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Abstract—Nowadays, with the rising number of sensors in sec-
tors such as healthcare and industry, the problem of multivariate
time series classification (MTSC) is getting increasingly relevant
and is a prime target for machine and deep learning approaches.
Their expanding adoption in real-world environments is causing a
shift in focus from the pursuit of ever-higher prediction accuracy
with complex models towards practical, deployable solutions that
balance accuracy and parameters such as prediction speed. An
MTSC model that has attracted attention recently is ROCKET,
based on random convolutional kernels, both because of its very
fast training process and its state-of-the-art accuracy. However,
the large number of features it utilizes may be detrimental
to inference time. Examining its theoretical background and
limitations enables us to address potential drawbacks and present
LightWaveS: a framework for accurate MTSC, which is fast
both during training and inference. Specifically, utilizing wavelet
scattering transformation and distributed feature selection, we
manage to create a solution that employs just 2.5% of the
ROCKET features, while achieving accuracy comparable to
recent MTSC models. LightWaveS also scales well across multiple
compute nodes and with the number of input channels during
training. In addition, it can significantly reduce the input size and
provide insight to an MTSC problem by keeping only the most
useful channels. We present three versions of our algorithm and
their results on distributed training time and scalability, accuracy,
and inference speedup. We show that we achieve speedup ranging
from 9x to 53x compared to ROCKET during inference on an
edge device, on datasets with comparable accuracy.

Index Terms—distribution, time series, classification, multivari-
ate, wavelet, scattering, feature selection, edge intelligence

I. INTRODUCTION

Time series classification is the task of characterizing a
series of values observed in sequential moments in time as
belonging to one of two or more categories, or classes. There
has been extensive work on univariate time series classification
with machine and deep learning methods, as observed in
surveys such as [1]. In practice, as noted in [2], problems are
increasingly described by more than one channel of informa-
tion, turning the task into multivariate time series classification
(MTSC). Some factors contributing to that are the development
of smaller and cheaper sensors for the measurement of various
quantities, the general advancement of Internet of Things, and
the engagement with inherently more complex problems in

This work has been conducted as part of the Just in Time Maintenance
project funded by the European Fund for Regional Development.

sectors such as healthcare and industry, which benefit from
additional information channels [3].

Although the improvement of the prediction accuracy of
MTSC models has been a prominent goal of research, the rise
of edge computing and deployment of models in such real-
world environments makes it necessary to also consider the
conditions and resources of the computational nodes on which
those models will be executed [4]. This change in perspective
makes it important to include, apart from accuracy, criteria
such as prediction speed or throughput in the evaluation of a
model’s suitability for a given task.

In the recent evaluation of advances in MTSC [2], one
solution that shows good performance is ROCKET [5], both in
terms of accuracy and training time. ROCKET utilizes random
convolutions to transform the time series channels and then
extracts two features per convolution that are used with a
linear classifier. The evolution of ROCKET, MINIROCKET
[6], is proposed as the new default variant of ROCKET by its
authors and utilizes only one feature per kernel (percentage of
positive values), thereby halving the features. It also utilizes
other optimizations to speed up ROCKET in general and
follows a minimally random approach with a given set of
kernels. Another variant, MultiRocket [7], uses more features
per convolution to achieve better accuracy at the expense of
transformation time. Both ROCKET and MINIROCKET have
been developed for univariate time series. Although the authors
of MINIROCKET characterize their provided repository code
for multivariate time series as naive, it is the same algorithmic
logic in the form of a ROCKET extension in the sktime [8]
repository that achieves the impressive performance mentioned
above.

In (MINI)ROCKET, the authors encourage research into
more sophisticated approaches for multivariate time series. We
can start by identifying potential points that can be improved.
One issue with (MINI)ROCKET that we try to address in our
work is that the large number of features, although beneficial
to accuracy, can be highly redundant, and extreme for some
datasets, leading to unnecessarily high transformation and
inference times. In addition, due to the fixed process and
number of generated features, there is a large discrepancy in
the representation (features per channel) across datasets with
different dimensions. Moreover, the indiscriminate inclusion of
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all channels in the feature generation is susceptible to unin-
formative series. Finally, the stochastic element, especially the
random channel combination, although potentially favorable to
accuracy, does not offer significant interpretability.

