we present the random diffusion gossip algorithm

which we formalize as pseudocode in Algorithm 1. The core

strategy of this algorithm is for nodes to attempt to send tokens

to the neighbors with the smallest token sets. This contrasts to

the strategy of [21] in which nodes bias connection attempts

toward neighbors that have not participated in connections in

recent rounds.

Algorithm 1: Random diffusion gossip (for process u)

1 T ← initial token set of u

2 H ← shared hash function

3 while true do

4 Advertise(〈H(T ), |T |, u〉)
5 A← ReceiveAdvertisements()
6

7 s← min ({sv | 〈h, sv, ∗〉 ∈ A, h , H(T )})
8 N ← {v | 〈h, s, v〉 ∈ A, h , H(T )}
9 v← node chosen randomly from N

10 (attempt to connect to v; if successful, send/receive

a token from the set difference)

In more detail, in each round, each node u advertises a

hash of its token set, the size of its token set, and its unique

identifier. 3 Node u then considers advertisements from neigh-

bors that advertised different token set hashes, identifying the

smallest token set size from this set. It randomly selects one

of these nodes to send a connection proposal. If the proposal

is accepted, a token from the set difference is transferred,

increasing at least one of the two nodes’ token sets.

D. Analysis

Our goal is to prove the following bound on the time

complexity of this algorithm.

Theorem III.1. With high probability in n, the random dif-

fusion gossip algorithm solves gossip in O((k/α) log n log2 ∆)

rounds, where k is the number of initial tokens, α is the vertex

expansion of the graph, n is the size of the graph, and ∆ is

the maximum degree of the graph.

We begin by defining some useful notation. At the beginning

of round r, let Tu(r) be the token set of node u and let

su(r) be the minimum token set size among u’s neighbors.

Furthermore, for a fixed topology graph G = (V, E), let N(u)

be the neighbors of u in G and let Nu(r) be the productive

neighbors for u at the beginning of round r, where we define

Nu(r) = {v | v ∈ N(u), |Tv(r)| = su(r),H(Tu(r)) , H(Tv(r))}.
For integer sizes i ∈ 0, . . . , k; let S i(r) = {v | v ∈ V, i =

|Tv(r)|} be the set of nodes that know exactly i tokens at the

beginning of round r. Next, let ni(r) = |S i(r)| and n∗
i
(r) =

min (ni(r), n − ni(r)).

We also define imin(r) = min({i | i ∈ 0, . . . , k] | ni(r) > 0}) as

the minimum token set size for which there is at least one node

with exactly that many tokens. For convenience, let S min(r) =

S j(r) and n∗
min

(r) = n∗
j
(r) for j = imin(r). Finally, we define

C(r) = |{i | i ∈ 0, . . . , k] | ni(r) > 0}| as the number of token set

sizes held by nodes.

The approach we will take when proving our theorem

statement is to bound how long any minimum token set size

imin(r) can remain the minimum token set size. Since the

minimum token set size can never decrease, this will then

allow us to prove the total time complexity for our algorithm.

For most of our analysis, we will focus on the connections

between nodes in S min(r) and V \ S min(r). In order for this

cut to exist though, clearly it must be the case that C(r) > 1.

Therefore we quickly handle the case where C(r) = 1, the

proof of which can be found in Appendix B1.

Lemma III.2. Fix a round r > 0 such that C(r) = 1. Either

C(r + 1) > 1 or imin(r + 1) > imin(r).

The purpose of Lemma III.2 is to simply establish that

regardless of the minimum token set size, there are some nodes

which quickly achieve a token set larger than the minimum

number of tokens held by any node. This allows us to analyze

3As in [21], a couple of simplifying assumptions are made here.
The first is that we avoid hash collisions in the executions we
consider, allowing us to make the reasonable assumption that different
token set hashes always indicate different token sets. We also make
the pragmatic assumption that these hash vaues, as well as token set
size counts, fit within the O(log n) bound on advertisements.



the cut between these nodes in V \ S min(r) and the nodes

that still possess exactly imin(r) tokens, S min(r). Productive

connections made over this cut will provide nodes of S min(r)

with new tokens, increasing their token set size, and shrinking

S min(r). When no nodes remain, the minimum token set size

must be larger than imin(r).

Furthermore, note that if for some rounds r1 and r2 such

that C(r1) > 1, C(r2) = 1, and r1 < r2 it must be the case

that every node in S min(r1) has participated in a productive

connection. Therefore we will continue our analysis with the

assumption that C(r) > 1 for each round r we fix and revisit

Lemma III.2 in the proof of Theorem III.1.

We continue by defining the productive subgraph G(r) of G

(defined with respect to a fixed round r) which defines all the

connections which nodes might attempt to form in the given

round r.

Definition III.3. At the beginning of round r > 0, define the

productive subgraph G(r) of the graph topology G = (V, E) as

the undirected graph G(r) = (V, E(r)) such that E(r) = {{u, v} |
v ∈ Nu(r)}.

For the purposes of our analysis, it will be sufficient to

focus on a subgraph of the productive subgraph which only

considers nodes in S min(r) and their neighbors.

Definition III.4. At the beginning of round r > 0, define

the minimum productive subgraph Gmin(r) as the undirected

bipartite subgraph Gmin(r) = (Lmin(r),Rmin(r), Emin(r)) such

that

• Lmin(r) = {u | u ∈ V \ S min(r),N(u) ∩ S min(r) , ∅}
• Rmin(r) = {u | u ∈ S min(r),N(u) ∩ (V \ S min(r)) , ∅}
• Emin(r) = {{u, v} | u ∈ Lmin(r), v ∈ Rmin(r), {u, v} ∈ E(r)}

In other words, the minimum productive subgraph Gmin(r)

only contains edges representing the potential connections

which would result from connection proposals sent to nodes

with the fewest number of tokens in the entire network at

the beginning of round r (from nodes with more than this

number of tokens). The significance of Gmin(r) is that every

productive connection in this graph causes a node with the

fewest number of tokens to no longer have the fewest number

of tokens. For this reason, we next lower bound the number

of potential productive connections in Gmin(r). The full proof

for this lemma can be found in Appendix B2.

Lemma III.5. For a fixed round r > 0, there is a matching

over Gmin(r) with size m ≥ (α/4) · n∗
min

(r).

We now have a lower bound for the number of potential

connections that nodes in S min(r) could participate in for a

given round. To show that our algorithm is able exploit these

possible connections, we now prove and apply a significantly

reworked version of a core lemma from [13] which bounds the

behavior of randomized connection attempts in bipartite graphs

satisfying certain properties. In the immediate context of our

synchronous analysis, this new version of the lemma provides

a log-factor time complexity improvement as compared to the

original version. As detailed in the introduction, however, most

of the updates captured below (which represent some of the

core technical contributions of this paper) are introduced to

make this lemma applicable to the asynchronous analysis that

follows in the next section.

