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Abstract—Virtual Sensors model the sensing operation of
physical sensors deployed in an area of interest by generating
sensory data with accuracy and precision close to those collected
by physical sensors. Their use in applications such as augmenting
the infrastructure of IoT facilities and test beds, monitoring and
calibrating the operation of physical sensors, and developing
Digital Twins of physical systems have led virtual sensors to
attract research attention. Machine learning provides methods
for modelling patterns in complex and big data generated by
IoT sensing devices, allowing to model the behaviour of these
devices. In this work, we investigate ML methods as means of
implementation for virtual sensors. In particular, we evaluate the
performance of six ML methods in terms of their effectiveness,
accuracy and precision in generating sensory data based on
data from physical sensors. In our study, we use a multi-modal
dataset comprising IoT sensory data for temperature, humidity
and illumination collected over a period of two years in an
office space at University of Geneva. Our results show that the
best performing model at predicting an output of a missing
sensor is the Random Forest method, achieving MAPE error
below 3%, 5% and 18% respectively for temperature, humidity
and illuminance. The worst performing models were the linear
radial basis function neural network and linear regression. In
future research, we plan to deploy the best performing models
natively on IoT devices, making use of tinyML and extreme edge
computing methods.

Index Terms—Internet of Things, Sensor, Virtual Sensor, Ma-
chine Learning

I. INTRODUCTION

Internet of Things (IoT) is a key enabling technology for

innovative paradigms in several market and industry verticals,

such as Industry 5.0, Smart Transportation, Digital Health

and Smart Cities. IoT systems link the physical and cyber

planes via sensing devices deployed en masse to monitor

their immediate environment with the aim of collecting sen-

sory data. In synergy with other enabling technologies, such

as Artificial Intelligence (AI) and Machine Learning (ML),

collected data are aggregated into complex, multi-modal and

spatio-temporally dense datasets [1] used to improve other

systems and processes. In the context of indoor environments,

improvements typically pertain on improving ambient condi-

tions and optimising the operation of corresponding systems,

such as indoor lighting and air conditioning. Bearing in mind

capital expenses and operational overheads, there is a need

for developing novel evaluation and trialling methods for

IoT systems that will consider limitations in the number of

available physical resources, and will provide the needed

agility and scalability [2].

A. Applications of virtual sensors.

Virtual sensors are used to address these challenges and

enable such methods. Virtual sensors are software-based de-

vices modelling in silica the sensing functionalities of physical

IoT devices. The aim is for these virtual sensors to generate

simulated sensory data with accuracy and precision as close

as possible to those of the physical sensors. This is achieved

by developing methods that consider sensory data collected by

physical devices actually deployed in the area of interest.

The advantages of using virtual sensors have promoted their

use in several settings. One of their first applications was in the

context of experimenting facilities and testbeds. Here, virtual

sensors are used to augment the physical infrastructure of a

testbed, thus facilitating the evaluation of developed solutions

in terms of scalability. Furthermore, virtual sensors enable the

concurrent execution of multiple experiments, thus allowing

to increase the utilisation rate of the facility while providing

a better experience to their users. A second application area

of virtual sensors is to monitor or calibrate the operation of
deployed physical sensors. Assuming that an accurate model

has been derived that is able to generate sensory data of the

same accuracy and precision as a set of physical sensing de-

vices deployed in an area of interest, virtual sensors operating

in tandem with physical ones can help identify deviations or

discrepancies in sensory data that may indicate a miscalibrated

or faulty device. This way preventive maintenance can take

place, either via software update or by replacing the physical

device.