Based on this analysis, we propose LightWaveS, a frame-
work for fast transformation of multivariate time series based
on convolutional kernels, wavelet scattering, and feature se-
lection, for lightweight and accurate classification with linear
classifiers. Our solution aims to keep the successful aspects of
the ROCKET model family, such as the short transformation
time, the arbitrary convolutional kernel approach, and the few
descriptive features per kernel. On top of that, LightWaveS
adds well-studied wavelet theory, multi-node1 distribution
during training and smart feature selection to address the
drawbacks identified above. The trade-off that we propose
compared to (MINI)ROCKET is clear: we take advantage
of additional computational resources during training time,
especially for larger datasets, to keep its duration short and
significantly speed up inference on resource-constrained de-
vices. Our contributions with LightWaveS are:
• We introduce the usage of minimal wavelet scattering

based on arbitrary kernels.
• We achieve accuracy comparable to state-of-the-art in the

majority of the UEA datasets [9], using only a fraction
of the number of features used by (MINI)ROCKET.

• We achieve inference speedups on an edge device ranging
from 9x to 53x compared to ROCKET.

• We achieve reduction of the channels required for infer-
ence ranging from 7% to 86%.

• We distribute the framework and achieve training time
comparable to (MINI)ROCKET on 1 node, and shorter
on multiple nodes.

• We achieve linear scaling of training time with the
number of channels, tested in experiments with up to 900
channels.

• Depending on the dataset size, we achieve good dis-
tributed training speedup with additional nodes, tested in
experiments with up to 8 nodes.

With this work, we take an efficiency-centric approach,
focusing on the practicality and the inference speed of a model
that may be deployed on an edge device, without necessarily
trying to surpass the state-of-the-art in terms of accuracy.

II. RELATED WORK

A. Multivariate time series classification

Due to the recent rise in popularity of the deep learning
field, there is a multitude of models that can be easily
adapted to incorporate the additional dimension of MTSC
[10]. A detailed evaluation of recent MTSC methods ap-
pears in [2]. Convolutions in particular, either 1-D or with
more dimensions, are a very popular module when dealing
with time series, as seen in models such as TapNet [11],
InceptionTime [12] and OS-CNN [13] among others. In these

1With the term node we refer to a computing node in a distributed
(networked) system.

works, convolutions are combined in various architectures with
other modules, such as fully connected networks, and achieve
impressive classification accuracy. The majority of those deep
learning models take a significant amount of time and memory
to train even on GPU nodes, ranging from hours to even days,
depending on the dataset size [2]. In contrast, our method takes
less than 20 minutes to transform, train and test all 30 UEA
datasets on a CPU node with a linear classifier. If we distribute
the solution on e.g. 8 CPU nodes, this time drops to under 4
minutes. An additional challenge is the interpretability of deep
learning models. The usage of wavelets by LightWaveS and
their method of application gives the potential to interpret the
result based on signal theory and the input channel filtering
helps to extract useful conclusions about a given time series
problem.

B. Feature extraction and selection

Deep learning models implicitly extract features from the
input along their first layers. In contrast, explicitly extracting
features to use with classifiers has also been visited in multiple
ways. We have already described how the *ROCKET family
extracts features from the convolutions of random kernels with
the input, an idea that has also been explored before, such
as in [14]. Another example is tsfresh [15], which extracts a
large number of predefined statistical features from the time
series and then through feature selection reduces them to the
most useful. Similarly, catch22 [16] is a solution that uses
only 22 predefined characteristics to transform time series,
aiming for a very fast transformation. A different approach is
presented in WEASEL+MUSE [17], which extracts features
based on a bag-of-patterns approach and selects the most
useful ones based on a χ2 test. LightWaveS, similarly to
MINIROCKET, depends on an arbitrary set of convolutions
and only 4 statistical features, extracted however from the
coefficients of wavelet scattering. Due to the speed of the
convolution operation and the simplicity of the features, we
can achieve extremely fast training and inference times, while
giving the model enough complexity to accommodate difficult
datasets, where predefined statistical features on the raw time
series values may not be descriptive enough.

C. Distributed training

As the size of the deep learning models and the amount of
input data increase, it is increasingly difficult to perform train-
ing on a single node. For that reason, distribution of the train-
ing process across multiple nodes is becoming increasingly
necessary [18]. This distribution can be implemented with
methods such as data parallelism, where each node applies
the same operations on different parts of the input data, with
frequent communication among the nodes to update the model.
Distribution can also be applied to solutions that do not depend
on deep learning, such as tsfresh mentioned above, which
supports operation on a cluster through Dask [19]. LightWaveS
is distributed using MPI in a data-parallel way, but in contrast
to the communication heavy training of DL models, there
is efficient and minimal communication between the worker



nodes and the central coordinator. Specifically, the nodes only
send a limited number of feature scores and descriptions
once during the execution, making communication a trivial
percentage of the whole process.