We also note that that this improved version of the lemma

can be plugged into the analysis of [13] to provide a log

factor improvement to the complexity of its rumor spreading

algorithm.

Lemma III.6. (Replaces Theorem 7.4 in [13]). Let G(L,R) be

the subgraph of Gmin(r) induced by node subsets L and R and

let NL,R(u) is the neighbors node u in G(L,R) and degL,R(u) =

|NL,R(u)|. Fix any i ∈ [32 · log∆]. For a fixed round r > 0, let

L ⊆ Lmin(r) and R ⊆ Rmin(r) be subsets such that:

1) there is a matching of size |L| over G(L,R),

2) |R| ≥ |L| ≥ c · m for some 0 < c ≤ 1 where m is the size

of the maximum matching over G(L,R),

3)
∑

u∈L degL,R(u) ≤ m∆
1− i−1

32·log∆ , and

4) for every u ∈ L, every neighbor of u in Rmin(r) is in R.

With at least constant probability within one round of the

random diffusion gossip algorithm,

1) At least Ω
(

m
log∆

)

nodes of R participate in a productive

connection, or

2) We can identify L′′ ⊆ L∩ Lmin(r′) and R′′ ⊆ R∩Rmin(r′)
for some r′ ∈ {r, r + 1} such that:

a) there is a matching of size |L′′| over G(L′′,R′′),
b) |R′′| ≥ |L′′| ≥ (1 − 1/ log∆)2 · |L|,
c)

∑

u∈L′′ degL′′ ,R′′(u) ≤ m∆
1− i

32·log∆ , and

d) for every u ∈ L′′, every neighbor of u in Rmin(r′)
is in R′′.

Proof. Our proof, like the proof of Theorem 7.4 in [13], is

broken up into several steps. For the matching M of size at

least m · c over our original graph G(L,R), we denote a node

v ∈ R as the original match of a node u ∈ L if {u, v} ∈ M. This

terminology is also taken from the original proof.

Remove High Degree Nodes from L. Let δi = (1/c) · log∆ ·
∆

1− i−1
32·log∆ and consider all nodes in L with degree at most δi.

As in [13] this choice of δi is based on our assumptions that

|L| ≥ c ·m and
∑

u∈L degL,R(u) ≤ m∆
1− i−1

32·log∆ such that at most a

1/ log∆ fraction of the nodes u ∈ L can have degL,R(u) > δi.

Let L′ ⊆ L be the subset of nodes once we remove all such

high degree nodes from L and again note that |L′| ≥ (1 −
1/ log∆) · |L|.

We then remove all nodes from R that are not connected

to L′ and denote the remaining set R′. Note that for every

node u ∈ L′, every neighbor NL,R(u) = NL′ ,R′(u). The authors

of [13] note that this implies G(L′,R′) has a matching of size

|L′| since for every node u ∈ L′, u’s original match is in R′.
These observations alone fulfill conditions a, b and d of the

second objective of the lemma. Therefore if condition c holds

such that
∑

u∈L′ degL′ ,R′(u) ≤ m∆
1− i

32·log∆ , the second objective

of the lemma is already satisfied by setting L′′ = L′, R′′ = R′,
and r′ = r. We therefore assume for the remainder of the proof

that
∑

u∈L′ degL′ ,R′(u) ≥ m∆
1− i

32·log∆ .



At this point we diverge significantly from the strategy of

the original proof and introduce a new technique for leveraging

this assumption regarding the the degree sum in G(L′,R′).
We start by leveraging a definition which was first used in

[2] in the context of the maximal independent set problem.

Namely, call a node u good with respect to a graph G if

|{v|v ∈ N(u), deg(v) ≤ deg(u)}| ≥ deg(u)/3 where N(u) and

deg(u) are u’s neighbor set and degree in G. Otherwise call u

bad with respect to G. In other words, a node is good with

respect to a graph G if at least one third of its neighbors in G

have at most its degree in G.

In G(L′,R′) let R′
b
⊆ R′ be the bad nodes in R′ and let R′g ⊆

R′ be the good nodes, where good and bad are defined with

respect to G(L′,R′). Since every edge G(L′,R′) has an endpoint

in R′, clearly either
∑

u∈R′
b

degL′ ,R′(u) ≥ (1/2) · m∆1− i
32·log∆ or

∑

u∈R′g degL′,R′(u) ≥ (1/2) · m∆1− i
32·log∆ . Simply speaking since

R′
b
∪R′g = R′, at least half of the edges in G(L′,R′) are incident

on R′
b

or at least half are incident on R′g. We first assume the

former case.

Case #1: At Least Half the Edges in G(L′,R′) are Incident

on R′
b
. Let G(L′

b
,R′

b
) be the graph induced by the edges inci-

dent on R′
b

and note that for every v ∈ R′
b
, NL′ ,R′(v) = NL′

b
,R′

b
(v).

Next, recognize that if for any v ∈ R′
b
, degL′

b
,R′

b
(v) > δi, v would

have higher degree in G(L′,R′) than any node in L′ (since

every node in L′ has degree at most δi), making v trivially good

with respect to G(L′,R′). This contradicts v ∈ R′
b
, therefore

degL′
b
,R′

b
(v) ≤ δi.

Divide the nodes of R′
b

into ⌈log δi⌉ classes based on their

degree in G(L′
b
,R′

b
) such that nodes of degree [2 j−1, 2 j] are

in the jth class, denoted R′
b
( j). Let E j be the edges incident

on nodes of this class. Note that by our case assumption,
∑

j∈[log δi]
|E j| ≥ (1/2) · m∆

1− i
32·log∆ . Since for every node in

u ∈ L′
b
, degL′

b
,R′

b
(u) ≤ degL′ ,R′(u) ≤ δi, the probability that

v ∈ R′
b
( j) participates in a productive connection in round r is

at least

1 −
∏

u∈NL′
b
,R′

b
(v)

(

1 − 1

degL′
b
,R′

b
(u)

)

(1)

≥ 1 −
∏

u∈NL′
b
,R′

b
(v)

(

1 − 1

degL′,R′(u)

)

(2)

≥ 1 −
∏

u∈NL′
b
,R′

b
(v)

(

1 − 1

δi

)

= 1 − (1 − 1/δi)
degL′

b
,R′

b
(v)

(3)

≥ 1 − (1 − 1/δi)
2 j−1 ≥ 1 − 1

1 + 2 j−1/δi

(4)

=
2 j−1/δi

1 + 2 j−1/δi

≥ 2 j−1

2δi

(5)

Note that for Line 4 we use the inequality (1 + x)n ≤ 1
1−xn

for x ∈ [−1, 0], n ∈ N (which can be shown via Bernoulli’s

inequality) and for Line 5 we use our observation that 2 j−1 ≤ δi

and therefore 2 j−1/δi ≤ 1. Now, since there are |E j| edges

incident on nodes in R′
b
( j) and each node in R′

b
( j) has degree

at most 2 j, there are at least
|E j |
2 j nodes in this class. Therefore,

the expected number of nodes from R′
b
( j) which participate in

a productive connection r is at least
|E j |
2 j · 2 j−1

2δi
=
|E j |
4δi

.

