
An Experimental Analysis of SEU Sensitiveness on

System Knowledge-based Hardening Techniques

O. Ruano, P. Reyes, J.A. Maestro

Universidad Antonio de Nebrija

Madrid, Spain

L. Sterpone

Politecnico di Torino

Torino, Italy

P. Reviriego

Universidad Carlos III de Madrid

Madrid, Spain

Abstract- Logic Soft Errors caused by radiation are a major

concern when working with circuits that need to operate in
harsh environments, such as space or avionics applications,
where soft errors are traditionally referred as Single Event
Effects. In this paper, system knowledge-based hardening
techniques using recursive structures for the implementation of
moving average filters that provide protection against Single
Event Upsets are evaluated through two fault injection systems
based on simulation and emulation respectively. Fault injection
campaigns show that system knowledge-based redundancy
techniques can achieve the same level of dependability as
standard redundancy techniques, such as Triple Modular
Redundancy, while having optimal cost.

I. INTRODUCTION

Electronic devices are sensitive to radiation that may

happen both in the space environment and at the ground

level. The continuous evolution of manufacturing

technologies makes integrated circuits more sensitive to

radiation effects, such as Single Event Upsets (SEUs). The

main causes are related to the shrinking coupled with voltage

scaling and high operating frequencies correspond to

significantly reduced noise margins, which make circuits

more sensitive to radiation, as well as to other phenomena

such as crosstalk or internal noise margins that cause

transient faults. For these reasons several researchers have

done investigations both to develop fault-tolerance methods

in order to mitigate SEUs and to analyze their influence in

the electronic system deployed for safety or critical mission

applications.

Redundancy-based techniques are widely applied to

provide protection against SEUs effects. These techniques

use additional hardware components or additional

computational time to detect the presence of SEUs

modifying the expected circuit operations and masking SEUs

propagation to the circuit’s output. When fault masking is

mandatory, designers may resort to Triple Modular

Redundancy (TMR) approach. The basic concept of the

TMR architecture is that a circuit can be hardened against

SEUs by designing three copies of the same circuit and

building a majority voter on the outputs of the replicated

circuit. Hardening a design through TMR implies severe

overheads since all the hardware logic resources needed for

the TMR circuitry are triplicated.

In this paper, the effectiveness against SEUs of hardening

techniques based on recursive structures are evaluated using

two different fault injection platforms: a simulation-based

approach working on a VHDL model of the circuit under test,

and a new emulation-based fault injection technique able to

perform injection campaigns in a fraction of time required by

simulation-based approaches, while still supporting most of

their positive features.

The main contribution of this paper is composed of two

aspects. On one hand, it provides an effective demonstration

of the fault tolerance capabilities that the system knowledge-

based techniques offer while reducing area overhead versus

standard TMR techniques. On the other hand, a novel fault

injection approach using SRAM-based FPGA partial

reconfiguration is compared with a simulation–based

approach showing an increasing of the performance of two

orders of magnitude.

Experimental results have been executed running several

fault injection campaigns on different versions of the

proposed system knowledge-based techniques. The achieved

results show that the overhead introduced by the proposed

techniques is reduced versus the standard TMR hardening

technique, while the same degree of fault tolerance is

provided. Furthermore, experimental analysis demonstrated

that emulation-based fault injection has a speed-up better

than the simulation-based technique.

The paper is organized as follows. Section 2 presents a

background on the hardening techniques and fault injection

platforms previously developed. Section 3 describes the two

platforms whose results are compared. Experimental results

about effectiveness and area cost of the evaluated circuit

against TMR are illustrated and analyzed in Section 4.

Finally, conclusions and future works are exposed in Section

5.

II. BACKGROUND

The problem of radiation on electronic devices has been

traditionally addressed in literature.

A classic reference by J.F. Ziegler is offered in [1], where

the basic physics of radiation effects is detailed. Different

rates of errors at several terrestrial positions are described,

providing a quantitative analysis of the radiation effects. One

of the factors that measure the sensitivity of circuits to

radiation is the error rate. Several works try to provide

models for this error rate, in order to foresee the behaviour of

the circuit in a particular environment. A Soft Error Rate

computation algorithm is presented in [2], which can be

applied to combinational circuits. The parametric waveform

model is based on the Weibull function. Experiments show

that the algorithm is linear in the number of nodes, and

results are close to SPICE simulations.