D. Wavelets

Wavelets are localized waveforms (as seen in Fig. 1 on
the right) and are a well-studied method in signal processing
that has been used extensively in the analysis of time series
[20]. There is vast literature with methods and applications
of wavelets on all types of problems, ranging from healthcare
to audio analysis, and well-studied and developed families of
wavelets suitable for specific applications [21], [22]. There
are also numerous approaches that combine wavelets with
machine and deep learning methods, either as implicit or
explicit feature extractors [23], [24]. A seminal work is [25],
where the concept of a wavelet scattering network using a
Morlet wavelet is introduced, in combination with linear and
support vector machine classifiers for hand-written digit classi-
fication and texture recognition. This method was constructed
to be invariant to translations of the input and stable to small
deformations. It has also been recently used in combination
with deep learning networks for specific applications [26],
[27].

LightWaveS aims to combine the strong points of these
works under a single generalized framework, with a focus
on efficiency. We aim to bridge the gap between ROCKET
and the wavelet theory, and we progress to the next logical
step of wavelet scattering. We keep this approach lightweight,
both in depth and paths of the scattering, so we can apply
it to time series channels on a massive scale in a very short
time. The arbitrary base set of wavelets can potentially be
extended based on expert opinion, backed by the solid theory
behind wavelets and their applications, making LightWaveS a
suitable platform for experimentation on solutions for MTSC
problems. Finally, the hierarchical feature filtering leads to
the most relevant output features of the scattering coefficients
being selected.

III. PROPOSED FRAMEWORK

A. Preliminaries

1) (MINI)ROCKET fundamentals: (MINI)ROCKET is pri-
marily based on the convolution operation, in which a kernel
k with size l (k ∈ Rl), bias β and dilation factor d is used
to calculate a sliding dot product with a 1-D input x ∈ RL
of size L and produce an output x′, where each element is
calculated as [5]:

x′i =

l−1∑
j=0

kj · xi+d∗j + β (1)

In (MINI)ROCKET, the outputs x′ are either convolutions of
1-D kernels with single input channels, or the sum of the con-
volutions of multiple kernels with random subsets of the input
channels. In the minimally random variant, MINIROCKET,
the kernel weights are selected from an empirically chosen

subset of 84 kernels of length 9 with weights in {2,−1}. This
has been chosen to limit the possible weight combinations
but is not unique for the purpose, and other lengths, different
values or weights drawn from ∼ N (0, 1) are equally effective
[6]. The only thing that is important is that the kernel weights
have sum 0. The bias is drawn from the convolution output,
and the dilation is drawn from the set D = {b2ec}, where
e∼ U(0,m), with m such that the length of the dilated kernel
does not exceed that of the input. Finally, half of the kernels
use padding, which appends zeros to either side of the input so
that x′ and x have the same dimension. The feature extracted
from each of the 10000 outputs is the percentage of positive
values and is used for the final classification.

2) Wavelet Scattering: Wavelet scattering is the process
of applying wavelet transforms in a cascading manner [25],
combined with non-linearities and pooling. The wavelet trans-
form is a method used to approximate a signal using a set of
wavelets that originate from a ”mother” wavelet Ψ(t), scaled
by s and shifted by b [28]. Each such wavelet can be described
as:

Ψs,b(t) =
1√
s

Ψ(
t− b
s

) (2)

Intuitively, we can relate these wavelets to the convolution
filters that we discussed above, with the dilation being the
scale of the wavelets (how ”narrow” or ”wide” they are), and
the shift parameter b corresponding to the starting point of the
convolution on the input (i+ d ∗ j). This connection between
convolutional networks and the scattering architecture has also
been thoroughly explored in [29]. We can see an example of
a wavelet convolution in Fig. 1, where the response is strong
at the points where the sliding wavelet ”matches” the signal.
In addition, the wavelet set created from a mother wavelet
is parallel to the way that MINIROCKET has a fixed set of
kernel weights, for which different paddings and dilations are
randomly selected, generating the child kernels.