Therefore, the expected number of nodes selected across all

log δi classes is

∑

j∈[log δi]

|E j|
4δi

=
1

4δi

∑

j∈[log δi]

|E j| (1)

≥ (1/2) · m∆1− i
32·log∆

4δi

=
1

4δi

∑

j∈[log δi]

|E j| (2)

≥ (1/2) · m∆1− i
32·log∆

4δi

=
m∆

1− i
32·log∆

8δi

(3)

=
m · ∆1− i

32·log∆

8 · (1/c) · log∆ · ∆1− i−1
32·log∆

=
m · c · ∆−

1
32·log∆

8 · log∆
= Ω

(

m

log∆

)

(4)

Please note that here we derive Line 3 from Line 1 by

leveraging our case assumption. Since this expectation is equal

to the sum of negatively-correlated random variables, as in [13]

we can then apply the Chernoff bound from Theorem II.2 to

achieve a concentration around this bound to show that the

probability the actual number of productive connections (for

example) is at most a 1/8 fraction of this expectation is at

most 0.69. Note that this is only true if m/ log∆ ≥ 1 but if

m/ log∆ < 1 then the lemma is satisfied by informing just a

single node in R′ which happens trivially. Therefore, with at

least constant probability the first objective of the lemma is

satisfied.

Case #2: At Least Half the Edges in G(L′,R′) are Incident

on R′g. Now assume
∑

u∈R′g degL′ ,R′(u) ≥ (1/2) · m∆1− i
32·log∆ . As

before, let G(L′g,R
′
g) denote the graph induced by the edges

incident on R′g and note that for all u ∈ L′g, degL′g,R
′
g
(u) ≤

degL′,R′(u) and for all v ∈ R′g, NL′g ,R
′
g
(v) = NL′ ,R′(v). For v ∈ R′g,

let the notation Nℓ
L′g ,R

′
g
(v) = {u | u ∈ NL′g ,R

′
g
(v), degL′g,R

′
g
(u) ≤

degL′g,R
′
g
(v)} denote v’s lower degree neighbors in G(L′g,R

′
g).

Define Nℓ
L′ ,R′(v) for v ∈ R′ similarly. Therefore, since for all

u ∈ L′g, degL′g,R
′
g
(u) ≤ degL′ ,R′(u) and for all v ∈ R′g, NL′g ,R

′
g
(v) =

NL′ ,R′(v), we have that for all v ∈ R′g, Nℓ
L′ ,R′(v) ⊆ Nℓ

L′g ,R
′
g
(v).

Therefore, the probability a node v ∈ R′g is selected is at least,

1 −
∏

u∈NL′g ,R′g (v)

(

1 − 1

degL′,R′(u)

)

(1)

≥ 1 −
∏

u∈Nℓ
L′g ,R′g

(v)

(

1 − 1

degL′,R′(u)

)

(2)

≥ 1 −
∏

u∈Nℓ
L′ ,R′ (v)

(

1 − 1

degL′ ,R′(u)

)

(3)

≥ 1 −
∏

u∈Nℓ
L′ ,R′ (v)

(

1 − 1

degL′ ,R′(v)

)

(4)

≥ 1 − (1 − 1/degL′,R′(v))
|Nℓ

L′,R′ (v)|
(5)



≥ 1 − (1 − 1/degL′,R′(v))degL′,R′ (v)/3 ≥ 1 − e−1/3 > 1/4 (6)

Note that for Line 4 we use our definition of Nℓ
L′ ,R′(v) to

replace the degree of u with that of v and Line 6 is where

we leverage the assumption that v is good. Now remove

every node from R′ that is selected in round r and denote

the remaining set R′′, and remove from L′ every node u for

which u’s original match was removed from R′. Denote the

remaining nodes L′′. Since we know from the above that

each node v ∈ R′g is removed from R′ with probability at

least 1/4 and the probability that any edge {u, v} is removed

from G(L′,R′) is at least the probability that v is removed

from R′, the probability that an edge {u, v} incident on R′g
is removed is at least 1/4. Since by our case assumption

that there are at least (1/2) · m∆
1− i

32·log∆ edges incident on

nodes in R′g, in expectation, at least (1/8) · m∆1− i
32·log∆ edges

are removed from G(L′,R′). Therefore, since by our initial

assumption that
∑

u∈L′ degL,R(u) ≤ m∆
1− i−1

32·log∆ and the fact that
∑

u∈L′ degL′,R′(u) ≤ ∑

u∈L degL,R(u), the expected number of

edges X remaining in G(L′′,R′′) is at most E[X] ≤ m∆
1− i−1

32·log∆ −
(1/8) ·m∆1− i

32·log∆ . Therefore, by applying Markov’s inequality

we can upper bound the probability that X ≥ m∆
1− i

32·log∆ :

Pr[X ≥ m∆
1− i

32·log∆ ] ≤ m∆
1− i−1

32·log∆ − (1/8) · m∆1− i
32·log∆

m∆
1− i

32·log∆

= ∆
1

32·log∆ − 1/8 = 21/32 − 1/8 < 15/16

Therefore, we’ve shown that
∑

u∈L′′ degL′′ ,R′′(u) ≤ m∆
1− i

32·log∆

with at least constant probability. Since this satisfies condition

c of the second objective of the lemma, we conclude by

showing that either the remaining conditions of this objective

are satisfied or the first objective has been achieved.

If |L′′| < (1 − 1/ log∆)2 · |L| then note that this means

|L′′| < (1 − 1/ log∆) · |L′| since |L′| ≥ (1 − 1/ log∆) · |L|. As

is noted in [13], this implies that at least a 1/ log∆ fraction

of nodes in L′ had their original match removed in round r

which means that at least |L′|/ log∆ nodes of R′ were selected

and therefore participated in a productive connection. Since

|L′| ≥ (1 − 1/ log∆) · |L| = Ω(m) this would indicate that

at least Ω(m/ log∆) nodes of R′ participated in a productive

connection which would satisfy the first objective of the

lemma.

