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Abstract— Recently, there is a renewed interest in Automatic
Test Pattern Generation (ATPG) based on Boolean Satisfiability
(SAT). This results from the availability of very powerful SAT
solvers that have been developed in the last few years. Studies
have shown that SAT-based ATPG tools can clearly outperform
classical approaches for hard-to-test faults. While the ATPG
problem has to be solved on a circuit, SAT solvers work on
Conjunctive Normal Forms (CNFs).

In this paper the problem to efficiently generate a SAT instance
from a circuit is studied. Experimental results on large industrial
circuits show the efficiency of the approach.

I. INTRODUCTION

After a circuit has been produced, it is important to test
its functional correctness. This is usually done by choosing a
fault model and then applying test vectors that show the faults,
i.e. the computed output vector of the correct and the faulty
circuit differ. While easy-to-detect faults are identified by
random pattern simulation, for the harder faults Automatic Test
Pattern Generation (ATPG) is applied. (For a more detailed
overview on testing see e.g. [6].)

The classical ATPG algorithms are based on backtracking,
like e.g. FAN [4] or PODEM [5]. While ATPG for combina-
tional circuits was considered as a “solved problem” some
years ago, due to the increasing complexity of circuits –
according to Moore’s law – classical algorithms reach their
limits.

As one alternative SAT-based ATPG, that was originally
proposed in the early 90s (see [7], [12]), was studied. This
revisiting is mainly due to the tremendous improvements in
SAT solvers in the last 10 years [8], [9], [2]. Recent work
has shown that SAT-based ATPG gives very good results and
clearly outperforms classical approaches especially for hard
faults. In [11] it has been shown that the SAT-based ATPG
tool PASSAT is very robust and is also applicable to large
industrial circuits. A detailed study on the integration of a SAT-
based ATPG engine into an industrial design can be found in
[13].

One major problem in general in SAT-based ATPG is that a
circuit has to be transformed into a SAT instance, i.e. a CNF.
It has already been observed in [3] that there are many ways to
encode the instance and depending on the encoding significant
differences in run time and memory consumption result.

In this paper an automatic way of generating SAT instances
for multi-input gates, as they frequently occur in industrial
circuits, is presented. While other approaches, like proposed

in [11], [12], map multi-input gates to sequences of two-input
gates (and by this generate many additional auxiliary variables
in the SAT instance), in our approach this overhead is removed.
This results in more compact instances. Experiments show that
not only the memory consumption is reduced, but also the run
time of SAT-based ATPG was significantly improved.

II. SAT-BASED ATPG

In the following SAT-based ATPG as introduced in [7],
[12], [11] is briefly reviewed. First, it is shown how an ATPG
problem is transformed into a SAT problem and second, the
usage of a 4-valued logic to encode unknown signal values
and signals at high impedance is shown.

A. SAT Encoding

To find a test pattern for a given circuit C and a fault F
two steps have to be performed1: First, a circuit is generated
that is able to verify that a pattern of input values is a test
pattern for F in C. (Such a circuit is called miter [1].) And
second, this circuit is transformed into a Boolean formula.

In a miter the output behavior of two instances of C are
compared, where the faulty behavior is modeled in one of
the instances. An assignment of Boolean values to i1, . . . , in
(corresponding to the Primary Inputs (PIs)) is a test pattern
if and only if at least one output value oj , j ∈ {1, . . . ,m}
differs. At least one output value differs if and only if the
output o of the miter circuit becomes 1. In this way the
ATPG problem is translated into the following propositional
logic problem: “Does there exist an assignment to the Boolean
variables i1, . . . , in so that the Boolean variable o becomes 1”?

The propositional problem can be derived directly by trans-
forming the circuit into a Conjunctive Normal Form (CNF).
The CNF for a single gate is its characteristic function where
each signal is identified with a Boolean variable. The function
evaluates to true if and only if the variables’ assignments are
a legal assignment to the gate. The CNF for a circuit is the
conjunction of the CNFs for all gates.

To classify the fault, the SAT instance has to be solved,
that represents the miter circuit under an additional condition
that forces o to 1. This condition guarantees that at least on
pair of outputs assume different values. The solving process is
done by an arbitrary SAT solver. If the CNF is satisfiable, the

1In practice normally both steps are done at the same time. The separation
allows a simple presentation.



