
GNN-based End-to-end Delay Prediction
in Software Defined Networking

by

Zhun Ge

Thesis submitted in partial

fulfillment of the requirements for the

Master of Applied Science

Electrical and Computer Engineering degree

School of Electrical Engineering and Computer Science

Faculty of Engineering

University of Ottawa

© Zhun Ge, Ottawa, Canada, 2022

Abstract

Nowadays, computer networks have always been complicated and difficult deploy-

ment for both the scientific and industry groups as they attempt to comprehend and

analyze network performance as well as design efficient procedures for their opera-

tion. In software-defined networking (SDN), predicting latency (delay) is essential for

enhancing performance, power consumption and resource utilization in meeting its

significant latency requirements.

In this thesis, we present a graph-based formulation of Abilene Network and other

topologies and apply a Graph Neural Network (GNN)-based model, Spatial-Temporal

Graph Convolutional Network (STGCN), to predict end-to-end packet delay on this

formulation. It is found that this model outperforms the average baseline predictor

in predicting packet delay since the STGCN framework captures both spatial and

temporal dimensions of the data.

The evaluation is using STGCN to compare with other machine learning meth-

ods: Random Forest (RF) and Neural Network (NN). In the most complex network

traffic condition with high traffic intensity, varying capacities and propagation delay,

STGCN is 68.5% and 78.7% better than RF and NN, respectively.

More datasets are in used to verify and evaluate the performance of STGCN: 15

nodes network with various distributions and different network traffic distributions.

More Machine Learning (ML) methods with lager network topologies are used for

performance evaluation. STGCN outperforms the baseline methodology and other

three techniques: Multiple Linear Regression (MLR), Extreme Gradient Boosting

(XGBOOST) and RF in 15-node scale-free, 24-node GEANT2, and 50-node networks.

Notably, our GNN-based methodology can achieve 97.0%, 95.9%, 96.1%, and 63.1%

less root mean square error (RMSE) than the baseline predictor, MLR, XGBOOST

and RF, respectively.

All the experiments show that STGCN has good prediction performance with

small and stable prediction errors. This thesis illustrates the feasibility and benefits

of a GNN approach in predicting end-to-end delay in software-defined networks.

ii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor,

Prof. Amiya Nayak, for providing me with guidance, advice, and support throughout

my master’s study. Also, I am grateful to my senior colleague, Jiacheng Hou, for her

valuable advice and support during my thesis work. Finally, I would like to thank

my family, who continuously support me both physically and mentally.

iii

Contents

1 Introduction 1

1.1 Motivation and Objective . 1

1.2 Main Contribution . 3

1.3 Publication . 4

1.4 Thesis Organization . 4

2 Background 5

2.1 Neural Network . 5

2.1.1 Supervised Neural Network Models 6

2.2 Decision Tree . 7

2.2.1 Random Forest . 8

2.2.2 eXtreme Gradient Boosting 9

2.3 Recurrent Neural Network . 9

2.4 Long Short-Term Memory . 11

2.5 Graph Neural Network . 12

2.5.1 Graph Convolutional Networks 15

2.5.2 Message Passing Neural Networks 17

2.6 Software-Defined Networking . 17

2.6.1 Knowledge-Defined Networking 20

2.7 Summary . 21

3 Related Works 22

3.1 Traffic Prediction in SDN with Machine Learning 23

3.1.1 Gated Recurrent Unit Framework for 5G network 23

3.1.2 Traffic Classification with Deep Learning Models 24

3.1.3 Deep Q-Network and Traffic Prediction based Routing Opti-

mization . 26

3.1.4 Traffic Classification in SDN-IoT with Machine Learning methods 28

3.1.5 Traffic Prediction in SDNs with LSTM 28

iv

3.1.6 Delay Forecasting in SDN-IoT with NARX enabled RNN . . . 29

3.1.7 End-to-end Delay Prediction in SDNs with NN and RF 30

3.1.8 Traffic Predictors in SDNs with GNN 30

3.2 Spatio-Temporal Graph Convolutional Networks 31

3.3 Summary . 33

4 The Revised Model for SDN Delay Prediction 34

4.1 Delay Prediction Graphs . 36

4.2 Temporal Convolution with Gated Liner Unit 36

4.3 Convolution in the Spatial Dimension 37

4.4 Loss function . 38

4.5 STGCN Approximation and Model Setting 39

4.6 Summary . 39

5 Experiments and Results 40

5.1 Datasets . 40

5.1.1 Ring Network Dataset . 41

5.1.2 Star Network Dataset . 42

5.1.3 Scale-Free Network Dataset 43

5.1.4 Dataset with Different Traffic Distributions 44

5.1.5 Abilene Network Dataset . 44

5.1.6 GEANT2 and 50-node Networks Dataset 46

5.2 Data Preprocessing . 46

5.3 Results and Comparison . 50

5.3.1 Simulation Setup . 50

5.3.2 Performance Metrics . 51

5.3.3 Results for 15-Node Networks 52

5.3.4 Results and Comparison for Abilene Network 54

5.3.5 Results and Comparison for GEANT2 and 50-node Networks . 60

5.4 Summary . 64

6 Conclusion and Future Work 65

6.1 Conclusion . 65

6.2 Future Work . 66

v

List of Tables

5.1 MAE, RMSE and WMAPE for 15-Node Ring Network 52

5.2 MAE, RMSE and WMAPE for 15-Node Scale-Free Network 52

5.3 MAE, RMSE and WMAPE for Abilene Network 55

5.4 RMSE of baseline, RF, NN and GNN-based approaches in three traffic

intensities of the TO scenario . 57

5.5 RMSE of baseline, RF, NN, and GNN-based approaches in three traffic

intensities of the TnC scenario . 58

5.6 MAE and WMAPE of baseline and GNN-based approaches in three

traffic intensities of TO, TnC and TnCwD scenarios 60

5.7 RMSE of baseline, RF, MLR, XGBOOST and GNN-based approaches

in three network topologies . 61

5.8 MAE and WMAPE of baseline and GNN-based approaches in three

traffic topologies . 63

vi

List of Figures

2.1 Structure of a Basic Neural Network with One Neuron 6

2.2 A Simple Neural Network with Layers[20] 7

2.3 Structure of a typical Recurrent Neural Network. 10

2.4 Long Short-Term Memory Cell[9] . 11

2.5 Basics of Deep Learning for graphs [27] 13

2.6 Neural Networks with layers [27] . 14

2.7 Graph Convolutional Network [22] 15

2.8 Graph Convolutional Network Node Rule [21] 16

2.9 SDN Architecture . 18

2.10 KDN operational loop [29] . 20

3.1 Network topology of the SDN testbed [7] 25

3.2 DTPRO Architecture [6] . 26

3.3 Graph-structured traffic data [48] . 31

3.4 STGCN for Traffic Prediction [48] 32

4.1 STGCN Architecture . 35

5.1 Scale-Free Network Topology Sample 43

5.2 Abilene topology [35] . 44

5.3 GEANT2 Topology . 46

5.4 50-node Topology . 47

5.5 MAE, RMSE and WMAPE for 15-Node Star Network 53

5.6 MAE, RMSE and WMAPE for 15-Node Networks with Distributions 53

5.7 MAE, RMSE and WMAPE for Abilene Network in TnCwD scenario 56

5.8 TnCwD RMSE with three intensities 59

5.9 Various ML methods RMSE with three networks 62

vii

Acronyms

ARIMA Auto Regressive Integrated Moving Average.

CNN Convolutional Neural Network.

DCGRU Diffusion Convolutional Gated Recurrent.

DL Deep Learning.

DQN Deep Q-Network.

DT Decision Tree.

DTPRO Deep Q-Network and Traffic Prediction based Routing Optimization.

GCN Graph Convolutional Network.

GGAE Gated Graph Auto Encoder Network.

GNN Graph Neural Network.

GPU Graphics Processing Unit.

GRU Gated Recurrent Unit.

HA Historical Average.

KDN Knowledge-Defined Networking.

KP Knowledge Plane.

KPI Key Performance Indicators.

LR linear regression.

LSTM Long Short-Term Memory.

viii

MAE Mean Absolute Error.

ML Machine Learning.

MLP Multi-layered Perceptron.

MPNN Message Passing Neural Networks.

MRE Mean Relative Error.

MSE Mean Squared Error.

NB Naive Bayes.

NC Nearest Centroid.

NN Neural Network.

NOS Networking Operating System.

OD Origin-Destination.

OVS open virtual switch.

QoE Quality of Experience.

QoS Quality of Service.

RF Random Fores.

RMSE Root Mean Square Error.

RNN Recurrent Neural Network.

SAE Stacked Auto-Encoder.

SDN Software Defined Networking.

SFS Sequential Feature Selection.

SHAP Shapley additive explanation.

SPF shortest path first.

STGCN Spatial-Temporal Graph Convolutional Network.

SVM Support Vector Machine.

ix

TnC Traffic and Capacity.

TnCwD Traffic and Capacity with Delays.

TO Traffic Only.

TPU Tensor Processing Unit.

WMAPE Weighted Mean Absolute Percentage Error.

XGBoost eXtreme Gradient Boosting.

x

Chapter 1

Introduction

1.1 Motivation and Objective

A Software Defined Networking (SDN) has the unique ability to manage networks

dynamically. Due to its programmability and centralized control, the SDN has the

potential to solve many complex design problems. As a result of the capabilities of the

SDN (e.g., logically centralized control, global view of the network, software-based

traffic analysis, and dynamic updating of forwarding rules), it becomes easier to apply

machine learning techniques to SDN.

More specifically, SDN switches are configured by the logically centralized con-

troller and have just the data plane that simplifies the packet forwarding process in

the network. In the switch, the control plane is decoupled from the data plane, which

makes the control plane logically centralized, with a network-wide view of packet

forwarding based on the end-to-end path. An SDN switch, however, is susceptible

to packet delay and loss, affecting network performance such as Quality of Experi-

ence (QoE) significantly. The SDN has been the subject of a tremendous amount

of research in recent years, especially with the development of IoT devices and the

resulting possibility of using the flexibility of SDN to manage traffic and improve

computer communications. The prediction of traffic conditions is crucial in network

1

2

operations and management for today’s increasingly complex and diverse networks.

SDN traffic prediction is crucial to network management and planning, as future traf-

fic can be forecasted in advance, which can lead to improved network performance.

SDN network traffic exhibits correlation and self-similarity characteristics, and traf-

fic prediction can be used to increase network performance. Since available network

bandwidth is limited, traffic classification allows us to make the most efficient use of

it, and Internet service providers can manage the resources by prioritizing packets.

The Graph Neural Network (GNN) [46] is an emerging field of deep learning.

The GNNs recognize the dependence of graphs using message passing between nodes

through deep learning. They are neural networks that operate within the graph

domain. With a strong graph representation learning ability, GNN has been seen

to demonstrate impressive results in multiple graph data-related tasks in many ap-

plications. While The prediction of QoS parameters can be made quite easily by

traditional Machine Learning (ML) techniques, we believe GNNs are quite suitable

for this purpose and should be investigated. The representation of graph data here

can be either at the node level or at the entire network level, which can make node

level or network level prediction quite easy.

This thesis applies GNN to predict end-to-end delays in SDN. The SDN controller

has a global view of the network, and if it knows in advance the delay from one node to

another, it can improve the routing strategy of the network. Our goal is to use GNN

to predict end-to-end delay accurately. In this case, the GNN can be deployed in an

SDN controller. The SDN controller has prior knowledge of the network topology and,

therefore, the node adjacency matrix information is available. In addition, the SDN

controller knows the end-to-end delay from one node to another in each timestamp.

During the delay inference phase, the SDN controller can feed both the adjacency

matrix and packet delays of previous timestamps to the GNN. Once the GNN predicts

delays of the entire network at future timestamps, the SDN controller can allocate

traffic more efficiently based on the prediction. For example, the SDN controller can

3

pass forwarding information to the switches via the Openflow protocol to distribute

traffic from high-intensity to low-intensity switches in advance.

1.2 Main Contribution

In this thesis, we use the GNN framework to predict end-to-end delays with SDN

for the Abilene and other network topologies. The contributions of this thesis are as

follows:

• We formulate a line graph of the network and use network links as nodes and

routers as edges.

• We apply the GNN-based model with the formulation and evaluate the perfor-

mance on various datasets.