Therefore, assume |L′′| ≥ (1 − 1/ log∆)2 · |L|. Note that

once again by our construction, for every node u ∈ L′′, every

neighbor of u in Rmin(r+1) is in R′′. This includes u’s original

match in R′ such that there is a matching over G(L′′,R′′)
of size |L′′|. Furthermore by our construction of G(L′′,R′′),
L′′ ⊆ L∩ Lmin(r+ 1) and R′′ ⊆ R∩Rmin(r+ 1). Therefore, with

at least constant probability, the second objective is satisfied

for L′′, R′′, and r′ = r + 1. �

We now apply Lemma III.6 inductively over O(log∆)

rounds and leverage our result from Lemma III.5 to bound

the number of connections over this period. This proof can be

found in Appendix B3.

Lemma III.7. Fix a round r > 0. With at least con-

stant probability, within at most O(log∆) rounds at least

Ω((α/ log∆) · n∗
min

(r)) nodes of S min(r) participate in a pro-

ductive connection.

Now that we have bounded the expected number of success-

ful connections over a phase of O(log∆) rounds, our goal will

be to bound the number of rounds required to increase the

minimum token set size in the entire network. To establish

this lemma (for which the proof can be found in Appendix

B5) we first leverage Lemma A.1 which only bounds the time

required for at least half the nodes to have more than the

minimum token set size.

Lemma III.8. Fix a round r > 0. There exists a round rt where

rt = r + O((1/α) log n log2 ∆) such that w.h.p. in n, all nodes

in S min(r) participate in a productive connection by round rt.

Proof (of Theorem III.1). We now have everything we need to

prove our main theorem. Consider any round r with minimum

token set size imin(r). From Lemma III.2 we have that if

C(r) = 1 then in round r + 1 either C(r + 1) > 1 or

imin(r + 1) > imin(r). As we show in Lemmas III.5 through

III.8, if the former is true for each round r′ we consider

where r′ > r and C(r′) > 1, at most ((1/α) log n log2 ∆) total

rounds are needed for every node in S min(r) to participate in

a productive connection. Furthermore, if instead C(r′) = 1 for

any such round then clearly it is still the case that every node

of S min(r) has participated in a productive connection in this

many rounds.

Therefore this necessitates that the minimum token set size

after ((1/α) log n log2 ∆) is at least imin(r) + 1. Since clearly,

the minimum token set size can increase at most k times, the

total round complexity of the algorithm to spread all k tokens

is at most O((k/α) log n log2 ∆) total rounds. �

E. Lower Bound for Gossip in the Mobile Telephone Model

We now show that our algorithm is optimal to within

polylogarithmic factors by proving a lower bound for gossip

in our model. The proof can be found in Appendix B6.

Theorem III.9. For k initial tokens and any value 1/n ≤ α ≤
1/2, there is a graph with n nodes and vertex expansion at

least α where Ω(k/α) rounds are required to solve the gossip

problem.

IV. Asynchronous Gossip

Here we analyze an asynchronous version of our random

diffusion gossip strategy in the aMTM.

A. The Asynchronous Mobile Telephone Model

The asynchronous mobile telephone model (aMTM), first

introduced in [21], removes the assumption of synchronous

rounds from the MTM. Core communication properties, such

as the time required for a neighbor to receive an advertisement

or connection proposal, or the speed at which information is

transmitted over a connection, can now vary arbitrarily during

an execution.

Similar to the MTM, the topology of the underlying network

is defined by an undirected graph. Furthermore, the behavior



of the nodes in the aMTM is similarly constrained by a

fixed scan-and-connect behavioral loop in which nodes: update

their own advertisement, wait to hear new advertisements

from at least some neighbors, decide whether to act on these

advertisements by attempting to form a connection with a

neighbor, then repeat. Unlike the MTM, however, nodes do

not progress through this loop in a synchronized manner,

with delays decided by an adversarial scheduler. This loop is

formalized in Algorithm 2. The model implements the methods

update, receiveAds, and blockForConn, which abstract the

details of the underlying asynchronous communication.

Algorithm 2: The aMTM interface (for device u)

1 state ← idle
2 Initialize()

3 while true do

4 tag← GetTag()

5 update(tag)

6 receiver← null
7 A← receiveAds()
8 if A , ∅ then receiver ← Select(A)

9 if receiver , null then

state ← blockForConn(receiver)

10 if state = connected then

11 Communicate(receiver)

12 state ← idle

Model Guarantees and Parameters. As is standard with

asynchronous network models, we constrain the model’s be-

havior with respect to a set of maximum delays and bit rates

specified for its key communication activities. We define these

delays for a given execution with the parameters δupdate, δconn,

and Rb. The values of these parameters are not known to the

algorithm and can change from execution to execution. We

detail the guarantees they help specify below:

Advertisement Guarantees: If a node u calls update at some

time t, then the model guarantees that every neighbor of u must

receive an advertisement from u in the interval t to t + δupdate,

and that only advertisements u passed to update during

this interval are received in this interval. Notice, there is no

guarantee that u’s neighbors receive all of its advertisements.

It is possible, for example, that u advertises a at a given time,

then loops back around in less than tupdate time and replaces

this with a new advertisement a′ before any neighbor had a

chance to receive a. On the other hand, once a node begins

advertising, its neighbors will hear from it at least once every

δupdate time.

Connection Attempt Guarantees: The parameter δconn

bounds the maximum time required for the blockedForConn

model method to resolve a connection attempt and return

whether or not the attempt succeeded. In more detail, when

u calls blockedForConn(v), for some neighbor v, the model

guarantees to deliver a connection proposal to v. If v is already

engaged in a connection (i.e., it has previously accepted a

proposal and the resulting connection is still open), it will

reject u’s proposal. Otherwise, it will accept the proposal. The

model must deliver the proposal and the response within this

interval of length δconn. The loop blocks until this underlying

communication completes and blockForConn can return the

status of the connection. Notice that as in the synchronous

model, these guarantees prevent any node from servicing more

than one incoming connection at a time.

Communication Guarantees: Assume v accepts u’s con-

nection proposal. At this point, they are connected and can

communicate as specified by their respective Communicate

methods. For many algorithms, such as the gossip strategy

studied in this paper, we simply specify what occurs during

this connection in the sender’s Communicate routine. When

implementing algorithms, however, this behavior must be

explicitly specified for both the sender and receiver roles.

The amount of time required by these interactions depends on

both the amount of information transmitted by Communicate

and the transmission rates determined by the model. We use

the parameter Rb to bound the minimum bit rate at which

the model can transmit information between a connected pair

of neighbors. We assume that when a call to Communicate

returns, the connection is closed. It follows that each node

can participate in at most one outgoing connection at a time.

Implementation. The authors in [21] provide an implemen-

tation of the aMTM interface in iOS. This implementation

works with the peer-to-peer networking libraries included

in iOS to execute the main aMTM loop. The algorithm

designer working with this interface need only implement

the Initialize, Update, Select, and Communicate functions.