TABLE I
ENCODING OF THE 4-VALUED DOMAIN

X Encode Interpretation
cx c∗x

0 0 0 Signal X is 0
1 1 0 Signal X is 1
U 1 1 Signal X is unknown
Z 0 1 Signal X is at high impedance

TABLE II
DISTRIBUTION OF n-INPUT GATES

Circuit 2 3 4 5 6 7 8
p44k 14461 3257 1702 0 0 0 85
p80k 43487 9916 5167 0 0 0 0
p88k 48594 4162 549 0 0 0 0
p99k 47608 5191 338 2 0 2 15
p177k 84792 6324 1397 0 0 0 0
p462k 203050 14050 2726 461 0 0 0
p565k 376450 18531 1982 0 0 0 0

p1330k 421658 44014 4076 0 0 0 0

satisfying assignment to the variables provides a test pattern.
If the solver proves unsatisfiability, the fault is undetectable.

B. Four-valued Logic

As described above, for each signal in the circuit one
Boolean variable is needed to encode its Boolean value.
However, in industrial circuits it is insufficient to model only
Boolean values. In these circuits two additional (non-Boolean)
values (U and Z) may occur. Taking these two possible states
into account results in a 4-valued logic.

Because SAT is only defined on Boolean formulas, each of
the four values has to be encoded by two Boolean variables.
There exist 24 possible encodings of this 4-valued logic. A
detailed overview is given in [3]. Table I shows the encoding
used in the implementation. This encoding works well on
circuits with a large portion of Boolean gates. The variable
c∗x indicates whether a signal is Boolean or not.

III. CLAUSE ENCODING

In the last section the direct conversion of a gate into a CNF
as used in previous approaches was briefly described. In this
section this is considered in detail.

In former approaches only gates with two inputs are con-
sidered (cf. [11], [12]). Gates with more than two inputs, in
the following called multi-input gates, are decomposed.

Table II shows the distribution of multi-input gates in some
industrial circuits from NXP Semiconductors. These circuits
are discussed in detail in Section V. In each column the
accumulated number of AND, NAND, OR, and NOR gates
with the respective number of inputs is shown.

In this section different types to model such a multi-input
gate are studied. For the sake of convenience, in the following,
an n-input gate is called n-gate.

A. Two-input vs. Multi-input Gates

In ATPG tools multi-input gates are often broken down to
2-gates which are connected in a cascade (cf. [11]). The formal

TABLE III
CNF SIZES FOR SOME n-GATES

2-input Multi-input Bounded
Gate Vars Cls Vars Cls Vars Cls

2-AND 6 8 6 8 6 8
3-AND 10 16 8 13 8 13
4-AND 14 24 10 22 10 22
5-AND 18 32 12 39 12 39
6-AND 22 40 14 72 16 47
7-AND 26 48 16 137 18 52
8-AND 30 56 18 266 20 61
2-OR 6 9 6 9 6 9
3-OR 10 18 8 15 8 15
4-OR 14 27 10 25 10 25
5-OR 18 36 12 43 12 43
6-OR 22 45 14 77 16 52
7-OR 26 54 16 143 18 58
8-OR 30 63 18 273 20 68

definition of this construction is given by the following: Let �
be the gate’s function with inputs i1, . . . , in (where n > 2) and
output o. Then o is calculated as follows:

s1 := i1 (1)
sj := ij � sj−1 for j = 2, . . . , n (2)
o := sn (3)

where s2, . . . , sn−1 are connections between the 2-gates. This
approach is illustrated for a 4-AND gate in Figure 1.

Because of the auxiliary signals (in Figure 1 denoted by t1
and t2) there is an overhead of n − 1 variables in 2-valued
and 2 · (n− 1) variables in the 4-valued logic.

All auxiliary variables can be dismissed, if an n-gate is
modeled as one single gate. However, the number of clauses
needed to model an n-gate in 4-valued logic grows exponen-
tially. Table III shows the CNF sizes for n-input AND and OR
gates. The columns ‘2-input’, ‘Multi-input’, and ‘Bounded’
present the numbers for the approach “divide the n-gate into
(n−1) 2-gates”, “use normal n-gate”, and “use bounded multi-
input gates”, respectively. The bounded multi-input approach
is explained in detail in the next section. ‘Vars’ and ‘Cls’ give
the number of variables and clauses, respectively. Note that
the sizes for AND and OR gates are equal to the sizes for
NOR and NAND gates, respectively.