A methodology to compute the effects of charged particle

inducing delay errors (Soft Delay Errors) is presented in [3].

The different node sensitivity is computed in order to

1-4244-1161-0/07/$25.00 ©2007 IEEE 261

employ node hardening techniques, and therefore, increase

the reliability of CMOS circuits. Techniques to detect and

correct errors are very common too. The goal of such

techniques is to mitigate the effects of radiation, both by

detecting errors when they happen, and by trying to correct

them, thus getting rid of the negative effect. In [4], the

problem of Concurrent Error Detection (CED) is discussed

in Burst-Mode machines. An enhanced duplication process

is proposed in order to give a solution to this problem,

showing an interesting saving in hardware. A technique to

minimize the impact of soft errors in circuits is presented in

[5]. Through the use of complementary pass transistor

devices, those gates affected by SEUs are isolated, and

therefore their negative effect is removed. This is achieved

with limited area, delay and power overheads.

In the memory research field, a new BIRA (built-in-

redundancy-analysis) algorithm is presented in [6], in order

to allocate 2D redundancy using 1D local bitmap. The

proposed experiments offer a high repair rate, close to the

existing optimal algorithms. In [7], the problem of sub-65nm

designs is described. Since it is stated that classical fault-

tolerance techniques for soft error detection are expensive, a

recently developed Built-In-Soft-error-Resilience (BISER)

technique is proposed, which seems effective for soft error

blocking or detection. When the validation of the

effectiveness of electronic circuits hardening techniques

against SEUs is considered, several approaches should be

mentioned.

Several works have already explored the use of FPGAs for

speeding-up fault injection of permanent faults [8][9]. In [10]

the extension to the injection of transient fault is proposed,

where an instrumented model of the system under analysis is

exploited. Although very efficient in reducing the CPU time

needed for evaluating high numbers of faults, it mandates the

introduction of fault-injection-oriented features in the model,

and therefore it cannot be exploited in those applications

where intellectual property (IP) cores coming from third

parties are used, for which the model’s source code is not

available.

The authors of [11] and [12] proposed alternative

approaches to inject faults while emulating the system using

FPGA devices, where partial reconfiguration is employed to

perform the injection of SEUs. The most important benefit

stemming from these approaches is that the source model of

the system under analysis is not needed, while only a netlist

suitable for being placed in an FPGA is required. On the one

hand, the intellectual property of the IP core is preserved; on

the other hand, the SEE analysis is performed on the very

same model that will be deployed in the final system,

differently from [11] where the model has to be changed to

insert the fault-injection-oriented features. The major

drawback of [12] is the speed: being based on JBits [14] and

on a slow communication interface between the board

carrying the emulated system, and the host computer

managing the experiment, the number of faults that may be

injected is quite limited. The authors reported that about 100

msec are needed for injecting, and classifying the effect of

one SEU.

The major drawback of [13] is the portability: a specific

custom-developed board is needed to perform fault injection.

The system is very time-efficient (44 msec are needed for

injecting and classifying the effect of one SEU), but it may

be quite expensive to implement.

III. OVERVIEW ON THE FAULT-INJECTION PLATFORM

In this section, the descriptions of the SEUs simulation

and emulation platforms used to study the effectiveness of

the electronic circuits are exposed.

A. Simulation-based platform

The purpose of this platform [15] is to help designers to

predict and explore potential weak points on ICs sensitive to

hazards in the early design cycles without the need of

developing a prototype. It can also be used to assess the

effectiveness of a given protection technique. The platform

is composed of the SST simulator developed by the ESA

Data Systems Division and Matlab. A commercial HDL

simulator (i.e. ModelSim) is used to run the simulations. For

a given circuit under test, we would generate a number of

testcases in terms of the corresponding input and output data

using Matlab. We would also generate a number of test

configurations in terms of the soft errors inserted using the

SST. The testcases would be designed to fully test the circuit

functionality and performance while the test configurations

would ideally reflect the soft error environment that is

expected for the device operating conditions. Then,

combinations of both can be easily tested by just selecting

the appropriate input and output data files and test

configuration file. In fact, with a simple script, the testing of

all relevant combinations can be easily automated.

As it can be seen in figure 1 three independent modules

make up the platform.