This close connection between the abstract aMTM model and

real world implementation simplifies the task of deploying on

iPhones any peer-to-peer algorithm described in the aMTM.

To underscore the directness of this connection, we provide in

Appendix D the straightforward SWIFT code that implements

our gossip strategy in iOS.

B. The Asynchronous Random Diffusion Algorithm

We now introduce our asynchronous random diffusion

gossip algorithm, which is formalized in Algorithm 3. This

algorithm adapts the strategy of synchronous random diffusion

gossip to the asynchronous setting. The major difference is that

in each loop iteration, a node selects a neighbor for connection

from the set of advertisements it has received since the last

iteration. In the synchronous setting, by contrast, a node is

always considering the latest advertisements from all of its

neighbors.

C. Analysis

We prove the following bound on the time complexity of

asynchronous random diffusion gossip.

Theorem IV.1. With high probability in n, the asynchronous

random diffusion gossip algorithm solves the gossip problem

in time O((k/α) log n log2 ∆·δmax), where where k is the number

of tokens, n is the network size, α is the vertex expansion of



Algorithm 3: Asynchronous random diffusion gossip

(for node u)

1 function Initialize()

2 T ← initial tokens (if any) known by u

3 H ← some hash function

4 function GetTag()

5 return 〈H(T ), |T |, u〉
6 function Select(A)

7 ŝ← min ({s | 〈h, s, ∗〉 ∈ A, h , H(T )})
8 N̂ ← {v | 〈h, ŝ, v〉 ∈ A, h , H(T )}
9 return node chosen randomly from N̂

10 function Communicate(v)

11 (send/receive a token in the set difference with v)

the network, ∆ is the maximum degree, and δmax upper bounds

the time required for one iteration of the aMTM loop for this

algorithm.

The δmax parameter included in the above theorem was

introduced to simplify notation by eliminating the need to cite

multiple timing parameters in our complexity bound. Formally,

we define: δmax = δconn+δupdate+bmax/Rb, where bmax describes

the maximum size (in bits) of a gossip token.

Notice, because our algorithm only transfers a constant

number of tokens in each call to Communicate, each such

call requires at most O(bmax/Rb) time.4 The δupdate and δconn

parameters upper bound the time required to get through

the update and blockedForConn methods, respectively. It

follows that each iteration of our gossip algorithm’s main

aMTM loop requires at most O(δmax) time, making δmax a

useful aggregate parameter for bounding asynchronous time

complexity.

For the analysis that follows, we re-purpose much of our

notation and several of our definitions from the synchronous

setting. We will accomplish this through a slight abuse of

notation in which we take any element parameterized with

an integer round r in the previous section and redefine it with

respect to a real time t. For example, let Tu(t) be the token set

of node u at time t in the same way Tu(r) was u’s token set

at the beginning of round r.

Similarly, we can adapt our notions of the productive

subgraph G(t), and minimum productive subgraph Gmin(t), for

a time t using the values of su(t) and Nu(t). That being said,

4We omit for now the time required for two connected nodes to
determine which token to transfer. Our algorithm simply specifies
that they transfer some token in the set difference of their token
sets. For the sake of completeness, one could add an additional
parameter to capture the maximum bits needed to also decide on
this set difference. We omitted this extra parameter for now as
in the application scenarios we envision, the token sizes are often
large enough their transfer swamps the overhead required to identify
which token to transfer. In the event that the token set sizes are
allowed to become massive, however, we can leverage the token
transfer subroutine from [19] to decide this set difference using only
O(polylog(k)) additional bits.

some additional care is required in dealing with these graphs

in the asynchronous model. In a round-based setting, you can

fix the productive subgraph at the beginning of the round and

know that all nodes will make connection decisions based on

that exact graph during the round. In the asynchronous model

no such guarantees hold. You might fix a productive subgraph

at some time t, for example, but that graph can change before

all the nodes get a chance to learn it and make a connection

decision.

To handle this nuance, we introduce our first pieces of

notation unique to our asynchronous analysis. Fix some time

t at which some node u calls Select. Let N̂u(t) and ŝu(t)

be the values calculated on Lines 7 and 8 of Algorithm

3, respectively, during this call to Select. These values are

calculated from the advertisement set Au(t) which is passed to

node u’s call to the Select function at time t. Note that for

a particular time t and node u, Nu(t) and N̂u(t), and su(t) and

ŝu(t), can vary, as Nu(t) and su(t) are based on the status of the

network at exactly time t, whereas N̂u(t) and ŝu(t) are based

on the advertisement set passed to Select at time t (which

may by that point already be out of date). Also note that N̂u(t)

and ŝu(t) are undefined for times that do not correspond to a

Select call.

To help tame this reality that a given node’s snapshot of

the network can become out of date before it has a chance

to act on it, we introduce the following definition concerning

snapshots of the changing minimum productive subgraph:

Definition IV.2. Fix a time interval [t1, t2] and two nodes u, v ∈
V such that {u, v} ∈ Emin(t1). We say that u properly considers

v with respect to t1 during this interval if there exists a time

tconsider, t1 ≤ tconsider ≤ t2, such that u calls Select at tconsider,

v ∈ N̂u(tconsider), and |N̂u(tconsider)| ≤ degmin(u), where degmin(u)

is the degree of u in Gmin(t1).

Put another way, if u properly considers v with respect to

[t1, t2], then u attempts to connect with v in this interval with

at least the same probability as it would in a round of the

synchronous algorithm corresponding to minimum productive

subgraph Gmin(t1).

It would simplify our analysis if for any time t1 we could

identify an interval [t1, t2] such that u properly considers v for

every edge {u, v} ∈ Emin(t1), as we could then directly apply

our analysis from the synchronous case. We cannot, however,

guarantee that such intervals always exist in our asynchronous

setting. Consider an edge {u, v} ∈ Emin(t), for some t. It might

be the case that before u can receive an advertisement from

v, that some other node connects to v and transmits a token

that removes v from the minimum productive subgraph. By the

time u subsequently hears from v, it might no longer include

it in its set of productive neighbors.

In some sense, however, this is a good case as it only

increases the probability that v receives a connection attempt.

The following lemma (for which the proof can be found in

Appendix C1) formalizes this intuition by proving that for

any endpoint v in a snapshot of the minimum productive

subgraph, v will be selected with at least the probability



that it would if we had run a round of the synchronous

algorithm on that snapshot. This will allow us to subsequently

apply Lemma III.6, which we carefully reworked from its

original version in [13] so that it now only requires that this

lower bound on selection probabilities holds. (The original

version made use of the exact selection probabilities from the

synchronous algorithm.)