Another important application of virtual sensors are Dig-
ital Twins. Digital Twins act as virtual representations of

physical systems. They are used as digital counterparts for

physical systems of varying scale and complexity, ranging

from individual industrial parts to complex systems of systems,

such as production lines and smart cities [3]. The operation

of a Digital Twin relies on data characterising the physical

system it virtualises. Initially, this data was provided in the

form of datasets compiled in non-dynamic ways; for example,

data from LiDAR scans providing the exact locations of

city infrastructure. However, the roll-out of IoT has enabled

the development of dynamic digital threads that allow the
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continuous flow of data between the physical system and its

Digital Twin. Virtual sensors are used in this context in order

to provision the deployment of additional sensing devices or in

order to develop hybrid cyber-physical components traversing

the physical and digital planes. Such methods are highly

relevant in state-of-the-art paradigms, such as Industry 5.0,

Smart Agriculture and Smart Circular Economy.

Virtual sensors are also used to improve the operation and

increase the resilience of deployed IoT systems. Assuming an

accurate sensing model characterising the monitored process

or phenomenon and a set of deployed physical devices, virtual

sensors can increase the coverage density of the area of interest

by inferring sensory measurements based on data collected by

the deployed physical sensors. In such configurations, virtual

sensors can also be used to “substitute” any malfunctioning

physical sensors until their actual replacement, thus main-

taining Quality of Service. Finally, virtual sensors can be

deployed in the case of cyber-attacks, acting as “honey pots”

to attract the attention of the adversary, effectively protecting

the physical devices.

B. Eliciting accurate models for virtual sensors.

Eliciting accurate sensing models is crucial for the success-

ful deployment of virtual sensors. A successful sensing model

should provide the mechanisms for generating sensory data

that match as closely as possible sensory data generated by

physical sensors deployed in the area of interest. One method

of eliciting such a model would be to formally characterise

the process or phenomenon under study; for instance, in the

case of indoor illuminance to use a rigorous Physics model

characterising light propagation in space. However, this would

not suffice. The virtual sensing model would also need to

consider the specificities of the area of interest; for instance,

the orientation and layout of the building, the locations of any

reflecting surfaces, the time of the day, season, etc. This is a

copious task, that is not easily transferable to different settings

or different modalities.

Machine Learning (ML) methods enable modelling and

synthesising large and complex data such as those generated

by sensory devices. ML can capture more complex underlying

relationships across a variety of variables which may be more

lacking in conventional modelling techniques. Models trained

on actual sensory data can replicate or extrapolate virtual

sensor data in form of virtual sensor systems, where multiple

virtual sensors can be automatically generated based on the

variable inputs specified by the user such as a state at a specific

time and location [1], [2]. More importantly, ML methods

provide a generic methodology that is highly transferable in

different settings and applicable on different use-case scenarios

considering various modalities.

Our Contribution. We investigate ML methods as means

of implementation for virtual sensors. In particular, we eval-

uate the performance of six methods in terms of their ef-

fectiveness, accuracy and precision. We focus on use case

scenarios where virtual sensors are employed to augment or

complement physical sensors monitoring ambient environment

conditions (illuminance, humidity and temperature) in indoor

environments. In this context, we make use of a rich dataset

comprising sensory readings spanning a 2-year period from

an IoT system deployed in an office space of University of

Geneva [2]. Our findings indicate that ensemble methods, such

as Random Forest, are the most appropriate ones for such use

case scenarios as they exhibit low mean absolute percentage

errors below 5% for temperature and humidity, and below 18%

for illuminance.

II. RELATED WORK

Monitoring of environmental data, in particular office con-

ditions data is of interest to companies for optimising working

conditions and to adhere to workplace health and safety

regulations which dictate them. Being able to monitor the

temperature, illumination and humidity can help optimise

costs in running the offices. The use of machine learning for

predicting room occupancy for reduction in electrical usage

has been demonstrated in Peng et al. [4]. Use of virtual IoT in

buildings is a relatively new application with initial research

performed by Li and Braun [5] with their implementation

of virtual refrigerant sensors for indoor air-conditioning. The

indoor illumination was studied by Park and Athienitis [6]

using linear correlation and by Drakoulelis et al. [1] using

virtual sensors and machine learning methods with good

results. The work by Sendorek et al. [7] outlines an IoT system

that is developed inside a virtual environment allowing for

reproduction of environmental conditions in the real world.