• We apply the model with the benchmark dataset and compare it with other

machine learning (ML) models, Multiple Linear Regression (MLR), Extreme

Gradient Boosting (XGBOOST), Random Forest (RF), and Neural Network

(NN).

We find that the GNN-based approach outperforms all ML models significantly

by as much as 96.1% in the most complex network scenario. After testing more

datasets with different typologies and distributions, our results demonstrate the need

to include network topology into prediction models explicitly and offer the viable

approach of utilizing GNNs in network traffic delay prediction.

4

1.3 Publication

Zhun Ge, Jiacheng Hou, Amiya Nayak. GNN-based End-to-end Delay Prediction in

Software Defined Networking. In Proc. of the 18th Annual International Conference

on Distributed Computing in Sensor Systems (DCOSS) Workshop (REFRESH), June

2022.

1.4 Thesis Organization

The remainder of the thesis is organized as follows.

• Chapter 2 reviews concepts of Neural Network, Decision Tree, Random Forest,

Recurrent Neural Network, Graph Convolutional Networks, Message Passing

Neural Networks, Long Short-Term Memory, and Software-Defined Networking.

• Chapter 3 reviews related work on SDN prediction, including machine learning

and deep learning approaches such as Gated Recurrent Unit Framework, Deep

Q-Network, LSTM, NARX enabled RNN, NN, RF and other GNN approaches.

The chapter also covers the review for STGCN.

• Chapter 4 discusses the SDN delay prediction STGCN model in detail and

introduces our modified model training settings.

• Chapter 5 describes the 15-node, Abilene, GEANT2 and 50-node network datasets,

the experiment setup, and the experimental results are also presented and an-

alyzed in this chapter.

• Chapter 6 concludes this thesis and proposes several potential future works.

Chapter 2

Background

2.1 Neural Network

Neural Network is a machine learning technique that uses artificial neurons to simulate

the way how biological neurons in the human brain work. The basic element of each

neural network is the artificial neuron which consists of three components: weights

and bias, summation function, and activation function.

As shown in Figure 2.1, each neuron is embedded with one summation function

and one activation function; the summation function is usually a linear regression

function with weight and bias, while the activation function provides non-linearity

transformation for the summation output. Suppose we have n attributes labeled for

sample i, where each attribute is labeled as xi, and the coefficient for each xi is wi,

and for each neuron we would assign a bias value b. The summation function for each

neuron is defined as the following:

yi =
∑
i

wixi + bias (2.1)

A neural network is made up of layers of nodes that are linked together. Each

5

6

𝑥1

𝑥2

𝑥𝑛

.

.

.

𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑤1

𝑤2

𝑤𝑛

𝑂𝑢𝑡𝑝𝑢𝑡
𝑦𝑖

𝑏𝑖𝑎𝑠

Figure 2.1: Structure of a Basic Neural Network with One Neuron

node is a set of algorithms, which is akin to multiple linear regression. The signal

obtained by multiple linear regression is fed into a nonlinear activation function via

the training algorithm.

In Figure 2.2, it shows a sample of a simple neural network. In this multi-layered

perceptron (MLP), perceptrons are arranged in interconnected layers. The input layer

is responsible for collecting input patterns. The output layer contains classifications

or output signals that may be mapped to by input patterns. In the middle, there is

a hidden layer. Hidden layers adjust the input weightings until the neural network’s

margin of error is as little as possible by experiments.

2.1.1 Supervised Neural Network Models

To create neural networks, Scikit-Learn[39], a popular Python AI toolkit, can be used.

Using a data set to train the supervised learning algorithm, MLP can learn a function

f(X) : Rm− > Ro, where m represents the number of dimensions for input and o

shows the number of dimensions for output.

7

Figure 2.2: A Simple Neural Network with Layers[20]

Assuming a set with various features and one output. The Multiple Linear Re-

gression(MLP) can learn a non-linear function for classification or regression approx-

imately. Compared to logistic regression, it can find out the hidden layers between

input features and the output. Here is the picture 2.2: input layer contains the

features, and there is one non-linear layer in the middle.

The benefits of MLP are obvious; it is capable of learning non-linear models as well

as real-time learning models. However, there are some drawbacks: MLP is sensitive to

feature scaling and requires a large number of hyperparameters, such as the number

of hidden neurons, layers, and iterations.

2.2 Decision Tree

Decision Tree is one alternative classifier based on tree structures. In general, a

decision tree consists of one root node, multiple internal nodes, and multiple leaf

nodes. The root node is the original input dataset along the tree path with different

8

internal nodes, each node will split the dataset into smaller datasets based on the

chosen splitting condition, and each leaf node is the final class result for a certain set

of samples [15].

To achieve better performance, the decision tree will choose among all possible

features to be the best splitting feature that can give the best splitting results. The

criterion used to choose among these features can define different types of decision

trees. The three commonly used criteria include Gini Index, Information Gain, and

Information Grain Ratio [32].

2.2.1 Random Forest

A decision tree is not a strong classifier in some cases; many researchers proposed to

apply ensemble methods by generating multiple classifiers instead of a single classifier

to improve model accuracy. Ensemble methods including boosting, bagging, voting,

and stacking. Random forest is one ensemble algorithm using bagging with a decision

tree as the base model.

The concept of bagging is to generate multiple data sets from the original data

sets by random sampling, and each generated data set is independently used to train

a classifier [37]. All the classifiers will act like one voter, and the majority vote will

be used as the final result for a certain input data. Random forest algorithm is one

classification algorithm that adopts the idea of bagging and extends its concept to not

only sample bagging but also features bagging. To apply a random forest algorithm,

different random subsets of features are generated for each splitting step. Thus, the

effect of some strong features would be eliminated.

There are three main hyper-parameters node size, the number of trees, and the

number of features sampled. After setting these three parameters, we can start the

training of the decision trees. For classification tasks, the output of the random

forest is the class selected by most trees. For regression tasks, the mean or average

9

prediction of the individual trees is returned.

2.2.2 eXtreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) [8] is a scalable and distributed gradient-

boosted machine learning framework under decision trees. It is the top machine

learning package for regression, classification, and ranking tasks, and it supports

parallel tree boosting.

To understand XGBoost, you must first understand the machine learning ideas and

methods on which it is based: supervised machine learning, decision trees, ensemble

learning, and gradient boosting.

Supervised machine learning use algorithms to train a model to detect patterns

in a dataset containing labels and features and then employs the trained model to

predict the labels on the elements of a new dataset.

Decision trees generate a model that predicts the label by analyzing true/false

feature questions and calculating the least number of questions required to assess the

probability of reaching a good decision. Decision trees can predict a category or a

constant numeric value using classification or regression.

2.3 Recurrent Neural Network

Although the standard feed-forward neural network is a sophisticated deep learning

technology that performs well in many domains, it cannot use prior data. Recurrent

Neural Network (RNN) is a type of neural network that is derived from the feed-

forward neural network [42] has the ability to reuse the saving information at the

time of processing input values.

Figure 2.3 shows the typical structure of RNN model, with the input sequence,

output sequence, and the hidden layers at time t are represented by xt, ot, and ht

10

xt-1

ht-1

xt

ht

xt+1

ht+1...

ot-1 ot

...

ot+1

Figure 2.3: Structure of a typical Recurrent Neural Network.

respectively. At time t, the current hidden layers state ht is calculated based on the

current input sequence xt and the last hidden layers ht−1. After the calculation of ht

is finished, the output at the current time step ot is generated and the hidden layers

state ht will get involved in the calculation at the next time step t + 1. Unlike the

normal neural network, where the neurons in the same layer of the hidden layers are

independent of each other, RNN models usually allow the data to flow within the

same layer. In other words, connections between neurons in the same layers or even

self-connections are allowed generally allowed in the RNN-based model.

A major advantage of RNN models is that they are able to utilize the information

from previous input and apply it at the current time. However, a major drawback

of the vanilla RNN is the vanishing and exploding gradients [3]. The vanishing and

exploding gradients are usually caused by the multiplication of multiple derivatives

in the training process. Although there are several approaches [38] existing to ad-

dress the vanishing and exploding gradients problem, in practice, it is still difficult for

vanilla RNN to memorize and learn the features from long distance, which is described

as a long-term dependencies problem. In order to deal with the long-term dependen-

cies problem, many researchers have proposed multiple variants of RNN, such as the

11

Figure 2.4: Long Short-Term Memory Cell[9]

Long Short-Term Memory (LSTM) [19], the Gated Recurrent Unit (GRU) [11], and

the Clockwork RNN (CW-RNN) [23].

2.4 Long Short-Term Memory

The Long Short-Term Memory (LSTM) [19] is a famous variant of RNN. The main

idea of the LSTM is the introduction of gate units, which are the structures that

can determine whether to keep or discard the current information. A typical LSTM

network consists of multiple memory cells, and each memory cell is formed by an

input gate, a forget gate, and an output gate.

In LSTM, at time t, the state of a memory cell ct is calculated based on the input

xt and the last hidden state ht−1. The state of input gate, output gate, and forget

gate at time t are represented as it, ot, ft, respectively. Here is a sample for LSTM

cell in Figure 2.4.

Therefore, by using the σ to denote the sigmoid function; the operator ⊙ to

denote the element-wise multiplication, the LSTM transition functions are defined as

12

following[50]:

it = σ(Wi · [ht−1, xt] + bi)

ft = σ(Wf · [ht−1, xt] + bf)

qt = tanh(Wq · [ht−1, xt] + bq)

ot = σ(Wo · [ht−1, xt] + bo)

ct = ft ⊙ ct−1 + it ⊙ qt

ht = ot ⊙ tanh(ct)

(2.2)

When the output of a gate unit is close to 1, the information is more likely to be

memorized. On the contrary, a returning value close to 0 from a gate unit means that

the information should not be kept. The input gate it is the gate unit that controls

how much information should be stored at this time. The forget gate ft is responsible

for determining to what extent the memory from the last time ct−1 should be kept at

time t. The output gate ot at time t is designed to be used in the computation of the

output (hidden state) based on the memory cell state.

2.5 Graph Neural Network

A graph neural network (GNN) is a class of neural networks for processing data

best represented by graph data structures. It is a very effective and easy way to do

node-level, edge-level, and graph-level prediction tasks.

The most fundamental part of GNN is a Graph. In computer science, a graph is

a data structure consisting of two components: nodes (vertices) and edges. A graph

G can be defined as G = (V, E), where V is the set of nodes, and E are the edges

between them.

13

Figure 2.5: Basics of Deep Learning for graphs [27]

To represent graphs, we can use adjacency matrix:

Wi,j =


1, i and j share a link,

0, otherwise

(2.3)

where Wi,j is the edge value from node i to j. If a graph has n nodes, adjacency

matrix has a dimension of (n × n).

In GNN, our goal is to map nodes, so that similarity in the embedding space

approximates similarity in the network. Let’s define u and v as two nodes in a graph;

xu and xv are two feature vectors. Now we’ll define the encoder function Enc(u) and

Enc(v), which convert the feature vectors to zu and zv. The whole process is shown

in Figure 2.5 from [27].

To find the encoder function, we need locality (local network neighborhoods) in-

formation, aggregate information, and stacking multiple layers (computation) infor-

mation. Locality information can be achieved by using a computational graph. After

that, we start aggregating by using neural networks.

In Figure 2.6 from [27], Neural Networks are presented in light and dark grey

boxes. The required aggregations should be order-invariant, like sum, average, and

14

Figure 2.6: Neural Networks with layers [27]

maximum, as the result of permutation-invariant functions. Aggregations can be done

prior to this attribute.

Based on the forward propagation rule, the information is transferred from layer

to layer. For example, in Figure 2.6, every node has a feature vector. In Layer-0, the

inputs are three groups of feature vectors, and the box will take the three groups of

feature vectors, aggregate them, and then pass them on to the next layer.

After performing forward propagation in the computational graph layer by layer,

we can train the model by defining a loss function on the embeddingS. There are two

types of training:

• Unsupervised Training:

Use simply the graph structure; nodes with comparable embeddings have similar

embeddings. An unsupervised loss function can be a loss based on graph node

proximity or random walks.

• Supervised Training:

Train model for a supervised task such as node classification, normal or anoma-

lous node.

The loss function measures the difference between the predicted output and the

outcome generated by the machine learning model. We can obtain the gradients that

15

Figure 2.7: Graph Convolutional Network [22]

are utilized to update the weights and parameters from the loss function to get better

training performance.