In the wavelet scattering transform, on each level λ, the
previous result is convoluted with each wavelet ψλn

(kernel)
and a complex modulus operator is applied before propagating
the result to the next level, such that:

U [λ] = |U [λ− 1] ∗ ψλn | (3)

and the scattering coefficients that result from each level are

S[λ] = U [λ] ∗ φ (4)

where φ is an averaging kernel. Since on every level of the
scattering transform there can be multiple candidate wavelets
(kernels), there is a geometric progression of potential paths,
as can be seen in the graphic representation of the process in
Fig. 1.

Throughout the above intuitive description, we connected
the concepts of MINIROCKET with the wavelet theory. In
MINIROCKET the prototype kernels have zero mean, which
corresponds to a desirable constraint of mother wavelets [28].
Under this new context, we can re-consider MINIROCKET as
a classifier based on convolutions with random child wavelets
of an arbitrary set of mother wavelets. In addition, although
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Fig. 1. 2-level wavelet scattering [25] and wavelet convolution example

not being wavelet scattering, MINIROCKET can be intuitively
mapped on the first level, with its kernel set equivalent to the
first-level set, {Ψ0,1,s, ...,Ψ0,n,s}, with s drawn from D as
we said above. Since each kernel is slid across the input, we
can think of b as taking all discrete values from 0 to linput −
lkernel ∗ s for each candidate wavelet, and the convolution
output (response) as being the combined response of all shifted
wavelets, as portrayed in Fig. 1. However, MINIROCKET
extracts the features before the application of any modulus
operator, so it does not satisfy the rest of the wavelet scattering
transform requirements.

B. Algorithm

Based on the above observations, we improve the approach
and reach the crux of LightWaveS: Lightweight Wavelet
Scattering based on random wavelets. The term lightweight
refers both to the system optimizations of the framework
that make it fast, such as the distribution, as well as the
fact that only a reduced set of wavelet scattering paths are
computed. Although it is established that not all paths need
to be considered in a scattering network [25], since we are
aiming for fast training and inference, we take this notion to
its limit. We compute all coefficients for the given kernels and
dilations for the first level, but we consider only one path per
first-level output for the second level. In this way, we limit
significantly the memory and computation time required for
the extracted features, while accepting the trade-off of losing
some descriptive coefficients.

The choice of the kernels to be applied in the second level
is not immediately clear. We can consider heuristics such as
selecting kernels whose first level coefficients gave features
with high correlation to the classification task. However, after
experimenting with such heuristics, and even with up to four
second-level paths, we found that the final classification results
were not noticeably different than the simple approach of
applying the same kernel and dilation, a concept intuitively and
loosely similar to the process of a discrete wavelet transform
[30]. Thus, we end up computing only the paths shown in
bold in Fig. 1, which means that the same kernel is applied
twice consecutively. In addition, we limit the depth to two
levels, as a good balance point between computational speed
and informative coefficients, as observed in [25].

The main steps of LightWaveS are the following: Initially,
the dataset is split among the nodes across the channel dimen-
sion. For larger datasets, the nodes receive only a sample of
the total training examples, in order to speed up computation.
This sample selection is the only source of randomness in
the algorithm. Then, on each node, the kernels are generated,
which for our purpose are based on the same subset of 84
kernels that MINIROCKET uses. We limit randomness even
more, so each kernel is dilated with all dilations in the set
{20, 21, ..., 25}. We also completely remove bias, and the
padding is common to all kernels so that the output dimension
is equal to the input.

All those kernels are applied to each of the input channels
according to the wavelet scattering process described above.
The generated kernels have no complex part, so the non-
linearity modulus operator is equal to the absolute value of
the convolution output. We also downsample the U [λ1] result
by a factor of 2 before propagating it, while keeping the same
scale for the kernel, so it operates in lower frequencies. This
is according to the insight in [25] that the most useful paths
are frequency decreasing. As far as the pooling is concerned,
since we want to limit the number of coefficients that will be
used as features, we use max and min pooling, instead of the
averaging kernel. In this way, although we accept the loss of
more information, we have fewer features and we also avoid
two additional convolutions per path. The features that are
extracted from each scattering path are 8: the first four are the
max and min values of U [λ1] and U [λ2]. We selected those
as the most straightforward non-linearities that can be quickly
calculated during the convolution process. The other four are
the percentage of positive values (ppv) and normalized longer
sequence of positive values (ls) in U [λ1] and U [λ2] before the
application of the modulus operator. We keep these features
based on MINIROCKET and MultiROCKET respectively,
since they have proven to be useful during classification.