This virtual system allows for simulation of physical environ-

ments, devices and sensors and removes the dependence on

hardware, while still sustaining the sensor layers for testing.

Work by Mattera et al. [8] demonstrates virtual sensors for

monitoring faults of ventilation units. Their approach consisted

using machine learning methods based on linear regression,

support vector machines, artificial neural networks algorithms

to model the temperature, airflow and fan speed to create

virtual sensor data. By measuring the deviations between the

physical and the virtual sensors their estimates were able to

correctly determine anomalous behaviour. This project aims to

cover the gap in research Kundig et al. and Drakoulelis et al. by

extending the machine learning modelling for virtual testbeds

to not only the illumination but to humidity and temperature

as well over longer periods of time.

III. DESCRIPTION OF THE DATA SET

The dataset used for training and evaluating the learning

models for the virtual sensors was first published in [2]. The

UNIGE dataset consists of IoT sensory data generated from

the Syndesi testbed, which is a smart building IoT testbed

comprising various, IoT devices, sensors, and actuators. The

aim of the Syndesi testbed was to provision a smart en-

vironment consisting of sensor networks, electrical devices,

actuators, gateways and communication technologies [2]. The

updated version of the testbed was expanded to also include

crowdsourced resources (in the form of smartphones provided

by the end users), and its back-end architecture was redesigned
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as a System-as-a-Service with multiple entry points utilising

RESTful APIs for interoperability between testbed devices and

external services [9], [10].

Fig. 1. Floor Plan of the UNIGE Offices

The dataset comprises data of illumination, temperature and

humidity readings for 2 offices with 6 IoT sensing devices in

each with their x-y-z coordinates relative to a reference point

(Fig. 8). The data was collected over a period of two years with

approximately 20 minutes separation between measurements

for each sensor. The dataset consists of: 139,715 measurements

for office A humidity and temperature; 198,880 measurements

for office A illuminance; 181,658 measurements for Office B

humidity; 181,659 measurements for Office B temperature;

and 242,750 measurements for Office B illuminance [2].

IV. METHODOLOGY

In order to ensure the generality of the model predictions, a

k-fold cross-validation was performed. The data was divided

by office rooms and measurements, and then it was split into

6 folds; 1 for each sensor to estimate how accurately the

missing validation data can be predicted. The machine learning

methods that were evaluated are linear regression, K-Nearest

Neighbours, gradient boosting tree algorithms XGBoost and

LightGBM, decision-tree ensemble classifier Random Forest,

Support Vector Machines and a Neural Network with an RBF

layer. The performance of the machine learning algorithms was

evaluated using mean absolute error (MAE), mean square error

(MSE), root mean square error (RMSE) and mean absolute

percentage error (MAPE). The modelling has been performed

using scikit-learn, LightGBM, XGBoost and Tensorflow pack-

ages on python version 3.9.7.

A. Data Sampling

Cross validation (CV) was used to evaluate the predictive

validity of the derived models, and to partition the data

into multiple sets of differing training and test data. Those

partitioned datasets were then modelled and compared in

order to determine if the learning models are subject to over-

fitting, and how well they generalise from the data [11]. K-

fold cross validation is one of the typically used techniques

for model selection and estimating errors of classifiers. K-

Fold cross validation works by splitting the dataset into a k

number of folds where K-2 number of subsets of data are

used for training and the remaining two are used for model

selection and error estimation. Usually K values of 5, 10 or

20 are used in CV, with larger numbers allowing for greater

generalisation. However, this incurs a cost of requiring more

computational resources and the data being shuffled as the

process is repeated [12]. For this work, data was separated

by modality - measurements of humidity, temperature and

illuminance - and then by offices A and B. Then, one sensor

out of 6 was arbitrarily chosen to be removed, and the

remaining sensors were then used as training data. The models

were then evaluated based on their capability to predict the

output of the missing sensor.