Fig. 1 Scheme of the Simulation-based platform used

1. SEUs Simulation Tool (SST): This component consists

of a set of modules used to prepare the environment to

generate soft errors in both sequential and

combinational logic.

2. HDL Simulator: This module is in charge of holding

the circuit to test, and performing a simulation at the

design stage. The description of the environment is

divided into two parts: the circuit and the test bench. In

particular, the test bench will produce the different test

scenarios for the circuit (based on the input values

provided by the Matlab module), will capture the

circuit outputs, and will compare them with the

expected results (also provided by Matlab). In case both

are different, that will indicate an error, which will be

logged in the system for further study. This

SST

Matlab

Log

HDL Simulator

VHDL Circuit

Comparator
Test Bench

Inputs
Sim

Behavior

SST

Matlab

Log

HDL Simulator

VHDL Circuit

Comparator
Test Bench

Inputs
Sim

Behavior

262

environment is generic (independent of the circuit

behaviour) for circuits devoted to signal processing (or

at least a significant part of them). It is also flexible in

the way that it is straightforward to generate different

input signals to test the circuit operating in several

environments. For other kinds of circuits (e.g.,

controllers), another application rather than Matlab

would be designated to hold the golden data.

3. Matlab: This module compares the theoretically correct

behaviour of the system with the actual outputs

produced by the HDL simulator. It has the advantage

that the Matlab code does not need to reflect the actual

circuit implementation, it only needs to be functionally

equivalent. This facilitates the use of a single Matlab

model to explore different implementation alternatives.

The difference between both behaviours will indicate

the presence of a SEU, what will trigger the mechanism

to detect the source of such an error.

B. Emulation-based platform

The emulation-based platform is composed of the

following modules: a host computer; an FPGA board

equipped with a Virtex II-Pro device, and a serial

communication link to the host computer. The host computer

is primarily used for configuring the Virtex-II Pro and for

the generation of a fault location list. However, during the

execution of the fault injection experiment, its only purpose

is to provide a user-friendly interface to run the fault-

injection experiments and to collect the results in terms of

fault-effect classification.

Fig. 2 Architectural-diagram of the emulation-based fault injection

approach

The FPGA board is the core of the fault-injection system

and its layout is depicted in Fig. 2. It is composed of four

components interconnected by an On-chip Peripheral Bus

(OPB):

• Timing Unit: it drives the UUT clock and reset. The

clock of the UUT has the same frequency of the FPGA

device layout. A port connected to the OPB Bus defines

its functionality.

• Unit Under Test (UUT): it is the circuit under test and it

may consist of an IP core and an own memory. The IP

core’s input and output ports are connected to the OPB

Bus while the reset and clock signals are connected to the

Timing Unit.

• ICAP: it is the Internal Configuration Access Port

provided by last generations of Xilinx FPGAs. It allows

the access to the FPGA configuration memory through an

internal port in order to perform partial reconfiguration

without the support of an external hardware. For the

purpose of this work, we configured the ICAP in such a

way that it is able to access to all the memory elements

(such as Flip-Flops or Latches) of the UUT IP core.

• PowerPC microprocessor: it is hardwired in the FPGA

device and it has two functionalities. At first, it performs

the fault injection of SEUs within the memory elements

of the UUT IP core through the execution a fault-injector

algorithm. Latter, it communicates the fault-injection

experiment results to the host computer through a serial

communication link.

The serial communication link is supported by a RS-232

cable that connects the FPGA board to the host computer.

The execution phase of the used fault injection approach is

performed by several procedures included within the fault-

injector algorithm as illustrated in the Figure 3.

Fig. 3 The emulation-based fault injection algorithm

The algorithm is executed by the PowerPC and it consists

of three parts: pre-running, campaign and fault injection

results. The Pre-running starts the fault injection experiment.

At first, it loads within the PowerPC memory the test

patterns that will be applied to the UUT and initializes the

UUT IP memory (i.e. if the IP core is a processor the UUT

IP memory will be loaded with the desired program).

Secondly, it performs a golden run of the UUT storing the

total number of Clock Cycle (CC) and the Golden Output

(GO) produced. The Campaign performs the fault injection

of the selected number of faults (NF). The following steps

are executed for the injection of each SEU:

1. The procedure reset_UUT() resets the UUT and

configures the Timing unit in such a way that it sends a

reset to the UUT.