After the feature extraction, the first selection phase is per-
formed on each node in a supervised way using ANOVA. The
main node then gathers the top-scoring features and performs
the final feature selection, using the minimum-redundancy,
maximum-relevance algorithm [31], incrementally selecting
the feature with the highest score. This score is determined by
its F-statistic (relevance to the class), divided by its average
correlation to the previously selected features (redundancy).



In our case, we use the Pearson correlation coefficient as
the correlation indicator. In both phases the feature selection
methods are filter-based, which are fast, classifier-independent,
and can be implemented to scale well with the number of
features [32].

IV. EXPERIMENTS

A. Datasets

We select as benchmark the UEA collection of multivariate
datasets [9], excluding InsectWingbeat, since due to its large
size it presented issues when training ROCKET. The datasets
are described in detail in [2]. In addition, we prepare and use
five machinery related datasets:
• MAFAULDA, from Machinery Fault Database [33] is

a dataset with 8 sensor measurements on a machine
fault simulator, taken under normal conditions and five
different fault types. We downsample the measurements
so that the input length is 1000 steps and we split the
dataset into train and test with ratio 85-15 %.

• TURBOFAN [34], is an engine degradation simulation
dataset collection, containing 4 datasets with operation
simulations of engines that run until failure under dif-
ferent conditions, with measurements from 26 sensors.
The goal is to predict the remaining useful life (RUL)
of the engines. In order to turn the problem into binary
classification, we prepare the dataset and the labels in a
suitable way with the goal being classifying RUL as more
or less than 20 operational cycles.

B. Experimental setup

All training experiments were run on the DAS-5 infras-
tructure [35], on nodes with dual 8-core 2.4 GHz (Intel
Haswell E5-2630-v3) CPUs and 64 GB of RAM. The in-
ference experiments are executed on a Jetson Xavier board
which has an 8-core ARM CPU. Both (MINI)ROCKET and
LightWaveS were set to use all 8 cores during inference, an
option that is not the default in the sktime implementations of
the former. We ran ROCKET and MINIROCKET using the
default number of features (20 and 10 thousand respectively).
As for LightWaveS, we present three variants of the model,
termed L1, L2, and L1L2. These versions refer to keeping
the features only from the scattering level 1, level 2, or both,
although we consider the L1L2 version as the default.

Following the example of [5], we selected 15 of the 30
UEA datasets to work on when developing the method, in
order to draw generic conclusions and avoid overfitting the
whole collection. The design choices that are not guided or
restricted by theory, intuition, and related work, such as the
feature scoring function, are straightforward and focused on
computational efficiency. Our hyperparameter search during
experimentation was limited to the initial and final number of
selected features, as well as alternative options for the second-
level scattering paths, as mentioned above. This has led to
the selection of 500 features as the default variant, which has
shown good balance between training time, inference speed
and accuracy in the development set.

We use a Ridge regression classifier from the Scikit-learn
package [36] for all methods. We use a critical difference
diagram to present the results, a popular method of comparing
classifier performance across multiple datasets [2], [10]. This
shows the ranking of the classifiers and groups the ones that do
not show statistical difference, based on pairwise comparisons
using a Wilcoxon signed-rank test [37] with Holm’s alpha
correction [38], [39]. The grouped classifiers appear on the
diagram connected by a thick horizontal line. The code of
LightWaveS, as well as detailed metrics and the scripts used
to train (MINI)ROCKET, run the inference experiments and
preprocess the machinery datasets are made available2 to
enable reproducibility and facilitate further exploration on the
topics of this work. We repeat the experiments multiple times
and report average values for robustness.

C. Accuracy results

We present the performance of LightWaveS in terms
of accuracy in comparison with (MINI)ROCKET, as well
as other recent solutions, namely (M)OSS-CNN [13],
WEASEL+MUSE [17], TapNet [11] and Catch22 [16]. Apart
from LightWaveS and (MINI)ROCKET, the rest of the accu-
racy metrics are taken from the repositories of [13]3 and [40]4.

We can see the results in Fig. 2. Although lower in
rank, LightWaveS belongs in the same statistical group with
(MINI)ROCKET, which have the best accuracy. In addition, it
is among the ranks of more complex DL methods, such as Tap-
Net and MOS-CNN. Out of the three variants, LightWaveS-L2
performs the worst, without the benefit of faster execution that
L1 has due to the fewer convolutions.