2.5.1 Graph Convolutional Networks

Graph Convolutional Networks (GCN)[22] is one of the most cited papers in the GNN

literature and the most commonly used architecture in real-life applications. Because

it can work directly on graphs and take advantage of their structural information,

it is able to solve the problem of classifying nodes in a graph, where labels are only

available for a small subset of nodes (semi-supervised learning). Figure 2.7 from [22]

shows the semi-supervised classification with GCN.

There are some important definitions and equations in the GCN. First of all, it

enforces self-connections by adding the identity matrix I to the adjacency matrix A.

Ã = A+ I (2.4)

Then, using the symmetric normalization of the Laplacian, we solve exploding/vanishing

gradient with re-normalization. If H is the feature matrix, D is the degree matrix

16

Figure 2.8: Graph Convolutional Network Node Rule [21]

of the graph and W the trainable weight matrix, the update rule for the GCN layer

becomes the following:

H(l+1) = σ(D−1/2ÃD−1/2H(l)W (l)) (2.5)

From a node-wise perspective, the update rule can be written as:

h
(l)
i = σ(

∑
i∈Nj

cijWhj) (2.6)

where cij =
1√

|Ni||Nj |
, and Ni and Nj are the sizes of the nodes’ neighbourhoods. The

visualization of nodes relationship is shown in Figure 2.8 from [21].

The loss function used in GCN is simply calculated by the cross-entropy error over

all labeled examples, where Yl is the set of node indices that have labels.

L = −
∑
l∈Yj

hi∑
i=1

Ylilnhli (2.7)

17

2.5.2 Message Passing Neural Networks

Message Passing Neural Networks [16] utilize the notion of messages in GNNs. A

message mij can be sent across edges i and j and is computed using a message

function fe. fe is generally a small MLP and takes into consideration both the nodes’

and edge’s features. Mathematically, for two nodes i and j with edge features eij, we

have the following:

mij = fe(hi, hj, eij) (2.8)

After that, all messages arriving at each node are aggregated using a permutation-

invariant function, such as summation. The existing node features via fv (another

MLP) is then used to integrate the aggregated representation with the current node

characteristics. These yielding an updated node feature vector by the following equa-

tion:

hi = fv(hi,
∑
j∈Ni

mji) (2.9)

MPNN is a strong framework and one of the most general-purpose GNN designs.

However, it occasionally experiences scaling challenges. As a result, MPNN must

store and handle edge messages in addition to node characteristics. Because of that,

it is only useful for small-sized graphs in reality.

2.6 Software-Defined Networking

SDN technology is a network management strategy that enables dynamic, program-

matically efficient network design in order to increase network performance and mon-

18

Figure 2.9: SDN Architecture

itoring, making it more similar to cloud computing than traditional network adminis-

tration [4]. SDN is intended to address traditional networks’ static design. SDN tries

to consolidate network intelligence in a single network component by decoupling net-

work packet forwarding (data plane) from routing (control plane). The control plane

is made up of one or more controllers, which are considered the brain of the SDN net-

work and contain all of the intelligence. Figure 2.9 shows a basic SDN architecture.

SDN separates the control and data planes. In SDN, network resources are gov-

erned by a logically centralized controller that also serves as the Networking Operating

System (NOS). The network can be dynamically programmed by the SDN controller.

Furthermore, by monitoring and collecting real-time network condition and configura-

tion data, as well as packet and flow-granularity information, the centralized controller

gets a global picture of the network. For the following reasons, using machine learning

techniques to SDN is appropriate and efficient[47]:

19

• Recent advancements in computer technology like the Graphics Processing Unit

(GPU) and Tensor Processing Unit (TPU) present an excellent chance to use

promising machine learning approaches (e.g., deep neural networks) in the net-

work area.

• The key to data-driven machine learning algorithms is datasets. The centralized

SDN controller provides a global network perspective and can gather diverse

network data, allowing machine learning methods to be applied more easily.

• Machine learning approaches may provide intelligence to the SDN controller

by conducting data analysis, network optimization, and automated provision of

network services based on real-time and historical network data.

• Because SDN is programmable, optimum network solutions (e.g., configuration

and resource allocation) generated by machine learning algorithms may be per-

formed in real-time on the network.

SDN also has certain challenges. One major challenge is the single point of failure.

Since SDN uses the concept of centralization, the moment the controller, which is the

brain of the network, goes down, the whole network goes down. The issue of a single

point of failure is also a major security risk. Attackers can mainly focus on taking

down the controller in order to bring the whole network down. Another challenge

is scalability. As the network size increases, one controller will not be able to effec-

tively handle the network responsibilities. More controllers are added as the network

expands. Adding more controllers also raises the challenge of where to place the

controllers. This is popularly termed the controller placement problem. Several ap-

proaches to dealing with the controller placement problem have been presented in [25]

and [14]. Security in SDN networks has also garnered a lot of research contributions

in the past years.

20

Figure 2.10: KDN operational loop [29]

2.6.1 Knowledge-Defined Networking

The authors in [29] combine the Knowledge Plane with SDN and refer to this new

paradigm as Knowledge-Defined Networking (KDN). The Knowledge Plane (KP), as

originally proposed by Clark [12], is redefined in this paper under the terms of SDN

as follows: the heart of the knowledge plane is its ability to integrate behavioral models

and reasoning processes oriented to decision making into an SDN network.

The KP in the KDN paradigm uses the control and management planes to gain

a comprehensive view and control over the network. It is in charge of learning the

network’s behavior and, in certain situations, autonomously operating the network

accordingly. Fundamentally, the KP analyses the network analytics gathered by the

management plane, converts them into knowledge through ML and then uses that

information to make choices (either automatically or through human intervention).

The overall loop is shown in Figure 2.10.

From the paradigm of the KDN, we can find that SDN, network analytics and

21

Machine Learning can ultimately provide automated network control to improve and

meet the network requirement. It also provide the deployment sample for SDN with

machine learning and deep learning.

2.7 Summary

In this chapter, we introduced some background knowledge for our research, includ-

ing concepts from deep learning, machine Learning, and software-defined networking

where we predict the end-to-end delay.

In the following Chapter 3, we will introduce related SDN performance and effi-

ciency improvements with machine learning methods in details.

Chapter 3

Related Works

For delay-sensitive applications, the measurement of Quality of Service (QoS) param-

eters such as delay, jitter, and throughput is fundamental to meeting QoS require-

ments. These network-centric metrics are often used to explain network performance

by network operators. Therefore, accurate delay estimation is critical to meeting the

QoS requirements of delay-sensitive applications. With SDN, statistics can be col-

lected from switches on both a flow-by-flow and port-by-port basis. The prediction

of QoS parameters can be made quite easily by traditional Machine Learning (ML)

techniques. From the perspectives of traffic classification and QoS/QoE prediction,

the authors in [47] discuss how machine learning algorithms have been applied to

SDNs. They mentioned several capabilities of SDN that make it easier to apply ma-

chine learning techniques, including logically centralized control, a global view of the

network, software-based traffic analysis, and dynamic updating of forwarding rules.

Also, in [30], the authors have proposed a Neural Networks(NNs) based delay

estimator. They have experimented with various network parameters, such as topol-

ogy, size, traffic intensity, and routing policies. They have proved that NNs could

accurately model the average end-to-end delay of SDN.

The chapter is organized as follows. Section 3.1 reviews several traffic predictions

22

23

in SDN based on typical machine learning algorithms and GNN methods. Section 3.2

introduces two cases using STGCN in traffic prediction.

3.1 Traffic Prediction in SDN with Machine Learn-

ing

The authors in [31] have reviewed some existing Machine Learning (ML), and Deep

Learning (DL) approaches for traffic classification and traffic prediction in the SDN

context. From their article, we find there are lots of traditional machine learning algo-

rithms like Nearest Centroid (NC), Naive Bayes (NB), Decision Tree (DT), Support

Vector Machine (SVM), etc. are in use for SDN prediction problems.

3.1.1 Gated Recurrent Unit Framework for 5G network

The authors in [44] have proposed a traffic prediction and forecasting model for a

5G network in an SDN environment using Gated Recurrent Unit (GRU). GRU is

a recurrent neural network gating method introduced by [10]. The GRU functions

similarly to a long short-term memory (LSTM) with a forget gate but with fewer

parameters because it lacks an output gate.

Fusion learning is used between the data plane and control plane of the SDN

environment is able to provide the prediction model with the exchange of model

parameters of the SDN client models and its data distribution with a single com-

munication. In the paper, they use fusion learning for long-term traffic prediction

and build their forecasting model with diffusion convolution operations in GRU for

capturing spatial and temporal dependencies of the features of the network traffic.

As time-series GRU captures only the temporal dependency, to handle dynamics of

the network traffic and efficient capture of the traffic pattern, the spatial dependency

must be captured. The diffusion convolution process contained in the GRU captures

24

both spatial and temporal dependency of encoder-decoder architectural properties.

The stochastic gradient-based planned sampling increases the prediction model’s per-

formance with the optimal decay rate.

Their proposal for the framework is tested with the simulated data on Abilene

network topology with the RYU SDN controller. The experimental results exhibit

improved accuracy in both local and global models of 87%—94%. Besides that, the

authors compare LSTM predicted results in the same scenarios and conclude the

Diffusion Convolutional Gated Recurrent Unit (DCGRU) has the best performance

of all three methods.

3.1.2 Traffic Classification with Deep Learning Models

In [7], the authors have proposed an application-based offline and online traffic clas-

sification, with deep learning models, such as Convolutional Neural Network (CNN),

Multilayer Perceptron (MLP), and Stacked Auto-Encoder (SAE), over a proposed

SDN network testbed, shown in Figure 3.1. They use flow statistics data combined

with Packet-in messages as the learning features of the deep learning models designed

in the SDN controller. The SDN controller conducts the application-based traffic

classification for each flow by establishing the match fields of the flow.

They design the deep learning models resigned in the SDN controller. The SDN

controller establishes the match fields of the flow entry and sends them to the open

virtual switch (OVS). It also extracts traffic statistics data from the OVS switch. The

server IP addresses and transport port numbers of each flow plus the statistics data

are designed to be the input features for the deep learning models.

There are three deep learning models in use. The first MLP deep learning model

employs back-propagating supervised learning techniques in artificial neural networks.

It consists of an input layer, three hidden layers followed by a dropout layer, and an

output layer. The input layer consists of server IP addresses and transport port

25

Figure 3.1: Network topology of the SDN testbed [7]

numbers; the dropout layer is used to prevent the overfitting issue; the output layer

consists of neurons with a classifier for the MLP deep learning model.

The second model is SAE, containing one single encoding and decoding. It is used

for dimension reduction or feature extraction.

The convolutional neural network (CNN) model, which is a common deep learning

model used for classification, is the third deep learning model in deep learning training.

The CNN model is composed of three convolution layers, three max-pooling layers,

and one fully connected layer with the Relu function functioning as an activation

function.

They check the accuracy, precision, recall and F1-score for each learning method

in real-world network traffic classification, including multimedia, audio and video

streaming.

26

Figure 3.2: DTPRO Architecture [6]

3.1.3 Deep Q-Network and Traffic Prediction based Routing

Optimization

In [6], the authors propose a dynamic traffic engineering scheme in SDNs, Deep

Q-Network (DQN), and Traffic Prediction based Routing Optimization (DTPRO)

for traffic and congestion prediction in providing better routing configurations for

traditional routing algorithms in Figure 3.2. The architecture consists of four planes:

Data Plane, Control Plane, Management Plane, and Knowledge Plane.

The Data Plane is made up of programmable forwarding devices that process and

forward data packets. These devices lack inherent intelligence and rely on the control

plane to build their forwarding tables and change their settings in accordance with

the OpenFlow protocol.

27

The Control Plane is regarded as the brain of the SDN network, including the

whole intelligence by centralizing network administration and global perspective in a

specialized central controller. It consists of two major modules: Network Measure-

ment and Proactive Forwarding. The Network Measurement module is divided into

two sub-modules: Statistics, which gathers metrics like the number of packets and

bytes per flow to calculate throughput, and Latency Measurement. The Proactive

Forwarding module is in charge of selecting the best routing plan and network traffic

forecast.

The Management Plane guarantees the network’s proper operation and perfor-

mance by gathering network measurements from the Control Plane, especially from

the Network Measurement module, in order to give network analysis. The statistics

gathered will be examined and forwarded to the Knowledge Plane.