Lemma IV.3. Fix any time t1 and node v ∈ Rmin(t1), and let

Nmin and degmin be the neighbor set and degree functions de-

fined for Gmin(t1). There exists a time t2, where t2 = t1+O(δmax),

such that v connects productively in the interval [t1, t2] with

probability at least 1 −∏

u∈Nmin(v)(1 − 1/degmin(u)).

With the above lemma, for any given time t1, we have shown

there is a time interval [t1, t2] that is not too long such that

each node in Lmin(t1) behaves similarly to the nodes in the

synchronous setting with respect to Gmin(t1). We now conclude

by showing that this similarity is sufficient to apply the same

analysis we used to prove Theorem III.1.

Proof (of Theorem IV.1). The proof of our main theorem fol-

lows the same style of argument made by Lemmas III.5

through III.8 in our synchronous analysis. Instead of as-

suming synchronized rounds, however, we now characterize

our algorithm’s behavior over contiguous intervals of length

ℓ = O(δmax), where ℓ is selected to be long enough to allow

Lemma IV.3 to apply to the intervals.

Let ti be the time at which interval i begins. We treat each

interval i like a round defined with respect to the minimum

productive subgraph Gmin(ti). The main difference in this new

setting versus the synchronous is that Lemma IV.3 provides

only a lower bound on a node in Rmin(t1) being selected

in interval i, whereas in the synchronous setting we know

the exact probability of this event. Fortunately, our reworked

version of Lemma III.6 requires only this lower bound. Indeed,

much of the technical difficulty in reworking this lemma from

its original form was to allow it to require only this lower

bound instead of precise probabilities.

In more detail, the only property assumed of the algorithm

by Lemma III.6 is that a node in Rmin(r) be selected with

probability at least 1−∏

u∈Nmin(v)(1−1/degmin(u)). Since this is

exactly what we showed in Lemma IV.3 for our asynchronous

algorithm, Lemma III.6 applies to the graphs corresponding

to our intervals. The remainder of the relevant lemmas in our

synchronous analysis require only that Lemma III.6 holds. We

can therefore apply these lemmas to our intervals to obtain

a similar complexity bound for gossiping k tokens, with the

only difference being that instead of bounding the number of

rounds, we bound the number of intervals of length O(δmax)

that are required. �
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Appendix

A. Omitted Proofs from Section II

1) Proof of Lemma II.3: For each i ∈ [T ], let X̂i be an

indicator variable that is 1 with probability p and 0 otherwise.

We now define a process for generating a coupled distribution

where the values sampled are pairs of bits. Namely, we sample

i pairs (Yi, Ŷi) where Ŷi is 1 with probability p and 0 otherwise.

If Ŷi is 1, we set Yi to 1 as well. Otherwise, we set Yi to 1 with

probability (qi−p)/(1−p). In this way, the marginal probability

that Yi = 1 is exactly qi, the same success probability as our

original indicator variable Xi. Clearly X̂i and Ŷi are also 1 with

the same probability p. Therefore, since for any T -sequence

execution where Ŷ =
∑T

i=1 Ŷi and Y =
∑T

i=1 Yi it’s true that

Y ≥ Ŷ, it follows that as long as Ŷ is at least some value, then

so is Y. In other words, it’s sufficient to lower bound the value

of Ŷ to derive a lower bound for the number of successes in

the the series X1, . . . , XT .

For the expectation E[Ŷ] = pT , we can apply the Chernoff

bound from Theorem II.2 with ε = 1/2 to upper bound the

probability Ŷ is less than T/2,

Pr[Ŷ ≤ (1/2) · pT ] = Pr[Ŷ ≤ Θ(pT )]

≤ exp

(

− Θ(pT )

8

)

= O(exp(−pT ))

Therefore, with very high probability in pT , Y ≥ Ŷ = Ω(pT ).

B. Omitted Proofs from Section III

1) Proof of Lemma III.2:

Proof. When C(r) = 1, all nodes u ∈ V have the same number

of tokens, therefore su(r) = |Tv(r)| for all edges {u, v} ∈ E.

Clearly, if not all nodes have k tokens, then there is some node

u with some neighbor v such that H(Tu) , H(Tv). Furthermore,

since su(r) = |Tv(r)| for all edges {u, v} ∈ E, v ∈ Nu(r).

Therefore, since |Nu(r)| > 0, u will send a connection proposal

to some neighbor w ∈ Nu(r).

If w receives a connection proposal from u, w is guaranteed

to accept at least one connection proposal this round and

participate in at least one connection this round (initiated

by a neighbor’s proposal). Therefore, after this round w will

possess a new token such that |Tw(r + 1)| > i∗(r). There

are now two possibilities: ∀u ∈ V, |Tu(r + 1)| ≥ |Tw(r + 1)|
or ∃u ∈ V, |Tu(r + 1)| < |Tw(r + 1)|. In the first case,

imin(r + 1) > imin(r) since all nodes possess more than imin(r)

tokens. In the second case C(r+ 1) > 1 since the chosen node

u has fewer tokens than w. �

2) Proof of Lemma III.5: Fix the cut (S min(r),V \ S min(r))

and recall that n∗
min

(r) is the size of the smaller of the

two bipartitions. From Lemma II.1 we know that there is a

matching M of size at least (α/4) · n∗
min

(r) across this cut.

Consider an arbitrary edge {u, v} ∈ M and without loss of

generality assume u ∈ V \ S min(r) and v ∈ S min(r).

By the definition of S min(r), no node has fewer tokens than v

and therefore v must have the smallest token set size out of all

u’s neighbors. Since v ∈ N(u), this means that su(r) = |Tv(r)|
which implies that H(Tu(r)) , H(Tv(r)). This is sufficient to

show that {u, v} is in the productive subgraph.

Furthermore, clearly N(u) ∩ S min(r) , ∅ and N(v) ∩ (V \
S min(r)) , ∅ and therefore u ∈ Lmin(r) and v ∈ Rmin(r).

Therefore, it must be the case that {u, v} is in the minimum

productive subgraph as well. Since we can show this for any

arbitrary edge {u, v} ∈ M, it is true for every such edge in

the matching. Therefore M is also a matching of size at least

(α/4) · n∗
min

(r) over Gmin(r).

3) Proof of Lemma III.7: We can now apply the same

reasoning as the proof of Theorem 7.2 in [13] to show

that applying Lemma III.6 inductively over O(log∆) rounds

achieves our desired number of connections. We summarize

this argument here.

Fix a round r and apply the first iteration of Lemma III.6 at

the beginning of this round. For the ith application of Lemma

III.6, let mi be the size of the maximum matching over G(L,R)

in this iteration. By the lemma statement, with at least constant

probability, either Ω(mi/ log∆) nodes of Rmin(r) participate in

a productive connection or we can identify some subgraph

G(L′′,R′′) defined according to the second lemma objective. If

the latter holds, this graph G(L′′,R′′) becomes the new G(L,R)

for the (i + 1)th iteration.