2. A fault injection time (FT) and a fault location (FL) are

randomly selected considering the number of clock cycle

CC and the set FL available.

3. The procedure run_UUT(FT) stars the execution of the

UUT until the clock cycle FT is reached. This operation

is performed by configuring a Timing Unit’s terminal

counter at the FT value.

4. The procedure read_value(FL) reads the value of the

fault location FL. This procedure reads directly the

content of the flip-flop or latches from the configuration

memory through the usage of the ICAP port.

5. The procedure Inject_SEU (FL,!Value) partially

reconfigures the bitstream of the FPGA writing the

opposite value within the content of the flip-flop or

latches identified by FL. Therefore a SEU is injected in

the considered fault location.

/*Pre-running*/

FI_initialization()
{CC,GO}=Golden_Run_UUT()
/*Campaign*/

for number of injected faults NF
{
reset_UUT()
{FT,FL} = random (CC,FL)
run_UUT(FT)
Value= read_value(FL)
Inject_SEU(FL,!Value)
FCL=monitor_UUT(CC,GO)
}
/*Fault Injection Results*/

communication_host(FCL)

Power PC

OPB Bus

Memory

ICAP
UUT

Timing
Unit

Clk

IP Memory

IP Core

PLB Bus

Rst

263

6. The procedure monitor_UUT(CC,GO) continues the

execution of the UUT until CC is reached. During the

execution, it monitors the UUT output ports reading the

data on the RS-232 interface and comparing their value

with the UUT golden outputs. It finally updates a fault

classification list (FCL) with the results obtained by the

fault injection and classifying each injected SEU as silent,

if the output produced by the UUT are equal to the GO;

wrong answer, if a mismatch was detected.

When the fault injection campaign is concluded, the

PowerPC communicates the fault injection results to the host

computer returning the FCL through the procedure

communication_host (FCL).

IV. EXPERIMENTAL RESULTS

In this section, we first give an overview of the evaluated

system knowledge-based techniques based on FIR filters

used to compare the protection effectiveness results

provided by the simulation and emulation-based platforms.

Finally, fault injection results are presented and commented.

A. The case study: system knowledge-based hardening

techniques
To come up with optimal Single Event Effects (SEEs)

protection techniques, we need to take the requirements of

the application in which the circuit is used into account. For

the specific case of moving average filters in recursive form,

the case study of this paper, a further explanation of the

protection techniques tested can be found in [16]. These

developed techniques offer a set of possible alternative

solutions to TMR and they are specifically designed for

moving average filters.

Moving average filters are one special type of FIR filter

which shows some interesting properties for implementation

and they are used in many applications such as industrial

controls or automotive. They perform the following

operation [16].

 �
−

=

−=

1

0

][
1

][
N

i

inx
N

ny (1)

Where x[n] is the input signal, y[n] the output and N is the

number of input samples that are processed each time to

compute each y[n] sample and, normally, its value is a power

of two, so that the division can be implemented with a shift

operation. In this case, the filter needs only adders.

A more efficient implementation can be derived by

rewriting (1) as follows:

])[][(
1

]1[][Nnxnx
N

nyny −−+−= (2)

In this case, only two adders are needed irrespective of the

value of N. In fact, this implements the FIR filter using an

Infinite Impulse Response (IIR) structure.

A first look at the effect of SEUs on both structures shows

that in the case of the more efficient IIR implementation,

SEUs in the delay line or in the accumulator can cause errors

in the output that will persist until the filter is reset.

Therefore, SEEs can influence the choice of the

implementation structures for digital filters, and suggests the

interest of smart protection techniques. Depending on the

application requirements a number of protection techniques

have been proposed in [17].

The first one consists in adding protection through a

decimated filter. If the application can tolerate occasional

errors on the output of the filter, the computation of the

output can be done in parallel by another structure added to

the filter, for the sake of comparison. Obviously, if this

added structure is a replica of the filter itself, we would be

doubling the complexity of the system. To avoid this

situation, this parallel structure will be implemented with a

decimated filter, which has a structure simpler than a regular

filter, with the drawback that it only computes the right

output one out of N cycles.