Finally, the Knowledge Plane makes use of the Control and Management Planes

by feeding data from the management plane into ML algorithms, which transform it

into the form of knowledge. These planes precisely learn the network’s behavior by

processing the collected statistics, then extract the optimal paths, representing the

knowledge, to route flows by deploying a DQN agent, and finally predict network

congestion in the Traffic Prediction module using prediction methods (i.e., LSTM,

ARIMA, Linear Regression (LR)).

Then they put those prediction methods in the DQN model, which dynamically

determines the optimal policy mapping the set of states (traffic matrices) to the set of

actions (changing the vector of link weights) to generate a good estimation accuracy.

Finally, they combine DQN with Traffic Prediction and show that network latency,

packet loss, and link utilization can be decreased. Moreover, they find that LSTM

achieves a high estimation accuracy, which outperforms other traditional prediction

methods, and decreases both end-to-end delay and packet loss.

28

3.1.4 Traffic Classification in SDN-IoT with Machine Learn-

ing methods

In [36], the paper proposes a Machine learning model that classifies traffic in SDN-

IoT networks for traffic engineering. The classification process is compared with RF

algorithm, decision tree algorithm, and the K-nearest neighbors’ algorithm.

A deep learning route optimization model based on traffic classification is pro-

posed. The model chooses the route that meets the QoS demands like latency of the

identified traffic. They also compare the impact of two feature selection methods, Se-

quential Feature Selection (SFS) and Shapley additive explanations (SHAP), on the

accuracies of the classifiers to reduce the number of features needed for classification.

At last, the authors find the Random forest classifier with SFS feature selection

produces the best performance. After comparing with other research works, it is

proved to attain accuracy and higher F1 score.

3.1.5 Traffic Prediction in SDNs with LSTM

In [26], the authors have proposed a time-series prediction framework using Long

Short-Term Memory (LSTM) for accurately predicting future link throughputs in

both SDN and legacy networks. Compared to the traditional long-time-scales predic-

tion, authors analyze that LSTM has abilities to model aggregate network traffic at

various traffic aggregation levels and short time scales, which can enable a short-term

decision. The LSTM framework models the backbone network traffic at the link level

and for various time-epochs and is found to be a good candidate for link-level net-

work traffic modeling. A prediction framework is also presented that can be readily

deployed to production SDN topologies without requiring any switch modifications

since it uses the OpenFlow API port information to train the LSTM models.

Several variations of LSTM are also tested, including vanilla LSTM, delta LSTM

(models the consecutive link throughput deltas), and multi-variate LSTM (models all

29

the link throughput time series at once thus taking into account potential correla-

tions). It can be concluded that LSTM can effectively model backbone network traffic

at the link level and for various time-epochs after comparing with several ARIMA

baseline models.

3.1.6 Delay Forecasting in SDN-IoT with NARX enabled

RNN

The authors in [1] have focused on forecasting delays in Internet of Things (IoT) and

tactile internet networks using a k-step prediction approach with nonlinear autore-

gressive with external input (NARX)-enabled recurrent neural network (RNN).

The RNN essentially has a memory that can predict time-dependent targets, and

the NARX network, which can represent dynamic systems, has been used for pre-

dicting future information. The widely used NARX model yields promising results

for time series issues with lagged input and output variables as well as prediction

errors. Unlike traditional RNNs, the NARX network achieves excellent prediction

performance for practically every nonlinear function while incurring minimal, or no

computational costs [5].

The k-step-ahead modeling is a time series forecasting technique that predicts the

subsequent output values using the previous and current input values. It uses different

training algorithms to investigate which is the optimal performance generated based

on these algorithms. For each step, the suitable ML model is determined using test

information, matching several models to the dataset based on historical values.

At last, they use the MSE loss function, RMSE, and MAPE to measure prediction

accuracy and conclude the advantages and disadvantages of different ML models in

various k values.

30

3.1.7 End-to-end Delay Prediction in SDNs with NN and RF

In [24], the authors have provided an open simulation platform for generating new

datasets with traffic generation and measurement models and have used two machine

learning models, Random Forest (RF) and Neural Network (NN), for the prediction

of end-to-end delay.

By considering three scenarios of increasing complexities (Traffic Only, Traffic and

Capacity, and Traffic and Capacity with Delays), they show that end-to-end delay

can be predicted based on traffic matrix samples. In this thesis, we use the work of

[24] for traffic generation and comparison purposes.

3.1.8 Traffic Predictors in SDNs with GNN

Unlike CNNs and recurrent neural networks (RNNs), GNNs support inputs of non-

Euclidean space data, such as network topologies, knowledge graphs, and molecular

structures. Many researchers used GNN in graph structure input data.

The authors in [43] have leveraged a GNN model for network modeling and op-

timization named RouteNet. Based on GNN, RouteNet can learn and model graph-

structured information, and as a result, the model is able to generalize complex re-

lationships between arbitrary topologies, routing schemes, and traffic intensity. By

comparing to the original scenario and queuing theory baseline, it is proved that

RouteNet can produce accurate estimates produce predictions of Key Performance

Indicators (KPI) such as per-source/destination mean delay and jitter in networks

with low Mean Relative Error(MRE).

In [49], the authors also have proposed a GNN-based self-encoder model, called

Gated Graph Auto Encoder Network (GGAE), for predicting network delay in SDN

networks accurately. The model combines the advantages of self-encoders and gated

cyclic neural units in neural network technology, which is based on the message passing

31

Figure 3.3: Graph-structured traffic data [48]
(Each vt indicates a frame of current traffic status at time step t, which is recorded in a

graph-structured data matrix.)

neural network (MPNN). Their paper makes improvements on RouteNet with lower

absolute mean distance (MAD) values.

3.2 Spatio-Temporal Graph Convolutional Networks

Paper [48] has proposed a model STGCN to make traffic predictions in roadways.

The STGCN model can learn both temporality and dependence of the input, and

it achieves fewer error values on two real-world datasets compared to other state-of-

the-art models, including Historical Average (HA), Linear Support Victor Regression

(LSVR), Auto-Regressive Integrated Moving Average (ARIMA), and some machine

learning methods. The sample graph-structured traffic data is shown in Figure 3.3.

STGCN inside structure is shown in Figure 3.4.

Our thesis uses this model to extract spatial and temporal features of the end-to-

end delay problem in computer networks.

The graph Fourier transform is applied on the eigenvalues of normalized graph

Laplacian matrix as follows:

L = I −D−1/2WD−1/2 (3.1)

32

Figure 3.4: STGCN for Traffic Prediction [48]

where I is an N-dimensional identity matrix, D is the diagonal degree matrix with

Dii =
∑

j Wij and W is the graph adjacency matrix. Bing Yu[48] et al. introduced a

graph convolution operator “ ∗ g” based on the conception of spectral graph convolu-

tion, as the multiplication of a signal x with a kernel Θ,

Θ ∗ gx = Θ(L)x = Θ(UΛUT)x = UΘ(Λ)UTx (3.2)

In this equation, graph Fourier basis U is the matrix eigenvectors of the normalized

graph Laplacian L (L = UΛUT). Λ is the diagonal matrix of eigenvalues of L, and

Θ(Λ) is also a diagonal matrix.

In this model, two ST-Conv blocks are constructed jointly to process graph-

structured in time series. Inside each block, there are two temporal layers and one

spatial layer in the middle. Rectified Linear Units (ReLU) is also used to activate the

rectified linear unit. For l block tl, the output tl+1 is given by:

tl+1 = Γl
1 ∗ τReLU(Θl ∗ g(Γl

0 ∗ τtl)), (3.3)

33

where Γl
0 and Γl

1 are the upper and lower temporal kernel within block l; Θl is the

spectral kernel of graph convolution.

The authors originally used L2 Loss Function for model training in Equation 3.4.

L2 Loss Function is usually used to minimize the error, which is the sum of all the

squared differences between the true value and the predicted value.

L2LossFunction =
n∑

i=1

(ytrue − ypredicted)
2 (3.4)

We are using another loss function to train the model, which is Mean Squared Error

(MSE). This will be introduced in the further in the Experiments and Results chapter.

Another paper [18] also applied STGCN to predict cascading delays throughout

the railway network. The railway network is represented as a line graph, with nodes

representing train lines and edges representing connecting stations. The STGCN

model is then applied to this formulation, and its performance is compared to linear

regression (LR) and multi-layer perceptron (MLP) models. In terms of MAE and

RMSE for forecast intervals, they discover that the STGCN model beats the alter-

natives. Our thesis uses this model to extract spatial and temporal features of the

end-to-end delay problem in computer networks.

3.3 Summary

We review related works on SDN prediction in this chapter. It includes traffic pre-

diction, traffic classification, and delay forecasting with various ML and DL methods.

STGCN model is also reviewed, and related research based on STGCN is introduced

as well. This variety of SDN prediction proves that it is a concerned and useful area.

Also, the STGCN model is verified better than some other delay prediction models

in roadway and railway traffic areas.

Chapter 4

The Revised Model for SDN Delay

Prediction

Machine Learning methods have shown promising results in predicting delays in trans-

mission systems. Convolution techniques are commonly used in ML to capture spatial

correlations in data. GNNs expand existing approaches to work with graph-structured

data by utilizing graph convolutions to transmit information between nearby nodes

and embed graphs into low-dimensional vectors.

We use the STGCN model for the end-to-end network delay prediction, because

it showed great performance on leveraging node-wise features for the graph predic-

tion [48]. The model architecture is summarized in Figure 4.1. It contains two stacked

spatio-temporal convolutional blocks (ST-Conv blocks) followed by an output block.

Inside each ST-Conv block, there are two temporal gated convolutions and one spatial

graph convolution. There is an output layer to generate the prediction delay on the

right.

34

35

Figure 4.1: STGCN Architecture
(The framework includes two ST-Conv blocks and an output layer. Each ST-Conv block contains

two temporal gated convolution layers and one spatial graph convolution layer. The input of delay

is uniformly processed by ST-Conv blocks to explore spatial and temporal dependencies coherently.

The spatial layer bridges two temporal layers used for fast spatial-state propagation from graph

convolution through temporal convolutions. The output is generated prediction delay on the

right.)

36

4.1 Delay Prediction Graphs

We formulate the prediction of delays on the network as a time series regression

problem. After observing delays on links with connection relations between nodes, the

previous time steps are used to predict the most likely delay at time step (tn+NFuture
).

Based on this, the network delay problem can be stated as:

t̂ = argmax
tn+NFuture

logP (tn+NFuture
|(t0, ..., tn)) (4.1)

where tn is an observation vector of n link segments at time t and t̂ is the model

prediction at time t.

Therefore, the network can be defined on a graph G(V,E,X), defined by the set of

nodes V , edges E, and time-varying node features X. This graph can be represented

by its adjacency matrix of M , defined as follows:

Mi,j =


1, if link i and j share a router,

0, otherwise

(4.2)

4.2 Temporal Convolution with Gated Liner Unit

In Figure 4.1, two ST-Conv blocks are constructed jointly to process graph-structured

in time series. Inside each block, there are two temporal layers and one spatial graph

convolution layer in the middle.

Each temporal convolutional layer contains a 1-D causal convolution with a kernel

followed by gated linear units (GLU) for non-linearity. Paper [34] has shown that a

1D convolution along the temporal dimension of data can be more effective than an

RNN on shorter sequences while at the same time being quicker to train. Similar

to the gating present in RNN models, the nonlinear activation provides a gating

that determines the importance of past inputs on future predictions. The resulting

37

temporal convolution is defined as:

Γ ∗T Y = P ⊙ σ(Q) (4.3)

where P and Q result from splitting the input of the temporal block along the channel

dimension. The Equation 4.3 is then updated to Equation 3.3.

For each node in the graph, the temporal convolution explores kt neighbors of input

elements without padding, which leads to shortening the length of the sequences by

kt − 1 each time.

For the sake of clarity, Algorithm 1 presents the pseudo-code for the temporal

convolution layer with GLU, where the inputs are: (i) 4DInputTensor: a four-

dimensional tensor where the first dimension is batchSize 100, the second dimen-

sion is inputChannel which is 1 in our case, the third dimension is timeStep which

is the number of previous timestamps used to predict the OD traffic matrix, and

the fourth dimension is the numV ertex, which is square of node numbers. (ii)

timeEmbeddingSize: the kernel size used to extract features from the input data (iii)

channelOut: the number of intervals for prediction. In this thesis, the timeEmbeddingSize

is set to 3. In addition, we aim to predict the OD traffic matrix in the next timestamp,

and thus channelOut is 1. Three convolutional layers are applied in this module, and

a sigmoid layer is utilized to bring the non-linearity. The element-wise addition is

then utilized between the transformed data Xp and the input Xin. Following that,

the element-wise multiplication is used between the computed data from the previous

step Xp and the transformed data Xq.