As in [13], when applying our lemma inductively we must

ensure that this new value for G(L,R) in the (i+ 1)th iteration

satisfies the criteria required by the lemma setup. Clearly crite-

ria 1, 2, and 4 are satisfied by properties a, b, and d of objective

2 of Lemma III.6, respectively. The only property that is not

trivially satisfied is therefore 3. To ensure that mi is not too

small compared to the size m of our original matching over

G(L,R), we note that for all i, mi ≥ (1− 1/ log∆)2i ·m ≥ c ·m.

Therefore, since i ≤ 32 · log∆, this expression is made valid by

setting c = exp(−64) (please note that while we make no effort

to do so here in lieu of a clearer probabilistic analysis, this

constant can certainly be optimized). Therefore, mi = Ω(m)

for any inductive step i and so if the first objective of the

lemma is satisfied on any iteration, at least Ω(m/ log∆) nodes

in Rmin(r) participate in a productive connection.



Furthermore notice that after 32 · log∆ steps where the

second objective of the lemma is satisfied, the degree sum

of the final graph is mi. Therefore each node in L only

has one neighbor to choose from such that the number

of productive connections with nodes in Rmin(r) is trivially

mi = Ω(mi/ log∆). Therefore, it holds that after 32 · log∆ steps

in which at least one of the lemma objectives is satisfied, at

least Ω(m/ log∆) nodes in Rmin(r) participate in a productive

connection (again where m is the maximum size of the

matching over Gmin(r)).

Call any round where at least one of the objectives of

Lemma III.6 is satisfied a success. Since we know each

round is successful with at least constant probability, we can

apply the stochastic dominance argument from Lemma II.3 to

demonstrate (with high probability in ∆) that at most O(log∆)

steps are required to achieve 32 · log∆ successes. Therefore at

most O(log∆) rounds are required before Ω(m/ log∆) nodes

in Rmin(r) participate in a productive connection.

Finally, from Lemma III.5 we know that for any fixed round

r there is a matching over the minimum productive subgraph of

size (α/4) ·n∗
min

(r). Therefore, m ≥ (α/4) ·n∗
min

(r) and so at least

Ω((α/ log∆) · n∗
min

(r)) nodes of Rmin(r) ⊆ S min(r) participate in

a productive connection after at most O(log∆) rounds.

4) Helper Lemma to Support Lemma III.8:

Lemma A.1. Fix a round r > 0 such that n − nmin(r) ≤ n/2.

With high probability in n, after at most O((1/α) log n log2 ∆)

rounds, more than half of the nodes posses more than imin(r)

tokens.

Call a phase pi of O(log∆) rounds successful if at least

O((α/ log∆) · n∗
min

(ri)) nodes of S min(ri) participate in a pro-

ductive connection where ri is the first round of pi. We observe

t successful phases p1, . . . , pt while at most half the nodes have

more than the minimum token set size. Our goal will be to

show that there can only be so many of these phases before at

least half the nodes in the network possess more than imin(r1)

tokens.

Notice that for any integers i and j such that i < j,

n− nmin(ri) ≤ n− nmin(r j), since we can only grow the number

of nodes with more than the minimum number of tokens.

Furthermore, recall that for any i such that nmin(ri) ≤ n/2,

by definition nmin(ri) = n∗
min

(ri). Therefore, if mi is the size of

the maximum matching over Gmin(ri), for any i and j where

i < j and n∗
min

(ri) ≤ n∗
min

(r j) ≤ n/2 we know that mi ≤ m j.

Therefore (by Lemma III.5) we have that the ith successful

phase achieves Ω((α/ log∆) ·n∗
min

(ri)) ≥ Ω((α/ log∆) ·n∗
min

(r1))

productive connections.

Therefore at most O(log∆/α) successful phases are required

until the number nodes with more than the minimum number

of tokens grows by a constant fraction. We can now group

together T sequences of O(log∆/α) phases s1, . . . , sT and

solve for T such that

n∗min(r) · (1 + Ω(1))T ≥ n/2

Which yields T ≤ O(log n) sequences for a total of

O((1/α) log n log∆) total phases. Finally, we bound how many

of these phases must pass until until we achieve a sufficient

number of successful phases. To this end, we apply the

stochastic dominance argument from Lemma II.3 using the

constant probability lower bound introduced by Lemma III.6.

This gives us with high probability in n that our final phase

complexity is O((1/α) log n log∆) phases and our final round

complexity is O((1/α) log n log2 ∆) total rounds.

5) Proof of Lemma III.8: In Lemma A.1 we showed that

when n − nmin(r) ≤ n/2 for some round r > 0, by periodically

growing the set of nodes with more than the fewest number

of tokens by a constant fraction, at most O((1/α) log n log2 ∆

rounds are required until nmin(r) ≤ n/2. A symmetric argument

can be made in the case that nmin(r) ≤ n/2 in which we shrink

the nodes with the fewest number of tokens by a constant

fraction until at most a constant number remain.

Let s1, . . . sT be several sequences where si = p1, . . . , pt is

made up of O(α/ log∆) phases where each phase pi is made up

of O(log∆) rounds. While in Lemma A.1 we lower bounded

the size of the matching in each phase in each sequence

by the first round of p1 of s1, we now lower bound the

size of these matchings by the last round of pt of sT . The

maximum matching over the minimum productive subgraph

with respect to this round gives us a lower bound on the

number of connections achieved in each successful phase up

to this round.

Therefore, in order to solve for T in this case we solve the

expression (n − nmin(r)) · (1 −Ω(1))T ≤ 1 for our initial round

r. Again, this expression indicates for the ith sequence we

reduce the number of nodes in S min(r) by a constant fraction

of n∗
min

(r′) where r′ is the round at the beginning of the (i+1)th

sequence. This again yields T ≤ O(log n). The rest of the proof

is the same as that of Lemma A.1, yielding a final round

complexity of O((1/α) log n log2 ∆) total rounds to inform all

but one node which is then trivially connected to in at most

one more round.

6) Proof of Lemma III.9: Let q = nα. Construct our graph

G with vertex expansion at least α by creating a q-clique of

nodes and connecting the remaining n−q nodes to every node

in the q-clique. This graph is equivalent to a star graph when

q = 1 (α = 1/n) and to a clique when q = n (α = 1).

First, we’ll show that this graph has vertex expansion at

least α. Recall that to find the vertex expansion of a graph,

the goal is to minimize the quantity |∂(S )|/|S | over all cuts

S of size at most n/2. When considering all possible cuts of

our graph, we can choose to either include nodes from the

q-clique or nodes not in the clique (or both). If we select any

node from the q-clique, by our construction, every remaining

node is now in ∂(S ). Therefore, the only freedom we have to

minimize |∂(S )|/|S | is to increase the size of S as to maximize

the denominator. However, the minimum value we can derive

is still only 1 ≥ 2α since we can include at most n/2 nodes

in S .