B. Overview of Machine Learning Algorithms

The type of linear regression (LR) that was used in this

work was ordinary least squares regression. The scikit-learn

linear model uses coefficient fitting in order to produce the

smallest residual sum of square of the observations in the

datasets, where predictions are obtained as linear approxi-

mates. The linear regressor was used in its base form using

‘deprecated’ normalisation [13].

K-Nearest Neighbours (KNN) is a simple algorithm which

provides predictions based on the commonalities in the data.

The KNN works based on the principle that data is arranged in

space based on specific features. When making a prediction

based on new data the algorithm will provide a regression

output based on the proximity to modelled data points [14].

In this case in order to capture higher complexities in the data

a value of 25 neighbours was used.

Random Forest is an ensemble classifier based on decision

tree algorithms. A Random Forest can be defined as a classifier

that consists of a collection decision tree-classifiers where

each tree casts a unit vote for the most popular class at the

input [15]. The Random Forest implementation in Scikit-Learn

is based on the classification and regression tree algorithm

(CART). The parameters used for the Random Forest classifier

were 100 estimators, ‘gini’ criterion, minimum sample split of

2 and minimum sample leaf of 1.

The XGBoost is an open-source library for gradient boosted

trees which is available for supervised classification and re-

gression problems. It is based on CART decision tree en-

sembles allowing for multiple trees being used for predic-

tion. It improves further on the gradient boosting trees by

incorporating novel-sparsity awareness, effective cache-ware

block structure for out-of-core tree learning and parallel com-

putation. XGBoost implements exact greedy and approximate

algorithms to find the best split for the trees [16]. The XGB

regressor was used in its base form with 500 estimators.
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LightGBM is an open-source library for gradient boosted

trees like XGBoost, but it offers significant improvements in

terms of speed and memory usage. The LightGBM algorithm

uses two novel techniques, gradient-based one-side sampling

(GOSS) and exclusive feature bundling (EFB) to deal with the

larger amount of data. GOSS allows for discarding instances

with small data gradients where the training error is small, and

keeps all the large sample gradients and randomly samples

the instances with small gradients. To compensate for the data

distribution imbalance a constant multiplier is used for the

small gradients. This method allows GOSS to focus on the

under-trained instances. The EFB works by partitioning ex-

clusive features into a single feature by continuously scanning

data features reducing the training time [17]. The LightGBM

regressor was used in its base form with 500 estimators.

Support Vector Machines (SVM) are a form of a su-

pervised learning model that works based on splitting two

dimensional planes. The margin value C acts as a threshold,

which is used to remove the values around it. The prediction

ability of SVM relies on the type of kernel and its parameters

and the C threshold values. The support vector machine

regression attempts to reduce the error function value while

ignoring the values close to the threshold [1]. The SVR was

used in its base form with and ‘rbf’ kernel, C value of 1.0 and

epsilon of 0.1.

Neural networks (NN) are relying on the propagation of

data between weighted connections between a large number

of non-linear elements called neurons [18]. The radial-basis
function neural network (RBFNN) allows for transforma-

tion of the data in high-dimensional spaces for better linear

separation. The hidden layer of the RBFNN computes the

parameters by local approximation. The RBFNNs have the

ability to perform nonlinear fitting which can map nonlinear

patterns and are better at finding the global minimum when

compared to standard neural networks [19]. The architecture

of the neural network consisted of two units of Dense layer

with 256 neurons and ReLu activation, followed by an RBF

layer with 256 neurons and 0.5 gamma and Dropout layer with

dropout value of 0.5. Then the final layers consisted of a dense

layer of 256 neurons with an output layer of 1 neuron, both

with ReLU activation.

C. Overview of Evaluation Metrics

The following performance evaluation metrics were used

to evaluate the trained learning models. The mean absolute
error is a measure of the mean of absolute difference between

the predictions and the observed values with equal weight

for all calculated differences [20]. The mean absolute square
error is calculated by squaring the absolute difference between

predictions and the observed values and then calculating the

mean. The root mean square error is computed by calculating

the root of the square error [21]. Mean absolute percentage
error is obtained by averaging the ratios of the absolute

value of the difference between the predicted values and the

observation divided by the value of the observation [22].