4.3 Convolution in the Spatial Dimension

The ST-Conv blocks of the STGCN architecture leverage graph convolutions to cap-

ture spatial relationships in the data. Spectral graph theory provides one method

38

Algorithm 1: Temporal Convolution with Gated Liner Unit

Input: 4DInputTensor, timeEmbeddingSize, channelOut
Output: 4DOutputTensor
1: batchSize, inputChannel, timeStep, numVertex = 4DInputTensor.Shape //

initialize training shape
2: X ← copy the data from Data Preprocessing steps as (4DInputTensor)
3: Xin ← reserve the last timeStep− channelOut delay data
4: Let 1DConv() be a 1D conv-layer with kernal size = timeEmbeddingSize and

convolute on the time domain
5: Xc = 1DConv(X)
6: pChannel = channelOut ;
7: Xp ← pop the first channelOut from Xc

8: Xp = 1DConv(Xp) // update value after 1D conv-layer
9: Xq ← pop the last channelOut from Xc

10: Xq = 1DConv(Xq) // update value after 1D conv-layer
11: Xq ← sigmoid(Xq) // bring the non-linearity
12: Xp = elementWiseAdd(Xp, Xin)
13: 4DOutputTensor = elementWiseMultiply(Xp, Xq)
14: return 4DOutputTensor

(i.e., the graph Fourier transform) for generalizing the convolution operation for

graph-structured data. The analysis focuses on the eigenvalues of the normalized

graph Laplacian matrix in Equation 3.1, and the graph convolution is introduced in

Equation 3.2.

4.4 Loss function

We use mean squared error (MSE) loss to measure the performance of our model.

Thus, the loss function of STGCN for delay prediction can be written as:

L(t̂;Mθ) =
1

n

n∑
i=1

||t̂(t0, ..., tn,Mθ)− tn+NFuture
||2 (4.4)

where Mθ are trainable model parameters, t(n+1) is the ground truth, and t̂ denotes

the model’s prediction. In our experimentation, we use the OD average traffic matrix

in the next timestamp as ground truth.

39

4.5 STGCN Approximation and Model Setting

To reduce the computation load of kernel Θ with graph Fourier transform, this step

utilizes the Chebyshev polynomials approximation method [13]. Accordingly, the

graph convolution in Equation 3.2 can be adjusted as Equation 4.5, where the com-

putation cost can be reduced [13].

Θ ∗ gx = Θ(L)x ≈
K−1∑
k=0

ΘkTk(L̂)x (4.5)

where L̂ = 2L/λmax − IN was the scaled Laplacian matrix of L; Tk(L̂) ∈ RM×M

referred to the Chebyshev polynomial of order k evaluated at L̂; K denotes the kernel

size of graph convolution; Θ ∈ RK refers to the polynomial coefficient vector. With

the approximation of kernel Θ, we generate the graph convolutions to capture the

spatial and elevation features. In Figure 4.1, there are two ST-Conv Blocks in use.

Assuming there are n nodes in the graph. The end-to-end pair will be n2. The output

shapes for both blocks are [64, 4, n2]; after the output block, the data has the size of

[n2, 1]. ReLU is activated for the first two layers, and a sigmoid is used on the model

output. For the STGCN model, we use a spatial kernel of size ks = 3 and a temporal

kernel of size kt = 3. We train each test with 500 epochs and MSE loss.

4.6 Summary

We introduce the SDN delay prediction STGCN architecture in detail. The framework

includes two ST-Conv blocks and an output layer. Each ST-Conv block contains two

temporal gated convolution layers and one spatial graph convolution layer. For each

element, we provide the algorithm and equations with explanations inside.

We also introduce our chosen STGCN approximation method, training and output

data shapes, and modified model setting.

Chapter 5

Experiments and Results

5.1 Datasets

This section will introduce why we chose the following datasets and the simulated

data generation settings. The first sets are 15-node networks group, which is used

in [30]. The second sets are Abilene Network datasets used in [24]. We use three

intensities to match and compare the results in their paper. We also generate more

datasets with different parameter settings and make it a total of ten different network

traffic intensities.

For a 15-node network with different topologies, the authors in [30] use the Om-

net++ simulator (version 4.6) [45]; in each simulation, the average end-to-end delay

during 16,000 units of time for all pairs of nodes is measured. Several network and

traffic factors are changed to see how they impact modeling skills while learning net-

work latency in distinct networks operating under different saturation and packet

length regimes.

40

41

Specifically, the datasets in use are considered the following parameters:

• Topology:

Three different network topologies in use: unidirectional ring in Section 5.1.1,

star in Section 5.1.2, and scale-free in Section 5.1.3 networks. These three

topologies present different connectivities which may affect the learning capa-

bilities.

• Network size:

The network size is 15 nodes, where all nodes are active transmitters and re-

ceivers.

• Traffic Distributions:

Four different packet length distributions (in Section 5.1.4) are evaluated: deter-

ministic (constant), uniform, binomial and Poisson using a fixed average packet

length. In all the cases, the inter-arrival time is exponential.

Each simulation has 1000 Origin-Destination (OD) traffic matrices with a size of

15 × 15, which contains 225 link delay values. Each scenario we mentioned following

contains 225k values. With 3 network topologies and 4 traffic distributions, we will

have 12 combinations in total.

We also use another two datasets generated from RouteNet[43] using OMNeT++:

one is 24-node GEANT2 [2] network in Fig 5.3, and another is 50-node in Fig 5.4.

5.1.1 Ring Network Dataset

A ring network is a network architecture in which each node links to precisely two

other nodes, producing a single continuous signal channel through each node - a ring.

Data is sent from node to node, with each node handling one packet at a time.

The advantages of a ring network include low incidence of collision, low cost, and

is suitable for small businesses. However, disadvantages are obvious: one faulty node

42

will bring the entire network down; it requires extensive preventative maintenance and

monitoring; performance declines rapidly with each additional node; reorganizing the

network requires a full system shutdown.

5.1.2 Star Network Dataset

In computer networks, a star network is an application of the spoke–hub distribution

model. Every host in a star network is linked to a central hub [41]. In its most basic

form, a single central hub serves as a conduit for message transmission. One of the

most frequent computer network topologies is the star network. The hub and hosts,

as well as the transmission lines connecting them, create a star-shaped graph. A star

network’s data flows via the hub before continuing on to its destination. The hub

oversees and controls all network functions. It also serves as a data flow repeater.

Star topologies are the most often utilized since they let you administer the whole

network from a single point: the central switch. As a result, if a node other than

the central node fails, the network will remain operational. This adds a layer of

security to star topologies against failures that aren’t necessarily present in other

topology configurations. Similarly, you may add additional machines without taking

the network down, as you would with a ring topology. Star topologies require fewer

connections than other topologies in terms of physical network construction. As

a result, they are straightforward to set up and administer in the long run. The

inherent simplicity of the network design makes troubleshooting considerably easier

for administrators when dealing with network performance issues.

On the other side, though star topologies may be relatively safe from failure, if

the central switch goes down, then the entire network will go down. The performance

of the network is also tied to the central node’s configurations and performance.

43

Figure 5.1: Scale-Free Network Topology Sample

5.1.3 Scale-Free Network Dataset

A scale-free network, in Figure 5.1, is a network whose degree distribution follows a

power law, at least asymptotically. That is, the fraction P (k) of nodes in the network

having k connections to other nodes goes for large values of k as

P (k) ∼ k−γ (5.1)

where γ is a parameter whose value is typically in the range 2 < γ < 3 (where in

the second moment (scale parameter) of k−γ is infinite but the first moment is finite)

[33].

The topology of real networks is mostly unknown, and scale-free networks are quite

important. Advantages of scale-free networks include robustness against accidental

failures, and understanding the characteristics of the scale-free networks can prevent

disasters (computer viruses, epidemics of diseases). On the other hand, the disadvan-

tages of scale-free networks are that they are vulnerable to coordinated attacks and

do not easily eradicate the viruses or diseases already in the system.

44

5.1.4 Dataset with Different Traffic Distributions

For each network topology from Section 5.1.1, Section 5.1.2 and Section 5.1.3, we

evaluate four different packet length distributions: deterministic (constant), uniform,

binomial and Poisson using a fixed average packet length. In all the cases, the inter-

arrival time is exponential. Different probability distributions give the probabilities

of occurrence of different possible outcomes for traffic datasets; that is why we choose

four classical distributions[28].

5.1.5 Abilene Network Dataset

We use the dataset which was simulated by Krasniqi et al. [24]. The authors used the

NS-3 simulator [40] to generate network traffic. They simulated a high-performance

backbone network topology, Abilene [35], which has 12 nodes and 15 links, illustrated

by Figure 5.2.

Figure 5.2: Abilene topology [35]

Dijkstra’s routing algorithm is used in the NS-3 network simulator to define the

shortest path between nodes. This simulator enables users to generate and monitor

network traffic with customized characteristics and topology. Network topology and

45

routing policy are fixed during the simulation, but there are three hyper-parameters

which has a strong impact on the delay: traffic intensity, link capacity and link

propagation delays. So we used three different datasets from their paper [24] with

the following scenarios:

• Traffic Only (TO): fixed capacity and propagation delay;

• Traffic and Capacity (TnC): fixed propagation delay and variable capacity;

• Traffic and Capacity with Delays (TnCwD): traffic intensity, link capacity and

link propagation delay parameters are variable.

In the simulation, nodes in the network are instructed to generate traffic toward

all other nodes. Link capacities are generated randomly according to a truncated

Gaussian distribution in the range [10Mbps, 200Mbps]; Link propagation delays are

generated following a uniform distribution in the range [10ms, 100ms]. To control the

traffic intensity, the authors in [24] specified a value rk based on link capacities with

the following equation:

rk = ϕ+ (k × 7− 20)× 50Kbps (5.2)

In this equation, ϕ represents the fully utilized link capacity normalized by the max-

imum number of flows passing through it. Krasniqi et al.[24] defined the value k for

simulating different levels of the network traffic intensity, where k = 1 refers to the

low intensity, k = 7 to the medium intensity and k = 10 to the high intensity. We

run the tests with k values from [1, 10] in the TnCwD scenario and compare them

with three specific intensities in all scenarios. Each simulation has 500 OD traffic

matrices with a size of 12 × 12, which contains 144 link delay values. Each scenario

we mentioned before contains 720k values.

46

5.1.6 GEANT2 and 50-node Networks Dataset

In the dataset, each simulation contains 1000 OD traffic matrices, GEANT2 and 50-

node networks have sizes of 24 × 24 and 50 × 50, which contain 576 and 2500 link

delay values for each matrix accordingly. On top of that, each scenario we mentioned

before contains 10 simulations using for average performance evaluation, and there

are 5, 760, 000 and 25, 000, 000 values for two topologies.

Figure 5.3: GEANT2 Topology

5.2 Data Preprocessing

We use datasets exploring three different network topologies: unidirectional ring,

star, and scale-free networks with 15 nodes. The datasets setting will be introduced

in Section 5.1. These datasets are the most complicated situation in [30]. In their

paper, they prove NN can be used in SDN delay prediction. We will evaluate the

performance of STGCN on the same datasets.

Another dataset used in this thesis has been simulated for the Abilene network us-

47

Figure 5.4: 50-node Topology

ing the simulation platform used by Krasniqi et al. [24]. Abilene is a high-performance

backbone that provides network services to hundreds of member institutions in the

United States and abroad. Fiber optic linkages are used to establish connectivity

at the physical level for Abilene, with fifteen backbone links connecting routers (i.e.,

core nodes) in eleven major U.S. cities [17].

First of all, we need to find the adjacency matrix to use in STGCN with different

network topologies. Taking the Abilene network as an example, we construct a line

graph of the network of all 12 stations. For end-to-end delay prediction, we build the

graph as fully connected with the shortest path first (SPF) algorithm. To generate

the adjacency matrix for the end-to-end situation, we convert station links as nodes

and put 12 backbone routers in between as edges. This node-edge conversion has

performed well in delay prediction in railway network used in [18]. And we define the

adjacency matrix, M in Equation 4.2.