12345678910

8.0345Catch22
7.4310LightWaveS-L2
5.8966TapNet
5.6207LightWaveS-L1
5.5536WEASEL+MUSE 5.5345 LightWaveS-L1L2

4.6034 OS-CNN
4.5000 MOS-CNN
4.0000 MINIROCKET
3.6724 ROCKET

Accuracy

Fig. 2. Mean rank of LightWaveS methods vs recent classifiers in terms of
accuracy

We can focus on (MINI)ROCKET for a more detailed
comparison, and also include the 5 additional datasets. Since
the aim of LightWaveS is to approach their state-of-the-art
accuracy with fewer features, not necessarily surpass it, we
place the LightWaveS results for all datasets in four accuracy
bins compared to (MINI)ROCKET : one for the cases where
LightWaveS achieves higher or equal accuracy, and three bins
for lower accuracy, with difference less than 0.05, between
0.05 and 0.1 and more than 0.1 respectively. In Fig. 3 we see
the number of datasets in each bin.

For the majority of the datasets the accuracy stays in the first
3 categories for all variants apart from L2, and the datasets
with large accuracy deviation are few. In addition, we can

2https://github.com/lpphd/lightwaves
3https://github.com/Wensi-Tang/OS-CNN
4https://github.com/mlgig/mtsc benchmark/

https://github.com/lpphd/lightwaves
https://github.com/Wensi-Tang/OS-CNN
https://github.com/mlgig/mtsc_benchmark/
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Fig. 3. Distribution of datasets based on average accuracy difference between
LightWaveS variants and (MINI)ROCKET

see that just increasing the number of features to 1500 leads
to improvement of the comparison results, especially in the
case of MINIROCKET, showing the potential of the method
to successfully tackle the harder datasets as well.

D. Scaling of training time with channels and nodes

As a point of reference, ROCKET processes the whole
UEA set (apart from InsectWingbeat) on a single node in ap-
proximately 9 minutes, MINIROCKET in 5 and LightWaveS
(L1L2) in 14. (MINI)ROCKET has complexity O(kernels ·
samples · tslength). Since LightWaveS uses one more con-
volution per kernel it adds a fixed factor of two to the
complexity, essentially keeping linear scalability with these
variables. Thus, we can focus on its training time scalability
with the number of channels and across the compute nodes.

We select PEMS-SF from UEA which has 963 channels,
and we use subsets of the total dataset to train LightWaveS
on 2 nodes, starting from 100 channels and incrementing by
100. We see in Fig. 4a that all variants show (sub)linear
scaling with the number of channels, which is expected since
each additional channel results in a fixed number of additional
convolutions, and there are no combinations or permutations of
channels. For the node scaling, we also select FaceDetection,
with 144 channels and we measure the training time across
1, 2, 4 and 8 nodes. As we see in Fig. 4b, with PEMS-
SF the gained training speedup is more close to ideal since
there are many channels for each node to work on and

the distributed computation constitutes the majority of the
execution time. In contrast to that, with FaceDetection that has
fewer channels, the computational cost starts being dominated
by the operations on the main node (feature selection, final
transformation), so the gained speedup declines faster.

100 200 300 400 500 600 700 800 900
Number of channels

0

1

2

3

4

5

6

7

8

9

E
xe

cu
tio

n 
tim

e 
fa

ct
or

L1
L2
L1L2

(a) Channel scalability

1 2 4 8
Nodes

0

1

2

3

4

5

6

7

8

9

S
pe

ed
up

PEMS L1
PEMS L2
PEMS L1L2

FaceD L1
FaceD L2
FaceD L1L2

(b) Node scalability

Fig. 4. Scalability of LightWaveS training time with the number of (a)
channels and (b) nodes

E. Inference speedup results

We manage to achieve significant speedup during inference
due to the small number of features, which heavily reduces the
number of convolutions required to transform a test sample.
Although this speedup is achieved for all datasets and variants,
we focus for fairness on the datasets in the first two accuracy
bins for the default L1L2 variant, where it ranges from
9x to 53x compared to ROCKET and from 2x to 10x for
MINIROCKET. In order to give a qualitative representation
of the results, we show in Fig. 5 the accuracy - speedup plots
for all LightWaveS variants compared to (MINI)ROCKET for
the 5 machinery fault datasets. We choose these since they
are representative use cases and correspond to an immediately
practical and realistic scenario of edge deployment of a model
in an industrial IoT environment. However, a similar relation
holds for all other datasets.
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Fig. 5. Average inference speedup-accuracy difference scatterplot for the 5
machinery datasets, for each of the LightWaveS variants