V. PERFORMANCE EVALUATION

This section presents the evaluation results modelling the

virtual sensors. Figures 2 through 5 depict box-plots of the

errors for all three measurements at both offices, and figures

6 through 8 depict heatmaps of the extrapolated values inside

office B at a randomly selected date of 17 of March 2016.

A. Results on Humidity

Tables 1 and 2 show the results for the humidity predic-

tions in Offices A and B based on training data from each

corresponding room. The best performing machine learning

algorithm on average in both offices was Random Forest with

MAPE values below 5%. The worst performing model was

RBFNN with the highest levels of MAPE. The decision tree-

based models have achieved generally the best performance in

the humidity tests resulting overall with the smallest amounts

of accumulated errors.

TABLE I
OFFICE A HUMIDITY RESULTS

Model MAE MSE RMSE MAPE
LR 4.198027 29.125630 5.377169 13.509100

KNN 3.731337 22.426156 4.683310 12.357764
RF 1.163870 2.944406 1.623279 3.648200

XGB 1.233387 2.363988 1.515551 3.918226
LGBM 1.287947 2.787845 1.622912 4.068255
RBFNN 5.387845 45.742973 6.707297 17.467788

SVR 5.205127 42.809196 6.476049 16.93824

TABLE II
OFFICE B HUMIDITY RESULTS

Model MAE MSE RMSE MAPE
LR 5.767395 50.011194 7.070313 21.053756

KNN 3.698532 21.141502 4.590419 13.521766
RF 1.341465 2.599065 1.488219 4.700466

XGB 1.498381 3.361951 1.729482 5.271875
LGBM 1.622413 4.043927 1.924138 5.759617
RBFNN 5.984802 54.022779 7.343447 21.799352

SVR 5.797765 51.232564 7.15558 20.755587

B. Results on Temperature

Temperature modelling had two best performing models,

Random Forest and LGBM; Random Forest achieved a better

result in office B, whereas the LightGBM regressor performed

better at office A. The lowest scoring models were RBFNN

and SVR for both offices A and B. The overall error for

the models appears to be the lowest across models for the

temperature measurement resulting in MAPE’s below 10%.

C. Results on Illuminance

Predictions for illumination values display the highest ac-

cumulation in error across all metrics when compared to both

temperature and humidity. The algorithms with best predictive

capacities were KNN and LGBM for Office A and Random

Forest for Office B, attaining the highest results for all metrics.

The worst performing model was the linear regressor, with

the lowest scores across all metrics. The overall error across
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TABLE III
OFFICE A TEMPERATURE RESULTS

Model MAE MSE RMSE MAPE
LR 1.914671 6.426534 2.525238 6.805640

KNN 1.984283 6.387426 2.505278 7.190211
RF 0.681660 0.777214 0.841143 2.444063

XGB 0.564874 0.536739 0.683781 2.021858
LGBM 0.549936 0.513543 0.679965 1.967692
RBFNN 2.445299 9.819664 3.108505 8.790054

SVR 2.44263 9.79115 3.121935 8.746947

TABLE IV
OFFICE B TEMPERATURE RESULTS

Model MAE MSE RMSE MAPE
LR 2.366994 9.285936 3.032516 8.602563

KNN 1.624301 4.258292 2.028955 5.913842
RF 0.456958 0.591605 0.547920 1.623569

XGB 0.528572 0.681514 0.639628 1.887506
LGBM 0.567967 0.739195 0.695612 2.039303
RBFNN 2.818290 12.852602 3.464867 10.131078

SVR 2.414193 9.688536 3.082528 8.646956

predictions in MAPE varied between approximately 15% and

21% for Office A and 10% to 27% for Office B.