Then, we use the NetworkX library to create a node-link transfer and also use the

library to compute the 144 × 144 adjacency matrix from the new graph (It will be

225×225 sized adjacency matrix if using a 15-node network). The graph preprocessing

process is illustrated in Algorithm 2, where NetworkTopology is the network topology

G and the edgeGraph is the line graph G′. The getEdgeGraph is the NetworkX

48

library used to convert G to G′.

Following graph preprocessing, we preprocess data in order to feed them into the

STGCN model. The data preprocessing is described in Algorithm 3, where the inputs

are: (i) end2endDelayTable: Origin-Destination (OD) traffic matrixes collected from

the SDN in each timestamp. (ii) windowLength: the number of samples we used to

average the OD traffic matrixes. (iii) batchSize: the number of samples processed

before updating the STGCN model parameters. (iv) stride: the number of times-

tamps of movement over the dataset. In this thesis, each OD traffic matrix is sampled

every 0.1s. As in the paper [24], we average OD traffic matrices over a window size

of 50, and thus windowLength is 50. The batchSize is set to 100. In addition, the

window is moved to the next OD traffic matrix each time, and thus stride is 1. We

use the previous ten timestamps of OD traffic matrixes to make predictions, and thus

inputChannel is 10. Also, numV ertex is the number of nodes in our graph G′, which

is 144. We transform the OD traffic matrixes into four-dimensional tensors and feed

a batch of them into the STGCN model each time.

Algorithm 2: Graph Preprocessing

Input: NetworkTopology
Output: edgeGraph
1: denseG = getCompleteGraph(NetworkTopology)

// collect graph nodes information
2: edgeGraph = getEdgeGraph(denseG)

// transfer nodes to edges
3: return edgeGraph

For better understanding, data preprocessing can be explained in another way.

Given a network topology, we consider it as a directed graph G = (N,E) where

graph G contains K nodes and H edges, denoted as N = {n1, n2, ..., nK} and E =

{e1, e2, ..., eH}, respectively. We then convert the graph into a complete directed graph

G′ = (N,E′), where G′ contains the same set of nodes as G and K2 edges, i.e. E′ =

{e1,1, e1,2, ..., eK,K−1, eK,K}. We can observe that ei,j ∈ E′,∀i ∈ N, j ∈ N and i ̸= j.

49

Algorithm 3: Data Preprocessing

Input: end2endDelayTable, windowLength, batchSize, stride
Output: 4DInputTensor
1: X = 2DTensor,

tableLen = end2endDelayTable.length
// initialize

2: for i = 0; i < tableLen− windowLength; i = i+ stride do
3: windowX ← pop the first windowLength row from end2endDelayTable
4: windowX ← compute average delay among each column of windowX
5: extend X with windowX
6: end for
7: 4DInputTensor = Tensor([batchSize, inputChannel, timeStep, numV ertex])
8: batchNum = (tableLen− windowLength)÷ stride+ 1
9: for i = 0; i < batchNum− 1; i = i+ 1 do
10: batchX ← pop the first batchSize row from X
11: batchX ← expandDimension(batchX)
12: append batchX to 4DInputTensor
13: end for
14: return 4DInputTensor

Following that, we convert G′ into a line graph Ĝ′ = (N̂, Ê′) containing K2 nodes

and L edges, where N̂ = {n̂1, n̂2..., ˆnK2}. In order to convert G′ to Ĝ′, each edge in

E′ is converted to a node in N̂ and êi,j ∈ Ê′ ⇐⇒ ei and ej share a node nv, where

ei ∈ E′, ej ∈ E′, nv ∈ N .

With Ĝ′, each node n̂i is corresponding to a directed edge in the graph G′. Instead

of appending end-to-end link delay to graph G′, we attach a delay into each node in

Ĝ′. This way, we convert the link-level prediction problem into a node-level prediction

problem. It allows us to apply GNN in node feature prediction. It is worth noting

that the line graph conversion technique achieved great performance in railway delay

prediction, as suggested in paper [18].

With graph Ĝ′, we compute its adjacency matrix, M with a size of K2 × K2,

50

which is defined as follows:

Mi,j =


1, if n̂i and n̂j is connected,

0, otherwise

(5.3)

After the graph pre-processing step, we pre-process data before feeding them into

the STGCN model [48]. Our Origin-Destination (OD) traffic matrix has a uniform

sampling rate of ten times per second. We pre-process data according to paper [24],

where the first step is to average every 50 OD traffic matrices, i.e., all OD traffic

matrices within 5 seconds. Every time we calculate the mean traffic matrices, there

are 49 records overlapping with the previous step. We consider the OD traffic matrices

prediction a time-series problem, and thus we use ten recent OD traffic matrices in

previous time steps to predict the OD traffic matrix in the fifth future time step.

Finally, we transform a batch of averaged OD traffic matrices into tensors and feed

them into the STGCN model.

5.3 Results and Comparison

5.3.1 Simulation Setup

This thesis develops and implements the STGCN SDN delay prediction model based

on PyTorch deep learning framework. All training sets are using NVIDIA GeForce

RTX 3070 GPU with memory up to 8GB. and Intel(R) Core(TM) i7-9700K @ 3.60GHz

for CPU.

The maximum training epoch is 500. The initial learning rate R is 0.001. All de-

lays are normalized and the z-score method is used to train the model in the STGCN.

For each test case, we run ten datasets and get the average for the error evaluation

parameters.

51

Finally, we implement a uniformly sampled 70%/15%/15% split of the data for

training, validation and testing purposes, respectively.

5.3.2 Performance Metrics

In this section, we introduce three metrics for evaluating training performances. The

three metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE)

and Weighted Mean Absolute Percentage Error (WMAPE). Accuracy is leveraged as

our prediction recognition standard.

RMSE is the criteria used to evaluate all the models with different intensities.

RMSE =

 ∑n
i=1(tn − t̂n)2

n
(5.4)

where tn is the true value, t̂n is the forecast value, and n is total number of values

in the test set. The RMSE is a popular method used by statisticians to understand

how good is forecast.

We also consider MAE and WMAPE as the evaluation metrics, which are shown

in the following equations:

MAE =

∑n
i=1 |tn − t̂n|

n
(5.5)

WMAPE =

∑n
i=1 |tn − t̂n|∑n

i=1 |tn|
(5.6)

The lower the MAE value, the better the model is; a value of zero means there is

no error in the forecast. In other words, when comparing multiple models, the model

with the lowest MAE is considered better. RMSE can also be compared to MAE

to determine whether the forecast contains large but infrequent errors. The larger

the difference between RMSE and MAE, the more inconsistent the error size. The

WMAPE metric is helpful for low volume data, where each observation has a different

priority when evaluating forecasting models. The lower the value of WMAPE, the

52

better the performance of the model. Observations with higher priority have a higher

weight value. The larger the error in high priority forecast values, the larger the

WMAPE value is.

In Section 5.3.4, we also compare with the average predictor baseline, which uses

the average as a prediction for the future period. After comparing with our STGCN

prediction, we can evaluate the performance of different machine learning models.

5.3.3 Results for 15-Node Networks

In Tables 5.1, 5.2 and Figure 5.5, we show that, in all cases, the error is pretty small.

Also, the training is very effective. Compared with the work of [30], their ML method

takes a maximum training epoch of 7, 500, 000, while our setting is only 500. This

will reduce the training time.

Table 5.1: MAE, RMSE and WMAPE for 15-Node Ring Network

Binomial Distr. Deterministic Distr. Poisson Distr. Uniform Distr.
MAE 0.000853 0.000749 0.000874 0.000807
RMSE 0.001137 0.000986 0.001149 0.001084

WMAPE 0.00615327 0.0054008 0.00630066 0.00583009

Table 5.2: MAE, RMSE and WMAPE for 15-Node Scale-Free Net-
work

Binomial Distr. Deterministic Distr. Poisson Distr. Uniform Distr.
MAE 0.004679 0.004496 0.004552 0.004441
RMSE 0.006195 0.005789 0.006103 0.005885

WMAPE 0.01417278 0.01357348 0.01377185 0.01350639

53

Figure 5.5: MAE, RMSE and WMAPE for 15-Node Star Network

Figure 5.6: MAE, RMSE and WMAPE for 15-Node Networks with
Distributions

(Binomial and Deterministic Distributions)

54

For each network topology, different distributions result in various training er-

rors. For example, in Star Network, shown in Figure 5.5, deterministic distribution

outperforms other distributions. Uniform distributed network datasets also perform

well in the second smallest RMSE values in all three topologies. Based on RMSE,

deterministic and uniform distributions are 4.7% to 14.2% smaller than binomial and

Poisson distributions, respectively.

MAE and WMAPE have similar results to RMSE, where deterministic and uni-

form distributions are smaller than binomial and Poisson distributions in Ring and

Scale-Free Network. However, in Star Network, MAE and WMAPE of Poisson distri-

bution are the smallest of all the distributions. In this topology, MAE and WMAPE

of deterministic, Poisson and uniform distributions are almost the same, with a differ-

ence of about 1%. Binomial distribution has the largest error (about 5% more than

others).

In Figure 5.6, we compare three network topologies based on binomial and deter-

ministic distributions. It can be concluded that the ring network has the lowest error

values compared with other networks. With respect to RMSE, Ring is only 18.6%

whereas it is 18.4% for Star and Scale-Free networks. This shows that STGCN model

has better prediction in Ring topology than Star and Scale-Free topologies.

5.3.4 Results and Comparison for Abilene Network

We use the dataset introduced in Section 5.1.5. As mentioned, k is defined in Equa-

tion 5.2 from [24], which represents different levels of the network traffic intensity. We

want to change the parameter values to find the relation between traffic intensities

and STGCN predicting error. The scenario in used is TnCwD, where traffic intensity

k is changed from 1 to 10, link capacity follows truncated Gaussian distribution and

link propagation delay parameters follow uniform distribution.

55

Table 5.3: MAE, RMSE and WMAPE for Abilene Network

k Value MAE RMSE WMAPE
1 0.00095525 0.0037815 0.007147533
2 0.0004275 0.001753 0.00332281
3 0.001215 0.003745 0.00819496
4 0.001556 0.005711 0.00912998
5 0.001186 0.004337 0.009106685
6 0.0012125 0.0043175 0.009278315
7 0.00111275 0.00404125 0.008062463
8 0.00197 0.006732 0.01164667
9 0.002072 0.007195 0.01677804
10 0.00230275 0.008101 0.01748078

The result is shown in Table 5.3. We can conclude that, as traffic intensities

increase, STGCN learning error increases. This is because the complexity of the

network and difficulties of the prediction are increasing.

More specifically, for MAE, it has a general slope of 0.00013. When k is in the

range [4, 7], it performs a stable error value. After k = 7, it increases rapidly. For

RMSE, it is obvious there are two decreases in k = 2 and k = 5, but the relationship

between traffic intensities and RMSE values is a highly positive correlation with the

overall slope of 0.0061.

The visualization is shown in Figure 5.7. From the figure, WMAPE values have

a significant overall slope of around 0.01. And similar to the other two error values,

the error in medium intensity with k = 3 to k = 7 is almost the same.

In the next section, we will compare STGCN model in three different intensities

with other ML and baseline methods.

56

Figure 5.7: MAE, RMSE and WMAPE for Abilene Network in
TnCwD scenario

57

We also use two other ML training methods: RF and NN from Krasniqi et al.[24]

for comparison.

Three traffic intensities are low, medium and high, corresponding to k = 1, k = 7

and k = 10, respectively. Three scenarios are Traffic Only (TO), Traffic and Capacity

(TnC), and Traffic and Capacity with Delays (TnCwD). For stable prediction and

comparison purposes, we run our experiment 10 times for each scenario and each

intensity. We consider the average end-to-end delays of all OD traffic matrices as the

baseline prediction, which is named the baseline predictor. We perform evaluations

among the baseline predictor, various ML-based strategies and our proposed GNN-

based delay prediction methodology.

Table 5.4 shows the result of the TO scenario. We can observe that almost all

the ML-based methods achieve 20% − 80% less RMSE compared to the baseline

predictor. At best, our GNN-based delay prediction method performs 34% better

than the baseline predictor. In this case, RF and NN models give the best prediction

performance among all three traffic intensities. It is worth noting that the TO scenario

is too ideal where it only considers fixed link capacity and propagation delay, and

therefore, it is far from a realistic network.