Fig. 5 clearly frames the trade-off that we propose: sig-
nificant inference speedup at the cost of limited reduction in
accuracy (in cases where the latter is not also improved). For
instance, for the TURBOFAN4 dataset, we can achieve 7.5x-
24x inference speedup with an accuracy reduction of up to 0.1.
The MF dataset in the MINIROCKET comparison acts as an
outlier in the graph due to its large length in combination with
the optimizations of MINIROCKET. Our method of applying
the kernels matches ROCKET’s, but could also benefit from
these optimizations, restoring the discrepancy.

F. Channel reduction results

Due to its feature generation and selection pipeline, Light-
WaveS can filter the input channels required for inference to
a subset of the originals. Similarly to the inference speedup
results, we focus on the default L1L2 variant. We see in Table
I that out of the 24 datasets where comparable accuracy with
ROCKET is achieved, 11 were reduced, with the channel
reduction ranging from 7% to 86% and the larger datasets ben-
efiting more. We exclude from this table the 10 datasets where
LightWaveS performs significantly worse than ROCKET to
avoid giving LightWaveS an unfair advantage. For instance,
for the DuckDuckGeese dataset, LightWaveS uses 98 of the

original 1345 channels but achieves accuracy of 0.44 compared
to 0.51 of ROCKET.

G. Resource efficiency results

Another important aspect in edge intelligence applications
is the number of operations required for inference, which
directly affects the energy required, as well as the performance
of other applications that potentially share the edge device
resources. We can quantify the computational efficiency of
LightWaveS over ROCKET by comparing the number of
convolutions and consequently multiply–accumulate (MAC)
operations required for inference, based on the theoretical
analysis of the algorithms. We focus on ROCKET since it
utilizes the same mechanism of applying the convolutions
as LightWaveS, as mentioned before, making the comparison
possible and precise. For the datasets in the first two accuracy
bins of the L1L2 variant, LightWaveS requires approximately
16.5x to 40.5x fewer MAC operations for inference.

V. DISCUSSIONS AND CONCLUSION

Summarizing, LightWaveS offers comparable to state-of-
the-art accuracy on the datasets tested, with training time
similar to (MINI)ROCKET or shorter and inference time 9x-
53x shorter on an edge device in the case of ROCKET and
2x-10x for MINIROCKET. Apart from the advantages we have
mentioned, a significant advantage of LightWaveS is that it is
based on wavelet theory, which has a strong theoretical base.
A promising future direction is to explore expert tuning of the
framework, by preparing and including in the base set well
tested and specialized wavelets for each use case.

TABLE I
AVERAGE NUMBER OF ORIGINAL DATASET CHANNELS USED BY

LIGHTWAVES

Original
channels

Channels used by
LightWaveS L1L2

AWR 9 7
AtrialFib 2 2
BasicMotions 6 5
ChTrajectories 3 3
ERing 4 4
EigenWorms 6 6
Epilepsy 3 2
EthanolC 3 3
FaceDetection 144 118
FingerMov 28 28
Heartbeat 61 42
JapVowels 12 4
Libras 2 2
MotorImagery 64 64
PEMS-SF 963 132
PenDigits 2 2
RacketSports 6 6
SelfRegSCP2 7 7
SpArabicDigits 13 8
SWJump 4 4
UWaveGL 3 3
FD001 26 14
FD002 26 21
FD003 26 24



The channel reduction effect has multiple advantages: it can
give insights into which channels contain useful information
for the problem, leading to knowledge extraction. On edge
devices, where resources are valuable, it can free up incoming
signal channels. Finally, LightWaveS can act as an initial fast
channel filtering method that precedes another deep learning
solution, reducing the training data required.

LightWaveS can also benefit from, and is indeed orthogonal
to, recent works on time series features, since additional
descriptive features can be extracted from the scattering
coefficients, improving accuracy. Future work can include
research into such more advanced features, as well as an initial,
more informed selection of the wavelets, so that the wavelet
scattering network can extend to more paths. Finally, explicit,
informed combinations of different channels would add value
to the solution and is a worthwhile research path.
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