The second scheme consists in adopting a double parity

architecture. One alternative to using TMR in all registers

consist of computing a two-dimensional parity, where for

each input value and each bit position it is computed a parity

on two bits. These two sets of parity bits, form the

accumulated parity of the circuit, which is constantly being

updated. Dynamically, each time a new value reaches the

circuit, this parity bits are re-checked and compared with the

accumulated values. Therefore, single SEUs will be

undoubtedly identified and corrected [17].

B. Fault Injection Results
In this section we present the experimental results

obtained from the fault injection campaigns on several

version of a FIR filter implemented with IIR structure (see

Eq, 2).

Four different FIR filters have been implemented:

1. IIR_Basic: it is the plain version of the Infinite Impulse

Response filter.

2. IIR_RedTec: it is the FIR Filter hardened using a

decimated filter.

3. IIR_SystemKnowledge: it is the FIR Filter hardened

adopting a two-dimensional parity architecture.

4. IIR_TMR: it is the FIR Filter hardened adopting standard

Triple Modular Redundancy (TMR).

In order to compare the simulation-based versus the

emulation-based fault-injection we synthesized the circuits

using an ASIC and FPGA –oriented synthesizers.

The characteristics of the implemented FIR Filters on the

SRAM-based FPGA are illustrated in Table I where the

number of used Flip-Flops (FFs), Slices and Look-Up Tables

(LUTs) are reported. The recursive solutions developed need

less resources than the standard TMR technique. In

particular, the IIR_SystemKnowledge technique drastically

reduce the number of needed FFs while introducing a

minimal overhead of used LUTs.

TABLE I

FPGA-BASED SYNTHESIS CHARACTERISTICS OF THE IMPLEMENTED FIR

FILTERS

Circuit Slices

[#]

FFs

[#]

LUTs [#]

IIR_Basic 82 140 43

IIR_RedTec 108 158 212

IIR_SystemKnowledge 178 196 287

IIR_TMR 290 420 260

The equivalent results in terms of FFs and total gates

264

obtained using an ASIC synthesizer with a 0.25µm TSMC

library are shown in Table II. As it can be noticed, the

number of FFs is exactly the same as the one obtained for the

FPGA-based synthesis. Moreover, the area overhead

introduced by the recursive solution is drastically reduced if

compared with the standard TMR technique.

TABLE II
TSMC 0.25 µM AND 50-MHZ SYNTHESIS

In order to implement the emulation-based fault injection

platform described in section 3.2, we used a Xilinx Virtex-II

Pro Platform SRAM-based FPGA [18] embedding a

PowerPC 405 [19]. The fault injection campaigns have been

performed injecting randomly SEUs within the FFs used by

the circuits. The workload for each injection was of 1,000

input stimuli.

TABLE III
FAULT GRADING

Circuit
Injected

SEU

Wrong

Answers

Golden

Outputs

IIR_Basic 50,000 50,000 0

IIR_RedTec 50,000 21 49,979

IIR_SystemKnowledge 50,000 0 50,000

IIR_TMR 50,000 0 50,000

The obtained fault classification is shown in Table III,

where the number of injected faults and the fault grading are

reported. It can be noticed that the IIR_SystemKnowledge

solution provides complete protection against SEUs affecting

FFs of the delay line, as the TMR solution. Comparing this

results with the ones obtained using software-based fault

injection (see [16] for more details) the next points can be

concluded:

For the RedTec protection technique, the average cycles

used for the filter to correct its behavior after the SEU

injection is around 16 cycles.

For the SystemKnowledge Technique, the filter is 100%

effective againts SEUs, similar to TMR.

We have contrasted the emulation-based fault injection

platform with the SST simulator tool [15] in order to double-

check the efficiency of the protection techniques and

compare the results obtained with both fault injection

platforms.

 The SST tool corroborates the protection efficiency

obtained with the emulation-based platform, what proves

that the different redundancy techniques are valid.

Since the results from the two platforms are similar and

comparable, we can conclude that any of them could be used

to perform a fault injection analysis of a given system. As a

time estimation, the developed emulation platform needs, on

average, 3.95msec versus 671msec of the SST simulation-

based approach.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have evaluated the fault tolerance

capabilities of recursive-oriented hardening techniques

versus the standard Triple Modular Redundancy (TMR)

technique, using two different fault injection platforms: a

simulation-based approach working on a software model of

the circuit under test and a novel emulation-based fault

injection approach. Experimental results demonstrated that

the system knowledge-based redundancy techniques may

achieve the same level of fault tolerance as the standard

TMR approach while optimizing the circuit area overhead.