Table 5.4: RMSE of baseline, RF, NN and GNN-based approaches
in three traffic intensities of the TO scenario

Method Low Intensity Medium Intensity High Intensity
Baseline Predictor 0.004 0.004 0.004

RF AVE [24] 0.000257 0.00053 0.0011
NN AVE [24] 0.00026 0.00062 0.0007

GNN-based AVE 0.001395 0.003159 0.005442

Table 5.5 shows that the three ML-based methods have similar results in the TnC

scenario. Most of these models improve baseline predictor by 87%− 95% less RMSE.

Among all network intensities, NN achieves the best delay prediction. However, in

the TnC scenario, the link capacity is variable, but the propagation delay is fixed.

It is unrealistic for a network to have a fixed propagation delay because weather,

58

temperature, and other factors can easily affect the propagation delay.

Table 5.5: RMSE of baseline, RF, NN, and GNN-based approaches
in three traffic intensities of the TnC scenario

Method Low Intensity Medium Intensity High Intensity
Baseline Predictor 0.0171 0.0171 0.0171

RF AVE [24] 0.00106 0.0016 0.0025
NN AVE [24] 0.000943 0.0014 0.0022

GNN-based AVE 0.002761 0.005333 0.013776

Figure 5.8 shows the baseline, RF, NN and GNN-based approach performances

in the tree traffic intensities of the TnCwD scenario. TnCwD is the most complicated

scenario, and it is similar to the real-world SDN environment. In this case, the network

link capacities are sampled from a Gaussian distribution, and the link propagation

delays are sampled from a uniform distribution. In this closest realistic scenario,

our proposed GNN-based approach achieves the best prediction than the other three

methods. Remarkably, our GNN-based approach achieves 85− 90% less RMSE than

RF and NN in low and medium intensities. Furthermore, our GNN-based method

performs 68.5% and 78.7% better than RF and NN in high intensities, respectively.

Compared with the baseline predictor, RF and NN only improve the delay prediction

by around 40− 60%, while our GNN-based approach performs 80− 90% better than

the baseline predictor, which is quite significant.

Table 5.6 shows the MAE and WMAPE of baseline predictor and GNN-based ap-

proaches in all three scenarios, TO, TnC and TnCwD, with three different intensities.

In the best case, our GNN-based approach achieves 96%, 99% and 99% less MAE than

the baseline predictor in scenarios TO, TnC, TnCwD, respectively. In addition, our

GNN-based approach performs 84% and 97% than the baseline predictor in scenarios

TnC and TnCwD, respectively. We can observe that the GNN-based approach per-

forms much better than the baseline predictor in the most complex network scenario,

TnCwD.

In short, the RF and NN performances become worse when the network traffic

59

Low Medium High
0

1

2

3

4

5

6

7

Intensity Level

R
o
ot

M
ea
n
S
q
u
ar
e
E
rr
or

(×
10

−
2
)

Baseline RF AVE NN AVE STGCN AVE

Figure 5.8: TnCwD RMSE with three intensities
(Blue bars indicate the results of the baseline predictor. Red bars represent RF RMSE values, and

green bars show NN RMSE values and purple bars present GNN-based RMSE results. As the

intensities increase, the RMSE increases. In all intensity levels, GNN-based approach has the

smallest RMSE value.)

60

Table 5.6: MAE and WMAPE of baseline and GNN-based ap-
proaches in three traffic intensities of TO, TnC and TnCwD scenarios

Baseline/Intensity MAE AVE WMAPE AVE

TO

Baseline Predictor 0.0282 0.0146
Low 0.00122 0.0306

Medium 0.00599 0.32845
High 0.01394 0.81298

TnC

Baseline Predictor 0.177 0.081
Low 0.00159 0.01322

Medium 0.00338 0.02787
High 0.00885 0.0710

TnCwD
Baseline Predictor 0.646 0.274

Low 0.00096 0.00715
Medium 0.00111 0.00806
High 0.00230 0.01748

intensity increases and network complexity increases. However, our GNN-based delay

prediction approach can achieve a satisfying performance regardless of the network

complexities. Notably, our GNN-based approach performs much better when the

network scenario is realistic and similar to the real-world SDN environment. We can

conclude that our GNN-based approach is definitely able to predict end-to-end delays

in the SDN environment more accurately.

5.3.5 Results and Comparison for GEANT2 and 50-node Net-

works

In this section, we will show and compare the result between 15-node, GEANT2 (24

nodes) and 50-node networks. Their corresponding adjacency matrices are of sizes

[255, 255], [576, 576] and [2500, 2500], respectively. We execute our experiment ten

times for each situation and intensity to ensure consistent prediction and comparison.

The average end-to-end delays of all OD traffic matrices are used as the baseline

prediction, which is referred to as the baseline predictor. We compare the baseline

predictor, several ML-based techniques, and our new GNN-based delay prediction

61

methodology.

Table 5.7 shows the result of the baseline, MLR, XGBOOST, RF and GNN-

based approach performances in three traffic topologies. We can conclude that all

the ML-based approaches achieve 6% − 97% less RMSE compared to the baseline

predictor. Particularly, XGBOOST has the worst performance in all three methods,

which performs 5.9% − 55.5% better than baseline. MLR has a stable performance,

which is 18.6%−25.2% smaller than baseline. RF and STGCN give the best prediction

performance among all three topologies. RF is 82.7%−91.9% and STGCN is 94.7%−

97% better than the baseline.

Table 5.7: RMSE of baseline, RF, MLR, XGBOOST and GNN-based
approaches in three network topologies

Method 15-Node Scale-Free GEANT2 50-Node
Baseline Predictor 0.15937 0.27449 0.51142

MLR AVE 0.12973 0.20743 0.37759
XGBOOST AVE 0.07124 0.25820 0.396816

RF AVE 0.02738 0.03353 0.04164
GNN-based AVE 0.006103 0.0144635 0.01537

Figure 5.9 shows the comparison between four ML methods. MLR has the biggest

RMSE value in 15-Node Scale-Free topology. XGBOOST performs the worst in

GEANT2 and 50-Node topology. RF has the third lowest RMSE in all topologies.

Our GNN-based approach has the smallest RMSE, which performs 91.4% − 96.1%

better than MLR and XGBOOST; it is also 56.9%− 77.7% better than RF, which is

quite significant.

Table 5.8 shows the MAE and WMAPE of baseline predictor and GNN-based

approaches in all three network topologies. We can observe that as the network

complexity increases, the error of the baseline prediction increases a lot. However,

for our GNN-based model, the error values are stable and small. Numerically, our

GNN-based approach achieves 96.7%, 94.8% and 97.0% less MAE than the baseline

predictor in 15-Node, GEANT2 and 50-Node scenarios, respectively. In addition,

62

15-Node GEANT2 50-Node
0

5

10

15

20

25

30

35

40

45

Network Topology

R
o
ot

M
ea
n
S
q
u
ar
e
E
rr
or

(×
10

−
2
)

MLR XGBOOST RF GNN-based

Figure 5.9: Various ML methods RMSE with three networks
(Blue bars indicate the results of MLR prediction RMSE average. Red bars represent XGBOOST

RMSE average values, and green bars show RF RMSE average values and purple bars present

GNN-based RMSE average results. As the network complexity increases, the RMSE increases. In

all topologies, GNN-based approach has the smallest RMSE value.)

63

Table 5.8: MAE and WMAPE of baseline and GNN-based ap-
proaches in three traffic topologies

Method MAE AVE WMAPE AVE

15-Node
Baseline Predictor 0.1371 0.41554

STGCN 0.004552 0.01377

GEANT2
Baseline Predictor 0.10996 0.25046

STGCN 0.00568 0.011867

50-Node
Baseline Predictor 0.19663 0.29337

STGCN 0.005921 0.00579

the GNN-based method performs 96.7%, 95.3% and 98.0% better than the baseline

predictor according to WMAPE for three scenarios, respectively. We can find out

that the GNN-based approach performs much better than the baseline predictor, and

as nodes increase, the performance becomes better compared to the baseline.

In short, when network nodes rise, the baseline and other ML methods (RF, MLR,

XGBOOST) performance errors increase. However, regardless of network complexity,

our GNN-based delay prediction technique may deliver high accuracy. Notably, in

the most complex 50-Node network environment, our GNN-based technique performs

significantly better. We can infer that our GNN-based technique is capable of more

correctly predicting end-to-end delays in the SDN context.

64

5.4 Summary

In this chapter, we first introduced 15-node datasets with different topologies and dis-

tributions and Abilene Network datasets. Then, data preprocessing and performance

metrics were provided. We calculated MAE, RMSE and WMAPE for each dataset

and compared it with other ML models.

In 15-node datasets, deterministic and uniform distributions outperformed bino-

mial and Poisson distributions. Ring Network had the least error values of all the

topologies. From various intensities in Abilene Network, we can conclude that when

traffic intensity and network complexity increase, training error will also increase.

We also used a GNN-based model to forecast the end-to-end latency of SDN in

GEANT2 and 50-node networks. We evaluated the performance of our GNN-based

delay prediction with MLR, XGBOOST, RF and the baseline predictor.

After comparing our models, it can be concluded that STGCN outperforms other

models similar to the real-world SDN environment. This result is likely due to the

model’s ability to capture dependencies between neighboring nodes in the graph via

the graph convolution operation, as well as its ability to capture temporal dependen-

cies via the temporal convolution operation.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we applied a GNN-based model to predict the end-to-end delay in

SDN networks. We found that this model outperforms the average baseline predic-

tor in predicting packet delay since our model captures both spatial and temporal

dimensions of the data.

First, we used 15-node datasets from the Omnet++ simulator with star, ring and

scale-free topologies. We found that the ring network has the lowest error level, which

is only 18% of other topologies in RMSE with the binomial distribution. Second, we

compared the difference between different distributions. Deterministic and uniform

distributions outperformed binomial and Poisson distributions in all 15-node datasets.

We also used Abilene network datasets simulated using the NS-3 simulator. From

various intensities in Abilene network, we can conclude that when traffic intensity

and network complexity increase, training error will tend to increase in general.

Then, we compared the performance of our GNN-based delay prediction with RF,

NN and the baseline predictor. The results showed that the ML-based approach can

predict the end-to-end delay more accurately than the baseline predictor. In the best

case, our GNN-based delay prediction achieved 94% less RMSE, 94% less MAE and

65

66

95% less WMAPE than the baseline predictor. In particular, our GNN-based delay

prediction method performed best in the most realistic network scenario, with 68.5%

and 78.7% less RMSE than RF and NN, respectively.

Finally, we evaluated the performance of our GNN-based delay prediction with

MLR, XGBOOST, RF and the baseline predictor using 15-node scale-free network,

GEANT2 with 24 nodes, and a 50-node network topology simulated from RouteNet

using OMNeT++. The results showed that the GNN-based technique outperformed

the baseline predictor in predicting the end-to-end delay. In the best situation, our

GNN-based delay prediction obtained 97.0% less RMSE, 97.0% less MAE and 98.0%

less WMAPE than the baseline predictor. When compared to other ML methods, our

GNN-based delay prediction technique performed the best in all network scenarios

considered. In particular, our GNN-based model outperformed MLR, XGBOOST

and RF with 95.9%, 96.1% and 63.1% reduced RMSE in the most complex 50-node

network scenario, respectively.

Unlike RF, NN and other prediction methods, our GNN-based model captures

not only the temporal but also the spatial dependence of the data. Our GNN-based

delay prediction method can certainly be used in SDNs to help controllers understand

network traffic conditions more accurately and allocate traffic efficiently.

6.2 Future Work

We outline below some suggestions for future work using our GNN-based delay pre-

diction strategy.

• Test on More Network Traffic Scenarios

Performance is expected to change for different traffic scenarios. It would be

useful to test how accurately the same ML algorithms with the chosen features

will perform in different traffic scenarios.

67

• Test of Different Network Topologies

The optimized route model can be tested on other network topologies to confirm

its performance. Further investigations can be carried out to see how the model

will perform in instances where there are link failures.

• Test with Additional Algorithms

Testing with other ML algorithms or performing parameter tuning on the tested

algorithms could produce better results for either the measured accuracy or

runtime in the delay prediction problem. This is an area of investigation.