As basic gates, the CNF sizes of the 2-AND and the 2-
OR gates are equal in all three cases. At each input level
the number of variables in the 2-input approach grows by
four, whereas, in the multi-input approach only two additional
variables in each level are needed. So the difference of the two
approaches is 12 variables for an 8-gate. However, the number
of clauses needed to model an AND gate or an OR gate with
more than five inputs exceeds the number needed in the 2-input
approach. More than four times the clauses for an 8-OR gate
or an 8-AND gate are required. The reason is the exponential
growth of needed clauses. To model an n-AND 2n + n + 2
clauses are needed, while an n-OR requires 2n + 2 · n + 1
clauses.

An example of these two approaches is shown in Figure 2.
The 4-AND gate from Figure 1 is converted into a CNF, where



Fig. 1. 4-AND gate modeled by a sequence of three 2-AND gates

(x1 + x2 + t1) · (x∗1 + x∗2 + t
∗
1) · (t1 + t

∗
1) ·

(x1 + x∗1 + t1) · (x2 + x∗2 + t1) · (x∗1 + x2 + t∗1) ·
(x1 + x∗2 + t∗1) · (x∗1 + x∗2 + t∗1) ·
(t1 + x3 + t2) · (t∗1 + x∗3 + t

∗
2) · (t2 + t

∗
2) ·

(t1 + t∗1 + t2) · (x3 + x∗3 + t2) · (t∗1 + x3 + t∗2) ·
(t1 + x∗3 + t∗2) · (t∗1 + x∗3 + t∗2) ·
(t2 + x4 + y) · (t∗2 + x∗4 + y∗) · (y + y∗) ·
(t2 + t∗2 + y) · (x4 + x∗4 + y) · (t∗2 + x4 + y∗) ·
(t2 + x∗4 + y∗) · (t∗2 + x∗4 + y∗)

(a) 4-AND consisting of 2-ANDs

(x1 + x2 + x3 + x∗4 + y∗) · (x1 + x2 + x∗3 + x4 + y∗) ·
(x1 + x∗2 + x3 + x4 + y∗) · (x∗1 + x2 + x3 + x4 + y∗) ·
(x1 + x2 + x∗3 + x∗4 + y∗) · (x1 + x∗2 + x3 + x∗4 + y∗) ·
(x∗1 + x2 + x3 + x∗4 + y∗) · (x1 + x∗2 + x∗3 + x4 + y∗) ·
(x∗1 + x2 + x∗3 + x4 + y∗) · (x∗1 + x∗2 + x3 + x4 + y∗) ·
(x1 + x∗2 + x∗3 + x∗4 + y∗) · (x∗1 + x2 + x∗3 + x∗4 + y∗) ·
(x∗1 + x∗2 + x3 + x∗4 + y∗) · (x∗1 + x∗2 + x∗3 + x4 + y∗) ·
(x∗1 + x∗2 + x∗3 + x∗4 + y∗) · (x4 + x∗4 + y) ·
(x3 + x∗3 + y) · (x2 + x∗2 + y) ·
(x1 + x∗1 + y) · (y + y∗) ·
(x1 + x2 + x3 + x4 + y) · (x∗1 + x∗2 + x∗3 + x∗4 + y∗)

(b) 4-AND as one single gate

Fig. 2. Clauses for the 4-valued 4-AND gate

in Figure 2(a) the cascaded 2-AND approach is used and in
Figure 2(b) the 4-AND gate was modeled as a single gate. In
the multi-input approach the CNF is smaller: Two clauses and
four variables less than in the 2-input approach are needed.
This corresponds to line three in Table III.

B. Bounded Multi-input Gates

Above, the advantages and drawbacks of modeling multi-
input gates for many inputs were described: In the 2-input
approach the number of variables grows significantly. In the
multi-input approach the number of variables grows slightly,
but there is an exponential growth of clauses, which is
smaller in the 2-input approach. Up to five inputs the number
of clauses is acceptable. Therefore the bounded multi-input
approach is proposed. This is a combination where the multi-
input approach is used, but the number of inputs per gate is
limited.

According to Table III the input number is set to five. To
model a gate with more than five inputs, too many clauses are
required while, on the other hand, the variable saving in gates
with less than five inputs are low.

In the bounded multi-input approach, gates with more than
five inputs are divided into sequences of 5-gates.