Furthermore, as the protection effectiveness results from the

two platforms give similar conclusions, it could be

extrapolated that the two fault injection platforms are equally

useful in order to perform fault injection analysis on any

given type of systems, although an initial time comparison

puts in perspective that hardware emulation is faster than

software simulation.

As future work we plan to investigate the fault tolerance

capability of recursive-oriented techniques applied on

SRAM-based FPGAs when affected by SEUs within their

configuration memory.

REFERENCES

[1] J.F. Ziegler, “Terrestrial cosmic rays”, IBM Journal of Research and
Development, vol 40, #1, 1996.

[2] R.R. Rao, K. Chopra, D. Blaauw, D. Sylvester, “An Efficient Static
Algorithm for Computing the Soft Error Rates of Combinational

Circuits”, Proceedings of Design Automation and Test Conference,
2006.

[3] B. S. Gill, C. Papachristou, F. G. Wolff, “Soft Delay Error Analysis in
Logic Circuits”, Proceedings of Design Automation and Test
Conference, 2006.

[4] S. Almukhaizim, Y. Makris, “Concurrent Error Detection in
Asynchronous Burst-Mode Controllers”, Proceedings of Design
Automation and Test Conference, 2005.

[5] J. Kumar, M.B. Tahoori, “Use of pass transistor logic to minimize the
impact of soft errors in combinational circuits”, Workshop on System

Effects of Logic Soft Errors (SELSE), 2005.
[6] T.-W. Tseng, J.-F. Li, D.-M. Chang, “A Built-In Redundancy-

Analysis Scheme for RAMs with 2D Redundancy Using 1D Local
Bitmap”, Proceedings of Design Automation and Test Conference,
2006.

[7] S. Mitra, T. Karnik, N. Seifert, M. Zhang, “Logic Soft Errors in Sub-
65nm Technologies Design and CAD Challenges”, Proceedings of
Design Automation Conference, 2005.

[8] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, J. Karlsson, “Fault Injection
into VHDL Models: the MEFISTO Tool”, Proc. FTCS-24, 1994, pp.

66-75
[9] S. A. Hwang, J. H. Hong, C. W. Wu, “Sequential circuit fault

simulation using logic emulation”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Volume: Vol. 17,
No. 8, Aug. 1998, pp. 724 -736

[10] K. T. Cheng, S. Y. Huang, W. J. Dai, “Fault emulation: A new
methodology for fault grading”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 18, No. 10,
Oct. 1999, pp. 1487 -1495

[11] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, M.

Violante, “Exploiting Circuit Emulation for Fast Hardness
Evaluation”, IEEE Transactions on Nuclear Science, Vol. 48, No. 6,
December 2001, pp. 2210-2216

[12] L. Antoni, R. Leveugle, B. Fehér, “Using Run-time Reconfiguration
for Fault Injection in Hardware Prototypes”, IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems, 2000,
pp. 405-413

[13] J. Tombs, M. A. Aguirre, “FT-UNSHADES”, Microelectronics
Presentation Day, 2004

[14] JBits 2.8, Xilinx, San Jose, CA, 2001

Circuit FFs Total gates

IIR_Basic 140 866

IIR_RedTec 158 1300

IIR_SystemKnowledge 196 2151

IIR_TMR 420 2962

265

[15] D. Gonzalez-Gutierrez, ”Single Even Upset Simulation Tool
Functional Description”, ESA Report TEC-EDM/DCC-SST2, July
2004.

[16] P. Reyes, P. Reviriego, J.A. Maestro and O.Ruano, “New Protection
Techniques against SEUs for Moving Average Filters in a Radiation
Environment” , IEEE Transactions on Nuclear Science, 2007 (in
press)

[17] A.V. Oppenheim and R.W. Schafer, “Discrete Time Signal
Processing”, Prentice Hall 1999. ISBN: 0137549202.

[18] Xilinx Product Specification, “Virtex-II Pro and Virtex-II Pro X

Platform FPGAs: Complete Data Sheet” DS083 v4.5, October 10,
2005

[19] Xilinx Reference Guide, “PowerPC Processor”, EDK 6.1, September
2, 2003.

266