Our only remaining option is then to try to minimize

|∂(S )|/|S | by not including any nodes from the q-clique in our



set S . As soon as we include a single node outside the q-clique,

|∂(S )| = q. Furthermore, we are compelled to include up to

n/2 nodes this way (since q ≤ 1/2 so there are at least n/2

nodes not in the q-clique). This minimizes the target quantity

since it has no effect on the numerator and it maximizes the

denominator. However, even when the quantity is minimized

in this way, it’s always the case that |∂(S )|/|S | ≥ q/(n/2).

Lastly, since q = nα, this quantity is at least 2α, satisfying the

condition of the Lemma statement.

We will now show that it takes Ω(k/α) rounds to spread k

tokens to all n nodes in G. We begin by providing all k tokens

to every node in the q-clique. To solve the gossip problem, all

k tokens must be delivered to the n−q ≥ n/2 nodes not in the

clique. This requires at least kn/2 total connections to be made.

However, since at most q connections can occur per round

(since nodes outside the clique aren’t connected and the nodes

in the clique are limited to at most one connection per round)

a total of at least kn/(2q) rounds are required. Substituting

q = nα then gives the needed lower bound on the total number

of rounds: Ω(kn/(2q)) = Ω(kn/(2nα)) = Ω(k/(2α)) = Ω(k/α).

C. Omitted Proofs from Section IV

1) Proof of Lemma IV.3: Fix any time t1 and node v as

specified in the lemma statement. Fix t2 to be the minimum

time after t1 that is sufficiently large to guarantee that for every

pair of neighbors {x, y} in the underlying network topology,

y receives an advertisement from x that was passed to x’s

update method at some time t ≥ t1, and y has time to

call Select after receiving at least one such an advertisement.

Clearly, t2 = t1 + O(δmax).

We will consider all possible executions of our algorithm

over the interval [t1, t2]. We partition these executions into

two disjoint event spaces with respect to v. The first space,

which we will denote A, will contain all executions in

which every node u ∈ Nmin(v) properly considers v during

the interval [t1, t2]. (Recall that in the lemma statement we

define Nmin(v) to be the neighbor set of v in Gmin(t1), and

degmin(v) = |Nmin(v)|.) The second space A will then simply

be the complement of A, containing all other executions.

Begin with some execution a ∈ A. Recall by the definition

of A, every node in Nmin(v) properly considers v during

the interval [t1, t2] in execution a. Fix one such neighbor

u ∈ Nmin(v). There is some time t3 in our interval such that at

this time, u makes a call to Select, during which v ∈ N̂u(t3)

and |N̂u(t3)| ≤ degmin(u). During this call, u will select v for a

connection attempt with probability 1/|N̂u(t3)| ≥ 1/degmin(u).

It follows that the probability that u does not send v a proposal

is at most 1 − 1/degmin(u).

Since execution a is in the event space A, we know that

every node u ∈ Nmin(v) properly considers v during this

interval. Moreover, given that these nodes properly consider

v, the probability that two nodes return v from Select is

independent (since the selected neighbor is chosen uniformly

at random from N̂). Therefore, we can bound the probability

of event X, where X denotes that v receives at least one

connection proposal, as follows:

Pr[¬X] ≤ Πu∈Nmin(v)(1 − degmin(u))

Pr[X] ≥ 1 − Πu∈Nmin(v)(1 − degmin(u))

Furthermore, by the guarantees of the aMTM, having re-

ceived at least one connection proposal, v is guaranteed to

accept at least one. Therefore, v participates in a productive

connection with at least the above probability.

We now consider some execution a ∈ A. By the definition

of A, there must be in a some node u ∈ Nmin(v), such that

u does not properly consider v in the interval [t1, t2]. Fix

tselect to be the first time that u calls Select after receiving

an advertisement from v that was passed to update at a time

greater than or equal to t1. By our definition of t2, we can

always identify a time tselect that satisfies these properties in

[t1, t2].

By assumption, we know that u does not properly consider v

during the call to Select at tselect. We consider the two possible

reasons for this behavior, and show in both cases v must have

already participated in a productive connection between t1 and

tselect.

The first possible reason is that v < N̂u(tselect). By the

definition of our algorithm, the minimum token set size in the

network can never decrease. It follows that if v < N̂u(tselect),

then v must have learned at least one token since t1. It follows

that v participated in a productive connection since t1.

The second reason that u might not properly consider v

would be if v ∈ N̂u(tselect), but N̂u(tselect) is too large such that

|N̂u(tselect)| > degmin(u). However, at time t1, exactly degmin(u)

neighbors of u had a token set size of imin(t1) (by the definition

of Gmin(t1)), with all other neighbors of u in G having strictly

more tokens. Since nodes cannot lose tokens, the number of

u’s neighbors with at most imin(t1) tokens can never increase.

If |N̂u(tselect)| > degmin(u), then ŝu(tselect) > imin(t1), from which

it follows that v, along with all of u’s neighbors with token set

size imin(t1) at t1, must have received at least one token since

t1, meaning it participated in a productive connection.

We have shown, therefore, that for any a ∈ A, v participates

in a productive connection in [t1, t2] in a with probability 1.

Pulling together these pieces, we have partitioned the possible

executions in the interval [t1, t2] into two sets. In both sets,

the probability of v participating in a productive connection is

at least 1−∏

u∈Nmin(v)(1− degmin(u)), as required by the lemma

statement.



D. Swift Implementation of the Asynchronous Random Diffu-

sion Gossip Algorithm

init() {

self.tokens = Set<String>()

// standard implementation

self.hash = Utils.SHA256

}

func getTag() -> Advertisement {

let tokenSetHash = self.hash(tokens)

let tokenSetSize = self.tokens.count

// iOS device identifier

let uid = UIDevice.current.name

return Advertisement(tokenSetHash

, tokenSetSize , uid)

}

func select(advertisements

: [Advertisement])

-> String {

let tokenSetHash = self.getTag()

.tokenSetHash

var minSize = Int.max

for adv in advertisements {

let size = adv.tokenSetSize!

if (size < minSize)

&& (adv.tokenSetHash

!= tokenSetHash) {

minSize = size

}

}

var neighbors = Set<String>()

for adv in advertisements {

if ((adv.tokenSetSize! == minSize)

&& (adv.tokenSetHash

!= tokenSetHash)) {

neighbors.insert(adv.uid)

}

}

// returns device uid

return neighbors.randomElement()!

}

func communicate(neighborTokens:

Set<String>) {

let difference = neighborTokens

.subtracting(self.tokens)

self.tokens

.insert(difference.randomElement()!)

}
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