Fig. 3. Clause generation working flow

TABLE IV
EXPERIMENTAL RESULTS

2-input Bounded multi-input
Circuit Aborted Run time Aborted Run time
p44k 2583 25:11h 0 2:18h
p80k 1 52:24m 1 42:58m
p88k 0 12:13m 0 11:41m
p99k 0 9:07m 0 8:41m
p177k 1337 13:26h 941 10:28h
p462k 155 3:53h 129 3:31h
p565k 0 2:42h 0 2:23h

p1330k 1 5:28h 1 4:58h

IV. CLAUSE GENERATION

Figure 3 shows the general flow of the clause generation.
Consider the box on the left side: First, the truth table of
a gate’s function is created. This table is translated into a
CNF using the script table2cnf. This CNF is minimized by
espresso [10]. Since the Boolean function is small enough,
an optimal minimization algorithm can be applied. The script
pla2cnf converts the minimized CNF into C++-code that adds
clauses to the SAT solver. This function is independent of the
used SAT solver, since an abstract interface is used.

This work flow is applied once for each gate type and
for each number of gate inputs. Each pass creates a function
in C++-code which is exported in a library. This library is
included in the ATPG tool. For each gate occurring in the
circuit that has to be added to the SAT solver, the respective
function in the library is called.

V. EXPERIMENTAL RESULTS

The experiments were carried out with an improved version
of PASSAT [11]. As SAT solver MiniSat [2] was applied. For
each fault, first, the solver was started with a timeout of 5
seconds where the solver is allowed to branch on all variables
and, second, if the search was aborted with a timeout, the
solver was started with a timeout of 15 seconds where the
solver can branch on PIs only (cf. [11]).



TABLE V
INSTANCE SIZES

2-input Bounded multi-input
Max Mean Max Mean

Circuit Vars Cls Vars Cls Vars Cls Vars Cls
P44k 103,154 339,844 71,933 221,436 101,491 328,732 60,446 209,001
P80k 396,956 1,328,604 8,308 23,328 356,452 1,293,556 7,483 22,697
P88k 96,071 302,362 5,276 15,951 93,133 298,652 5,047 15,676
P99k 35,892 131,511 5,689 16,687 34,640 129,746 5,301 16,139
P177k 730,397 2,492,841 73,506 227,871 702,975 2,460,985 69,908 222,516
P462k 406,847 1,375,884 7,473 22,346 391,113 1,361,732 7,336 22,399
P565k 1,735,442 5,575,293 4,829 15,827 1,705,996 5,536,393 4,663 15,638
P1330k 567,331 1,943,536 21,459 64,170 552,049 1,925,728 20,580 62,929

Table IV shows the results for some industrial benchmarks
from NXP Semiconductors Germany GmbH, Hamburg, Ger-
many. All experiments were carried out on a Dual DualCore
64-Bit Xeon system (3.0 GHz, 32 GByte, GNU/Linux). Col-
umn ‘Circuit’ shows the circuit’s name. The name provides
information on the circuit size, e.g., p565k means the circuit
contains about 565,000 gates.

The columns ‘2-input’ and ‘Bounded multi-input’ show the
results of the two approaches for clause encoding, where the
columns ‘Aborted’ and ‘Run time’ give the number of timeouts
during the search2 and the total run time of the entire ATPG
search, respectively.

As can be seen, on all circuits, the results of the bounded
multi-input approach are better than the results of the 2-input
approach. On some circuits the new approach even yields
substantially better results (e.g. p44k) and on some circuits the
gain is small (e.g. p88k). This can be explained by considering
Table II. Consider the relative number of multi-input gates
(with respect to the number of all gates). In circuits with
much gain, this number is high. In these cases less variables
are needed and therefore the SAT instance can be solved
more easily. Analogically, circuits with small gain have an
low number of multi-input gates.

Table V provides further insight; an overview on the size of
the SAT instances is given. The columns ‘Max’ and ‘Mean’
give the largest and the average size, respectively, where the
columns ‘Vars’ and ‘Cls’ give the number of variables and
clauses, respectively.

It can be seen that the bounded multi-input approach gener-
ates SAT instances with less variables and (except for p462k)
with less clauses than the 2-input approach. Besides reducing
the run time this also implies savings in memory requirements.

VI. CONCLUSIONS

In this paper the efficient generation of instances for SAT-
based ATPG was studied. With the proposed approach, multi-
input gates can be translated very compactly. Experimental
results demonstrated the efficiency of the approach. Beside
the memory reduction, also run time could be saved.

2An abort occurs when the CNF for a fault is not solvable within 20
seconds.
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