TABLE V
OFFICE A ILLUMINANCE RESULTS

Model MAE MSE RMSE MAPE
LR 35.710120 3764.413404 58.753953 21.725152

KNN 25.040180 2279.148613 45.840964 15.212611
RF 25.348496 2138.778611 45.149898 16.593426

XGB 26.648700 2216.546522 45.997883 17.042875
LGBM 26.686563 1950.823995 42.549761 17.074290
RBFNN 31.563508 3637.336493 58.135234 17.710077

SVR 29.311571 3079.040865 53.328982 17.205404

TABLE VI
OFFICE B ILLUMINANCE RESULTS

Model MAE MSE RMSE MAPE
LR 51.923726 7577.556759 84.139777 26.894763

KNN 30.242304 3431.465532 56.832702 14.769444
RF 19.119812 1180.212147 33.531889 10.376000

XGB 23.872665 1621.414400 39.209127 12.950563
LGBM 24.618307 1838.003028 41.878912 13.021734
RBFNN 42.769991 8926.324794 90.594729 16.573350

SVR 37.147957 6800.841724 78.547096 15.22319

VI. DISCUSSION

The best results across all evaluations were achieved by us-

ing decision-tree based algorithms. The highest results across

most measurements and office rooms were achieved by using

the Random Forest algorithm with MAPE’s below 5%, 3% and

18% for humidity, temperature and illuminance respectively.

On the other hand, the worst performing models were RBFNN

and Linear Regression, with the latter having the highest errors

in case of illuminance, whereas RBFNN had the highest errors

in temperature and humidity measurements. Most models have

performed better on the temperature and humidity estimations

Fig. 2. Mean Absolute Error Box Plot

Fig. 3. Mean Square Error Box Plot

when compared to illuminance, apart from RBFNN where it

performed better for illuminance.

With regard to illuminance, the results are compared to

previous work by Drakoulelis et al. [1]. In their study, neural

networks exhibited the lowest performance compared to SVM

and linear regression. The results obtained in this paper for

tree-based algorithms were better given that M5P algorithm

was excluded from the investigation due to low performance.

In Kundig et al. [2] the average RMSE and MAPE values

reported are comparable to the results achieved in this work,

with slightly lower levels of error. However, the lower levels

of error may be explained by a shorter interval of analysis of 3

months when compared to the two-year interval we consider,

thus creating a larger set of points which add to the errors

in predictions. In Syafrudin et al. [23], Random Forest was

used in combination with Density-Based Spatial Clustering of

Applications to model data related to fault detection demon-
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Fig. 4. Root Mean Square Error Box Plot

Fig. 5. Mean Absolute Percentage Error Box Plot

strating near 100% accuracy showing the robustness of the

algorithm in handling large amounts of data.

The difference in the results among the modalities consid-

ered, especially in the case of the illuminance, is that humidity

and temperature are less fluctuant and are more likely to have

more consistent change patterns over time. Illuminance in the

offices is not only controlled by seasonal weather patterns but

also the ambient and indoor lighting which adds randomness

to the data making it more difficult to predict.

VII. CONCLUSION AND FUTURE WORK

In this work, we investigated the ability of different machine

learning methods to predict the output measurements of virtual

sensors in indoor environments. This investigation is based on

the data supplied by the Syndesi 2.0 testbed of University

of Geneva comprising sensory data for temperature, humidity

and illuminance. The best results have been generally achieved

Fig. 6. Office B Humidity Heatmap

Fig. 7. Office B Temperature Heatmap

by the decision-tree based algorithms with Random Forest

demonstrating the best modelling performance, while the

worse results were obtained when using the RBFNN and linear

regression. The best results in accuracy have been achieved

for temperature and humidity, with MAPE results below 3%

and 5% for temperature and humidity, and below 17% for

illuminance.

In our future work will focus on further investigating the

parameters’ optimisation of the learning methods, in particular

for the ensemble tree based models that demonstrate the

most promising performance. We will also further investigate

techniques of embedded machine learning and Xtreme edge

computing in order to develop fully decentralised architectures

that greatly reduce their dependency on cloud-based back-end

infrastructure.
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Fig. 8. Office B Illuminance Heatmap
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