References

[1] Ali R. Abdellah, Omar Abdulkareem Mahmood, Ruslan Kirichek, Alexander

Paramonov, and Andrey Koucheryavy. Machine learning algorithm for delay

prediction in iot and tactile internet. Future Internet, 13(12), 2021. ISSN 1999-

5903. URL https://www.mdpi.com/1999-5903/13/12/304.

[2] Fernando Barreto, Emilio Wille, and Luiz Nacamura. Fast emergency paths

schema to overcome transient link failures in ospf routing. International Journal

of Computer Networks & Communications, 4, 04 2012. doi: 10.5121/ijcnc.2012.

4202.

[3] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning Long-Term De-

pendencies with Gradient Descent is Difficult. IEEE Transactions on Neural

Networks, 5(2):157–166, 1994.

[4] Kamal Benzekki, Abdeslam El Fergougui, and Abdelbaki Elbelrhiti Elalaoui.

Software-defined networking (sdn): a survey. Security and communication net-

works, 9(18):5803–5833, 2016.

[5] Stephen A Billings. Nonlinear system identification: NARMAX methods in the

time, frequency, and spatio-temporal domains. John Wiley & Sons, 2013.

[6] EL Hocine Bouzidi, Abdelkader Outtagarts, Rami Langar, and Raouf Boutaba.

Deep q-network and traffic prediction based routing optimization in software de-

fined networks. Journal of Network and Computer Applications, 192:103181,

68

https://www.mdpi.com/1999-5903/13/12/304

69

2021. ISSN 1084-8045. URL https://www.sciencedirect.com/science/

article/pii/S1084804521001909.

[7] Lin-Huang Chang, Tsung-Han Lee, Hung-Chi Chu, and Cheng-Wei Su. Applica-

tion based online traffic classification with deep learning models on sdn networks.

Advances in Technology Innovation, 5(4):216–219, 2020.

[8] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’16, pages 785–794, New York, NY, USA,

2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939785. URL

http://doi.acm.org/10.1145/2939672.2939785.

[9] Guillaume Chevalier. Larnn: linear attention recurrent neural network. arXiv

preprint arXiv:1808.05578, 2018.

[10] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-

gio. On the properties of neural machine translation: Encoder-decoder ap-

proaches. arXiv preprint arXiv:1409.1259, 2014.

[11] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-

sentations using RNN encoder-decoder for statistical machine translation. In

EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language

Processing, Proceedings of the Conference, pages 1724–1734, 2014.

[12] David D Clark, Craig Partridge, J Christopher Ramming, and John T Wro-

clawski. A knowledge plane for the internet. In Proceedings of the 2003 con-

ference on Applications, technologies, architectures, and protocols for computer

communications, pages 3–10, 2003.

https://www.sciencedirect.com/science/article/pii/S1084804521001909
https://www.sciencedirect.com/science/article/pii/S1084804521001909
http://doi.acm.org/10.1145/2939672.2939785

70

[13] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional

neural networks on graphs with fast localized spectral filtering. Advances in

neural information processing systems, 29, 2016.

[14] Yuqi Fan and Tao Ouyang. Reliability-aware controller placements in software

defined networks. In 2019 IEEE 21st International Conference on High Perfor-

mance Computing and Communications; IEEE 17th International Conference on

Smart City; IEEE 5th International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), pages 2133–2140. IEEE, 2019.

[15] Yoav Freund and Mason Llew. The alternating decision tree learning algorithm.

International Conference on Machine Learning, 99:124–133, 1999.

[16] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and

George E Dahl. Neural message passing for quantum chemistry. In Interna-

tional conference on machine learning, pages 1263–1272. PMLR, 2017.

[17] Tony H Grubesic, Timothy C Matisziw, Alan T Murray, and Diane Snediker.

Comparative approaches for assessing network vulnerability. International Re-

gional Science Review, 31(1):88–112, 2008.

[18] Jacob SW Heglund, Panukorn Taleongpong, Simon Hu, and Huy T Tran. Rail-

way delay prediction with spatial-temporal graph convolutional networks. In

2020 IEEE 23rd International Conference on Intelligent Transportation Systems

(ITSC), pages 1–6. IEEE, 2020.

[19] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[20] Sabrina Jiang. A simple neural network, 2021. URL https://www.

investopedia.com/terms/n/neuralnetwork.asp.

https://www.investopedia.com/terms/n/neuralnetwork.asp
https://www.investopedia.com/terms/n/neuralnetwork.asp

71

[21] Sergios Karagiannakos. Best graph neural network architectures, Sep 2021. URL

https://theaisummer.com/gnn-architectures/.

[22] Thomas N Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[23] Jan Koutńık, Klaus Greff, Faustino Gomez, and Jürgen Schmidhuber. A Clock-

work RNN. 31st International Conference on Machine Learning, ICML 2014, 5:

3881–3889, 2014.

[24] Filip Krasniqi, Jocelyne Elias, Jérémie Leguay, and Alessandro EC Redondi.

End-to-end delay prediction based on traffic matrix sampling. In IEEE INFO-

COM 2020-IEEE Conference on Computer Communications Workshops (INFO-

COM WKSHPS), pages 774–779. IEEE, 2020.

[25] Stanislav Lange, Steffen Gebert, Thomas Zinner, Phuoc Tran-Gia, David Hock,

Michael Jarschel, and Marco Hoffmann. Heuristic approaches to the controller

placement problem in large scale sdn networks. IEEE Transactions on Network

and Service Management, 12(1):4–17, 2015.

[26] Aggelos Lazaris and Viktor K. Prasanna. Deep learning models for aggregated

network traffic prediction. In 2019 15th International Conference on Network

and Service Management (CNSM), pages 1–5, 2019. doi: 10.23919/CNSM46954.

2019.9012669.

[27] Jurij Leskovec. Machine learning with graphs, 2021. URL http://web.

stanford.edu/class/cs224w/.

[28] Michel Loeve. Probability theory. Courier Dover Publications, 2017.

[29] Albert Mestres, Alberto Rodriguez-Natal, Josep Carner, Pere Barlet-Ros, Ed-

uard Alarcón, Marc Solé, Victor Muntés-Mulero, David Meyer, Sharon Barkai,

https://theaisummer.com/gnn-architectures/
http://web.stanford.edu/class/cs224w/
http://web.stanford.edu/class/cs224w/

72

Mike J Hibbett, et al. Knowledge-defined networking. ACM SIGCOMM Com-

puter Communication Review, 47(3):2–10, 2017.

[30] Albert Mestres, Eduard Alarcón, Yusheng Ji, and Albert Cabellos-Aparicio. Un-

derstanding the modeling of computer network delays using neural networks. In

Proceedings of the 2018 Workshop on Big Data Analytics and Machine Learning

for Data Communication Networks, pages 46–52, 2018.

[31] AysŞe Rumeysa Mohammed, Shady A. Mohammed, and Shervin Shirmoham-

madi. Machine learning and deep learning based traffic classification and predic-

tion in software defined networking. In 2019 IEEE International Symposium on

Measurements Networking, pages 1–6, 2019. doi: 10.1109/IWMN.2019.8805044.

[32] Anthony J Myles, Robert N Feudale, Yang Liu, Nathaniel A Woody, and

Steven D Brown. An introduction to decision tree modeling. Journal of Chemo-

metrics, 18(6):275–285, 2004.

[33] J-P Onnela, Jari Saramäki, Jorkki Hyvönen, György Szabó, David Lazer, Kimmo

Kaski, János Kertész, and A-L Barabási. Structure and tie strengths in mobile

communication networks. Proceedings of the national academy of sciences, 104

(18):7332–7336, 2007.

[34] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,

Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray

Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint

arXiv:1609.03499, 2016.

[35] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur Tomaszewski.

Sndlib 1.0—survivable network design library. Networks: An International Jour-

nal, 55(3):276–286, 2010.

73

[36] Ampratwum Isaac Owusu and Amiya Nayak. An intelligent traffic classification

in sdn-iot: A machine learning approach. In 2020 IEEE International Black

Sea Conference on Communications and Networking (BlackSeaCom), pages 1–6.

IEEE, 2020.

[37] M. Pal. Random forest classifier for remote sensing classification. International

Journal of Remote Sensing, 26(1):217–222, 2005.

[38] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of train-

ing recurrent neural networks. In International conference on machine learning,

pages 1310–1318. PMLR, 2013.

[39] F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M Blon-

del, P Prettenhofer, R Weiss, V Dubourg, J Vanderplas, A Passos, D Courna-

peau, M Brucher, M Perrot, and E Duchesnay. Scikit-learn: Machine Learning

in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[40] George F Riley and Thomas R Henderson. The ns-3 network simulator. In

Modeling and tools for network simulation, pages 15–34. Springer, 2010.

[41] Lawrence G Roberts and Barry D Wessler. Computer network development

to achieve resource sharing. In Proceedings of the May 5-7, 1970, spring joint

computer conference, pages 543–549, 1970.

[42] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning

representations by back-propagating errors. Nature, 323(6088):533–536, 1986.

[43] Krzysztof Rusek, José Suárez-Varela, Paul Almasan, Pere Barlet-Ros, and Al-

bert Cabellos-Aparicio. Routenet: Leveraging graph neural networks for network

modeling and optimization in sdn. IEEE Journal on Selected Areas in Commu-

nications, 38(10):2260–2270, 2020.

74

[44] K. Tamil Selvi and R Thamilselvan. An intelligent traffic prediction framework

for 5g network using sdn and fusion learning. Peer-to-Peer Networking and

Applications, 15:751–767, 2022. doi: 10.1007/s12083-021-01280-6.

[45] András Varga. Using the omnet++ discrete event simulation system in educa-

tion. IEEE Transactions on Education, 42(4):11–pp, 1999.

[46] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S. Yu. A comprehensive survey on graph neural networks. IEEE Trans. on

Neural Networks and Learning Systems, 32(1):4–24, 2021. doi: 10.1109/TNNLS.

2020.2978386.

[47] Junfeng Xie, F Richard Yu, Tao Huang, Renchao Xie, Jiang Liu, Chenmeng

Wang, and Yunjie Liu. A survey of machine learning techniques applied to

software defined networking (sdn): Research issues and challenges. IEEE Com-

munications Surveys & Tutorials, 21(1):393–430, 2018.

[48] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolu-

tional networks: A deep learning framework for traffic forecasting. arXiv preprint

arXiv:1709.04875, 2017.

[49] Chen Zebin, Wei Yichi, Hao Tang, and Li Chuanhuang. Research on intelligent

perception model of sdn network delay. In 2021 IEEE 6th International Confer-

ence on Computer and Communication Systems (ICCCS), pages 452–457, 2021.

doi: 10.1109/ICCCS52626.2021.9449259.

[50] Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis Lau. A c-lstm neural

network for text classification. arXiv preprint arXiv:1511.08630, 2015.

	Introduction
	Motivation and Objective
	Main Contribution
	Publication
	Thesis Organization

	Background
	Neural Network
	Supervised Neural Network Models

	Decision Tree
	Random Forest
	eXtreme Gradient Boosting

	Recurrent Neural Network
	Long Short-Term Memory
	Graph Neural Network
	Graph Convolutional Networks
	Message Passing Neural Networks

	Software-Defined Networking
	Knowledge-Defined Networking

	Summary

	Related Works
	Traffic Prediction in SDN with Machine Learning
	Gated Recurrent Unit Framework for 5G network
	Traffic Classification with Deep Learning Models
	Deep Q-Network and Traffic Prediction based Routing Optimization
	Traffic Classification in SDN-IoT with Machine Learning methods
	Traffic Prediction in SDNs with LSTM
	Delay Forecasting in SDN-IoT with NARX enabled RNN
	End-to-end Delay Prediction in SDNs with NN and RF
	Traffic Predictors in SDNs with GNN

	Spatio-Temporal Graph Convolutional Networks
	Summary

	The Revised Model for SDN Delay Prediction
	Delay Prediction Graphs
	Temporal Convolution with Gated Liner Unit
	Convolution in the Spatial Dimension
	Loss function
	STGCN Approximation and Model Setting
	Summary

	Experiments and Results
	Datasets
	Ring Network Dataset
	Star Network Dataset
	Scale-Free Network Dataset
	Dataset with Different Traffic Distributions
	Abilene Network Dataset
	GEANT2 and 50-node Networks Dataset

	Data Preprocessing
	Results and Comparison
	Simulation Setup
	Performance Metrics
	Results for 15-Node Networks
	Results and Comparison for Abilene Network
	Results and Comparison for GEANT2 and 50-node Networks

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

