
MPEG-based Performance Comparison between
Network-on-Chip and AMBA MPSoC

Rishad A. Shafik, Paul Rosinger, Bashir M. Al-Hashimi
School of ECS, University of Southampton, Southampton, UK, SO17 1BJ

Email: ras06r@ecs.soton.ac.uk, pmr@ecs.soton.ac.uk, bmah@ecs.soton.ac.uk

Abstract—Using analytical and simulation results, this paper
presents comparative analyses between network on chip and
shared-bus AMBA using real application traffic with MPEG-2
video decoder in cycle-accurate realistic simulation environment.
We show that despite higher channel latency, NoC has higher
bandwidth advantage and outperforms shared-bus AMBA, re-
quiring lower frequency in order to decode the video bitstream
at given frame rate.

I. INTRODUCTION

Network-on-chip (NoC) is emerging as a viable on-chip
communication infrastructure for multi-processor system on
chip (MPSoC) [1]. Video streaming is seen as a key feature of
future MPSoC and MPEG video decoding is a major compo-
nent of these systems [2]. To date there has been good progress
in developing flexible NoC architectures (such as [3]) and effi-
cient routing algorithms in terms of contention avoidance and
energy consumption (such as [4]). For the NoC methodology
to gain further maturity, comparative studies between shared
and segmented-bus topologies and NoC need to be performed
with the aim to identify the benefits and shortcomings of each
approach. To this end, a number of such studies have recently
been reported. An MPEG-4 based performance analyses of
single core on-chip networks are presented in [5]. Analytical
cost analyses involving area, power, frequency, throughput,
latency and energy of NoC and bus-based architectures are
presented in [6], [7]. Review of guiding principles towards the
evolution of NoC as an emerging SoC architecture is presented
in [8]. A comparative evaluation between P2P and NoC with
MPEG-2 video encoder is carried out in [2] considering area,
power, data parallelism, MPEG frame rate and scalability.
Analytical comparisons involving shared-bus, P2P and NoC
architectures were reported in [9], [10] considering power and
energy consumption, and overall design effort.

Most of the comparisons reported between NoCs and shared
bus SoCs, as in [7], [6], use analytical and synthetic traffic
patterns. The comparisons presented in [11] are based on real
application but it does not consider application performance.
Using analytical and simulation results, this paper presents
comparative analyses between NoC and shared-bus AMBA for
multi-processor application using real application traffic with
MPEG-2 video decoder in cycle-accurate realistic simulation
environment. The aim of this comparison is not to demonstrate
which bus-based or NoC architecture or mapping performs
best, rather this paper investigates the application-specific

performance comparison between popular and generic shared-
bus AMBA and NoC MPSoC architectures.

The rest of the paper organisation follows. Section II
describes the design of NoC and AMBA using MPEG-2 video
decoder cores. Section III defines the comparison metrics and
evaluate them through cycle accurate realistic simulations.
Finally, Section IV concludes the paper.

II. SYSTEM DESIGN

A. MPEG-2 Video Decoder Cores

In this work, we have developed a MPEG-2 video decoder
that employs five cores. The application partitioning is done in
line with [12] and no attempt has been made to optimise the
partitioning. A block diagram of the multi-processor MPEG-2
video decoder used in this work is shown in Fig. 1. The input

VLDIBC

ISQ

MC

IDCT

1 2

3

5

4

Fig. 1. Block diagram of MPEG-2 video decoder used in this work

buffer controller (IBC) core stores and forwards the original
video bitstream to the variable length decoder (VLD) core,
which organises the bitstream into two sequences: header and
video sequence. The quantisation matrices and macroblocks
(MBs) are sent to inverse scanner and quantiser (ISQ) core,
while header and motion specific information are sent to the
motion compensator (MC) core. The core ISQ sends the DCT
coefficients to the inverse discrete cosine transformer (IDCT)
core, which transforms them into actual time domain format
through in a lossy manner. The picture-ready blocks from
IDCT are sent to MC core, which forms predictions, organises
and stores decoded video.

Each IP core has a dedicated local memory of
32768 (1024 × 32) bits, which is large enough to contain
processed DTUs of the previous core until it is processed. The
memory is directly interfaced with the input port by memory
access controllers. Output port is connected to the processor.
Optional control and credit signals are also connected for
compatibility. A simplified block diagram of an IP core is
shown in Fig. 2.



SDRAM

Processor

O
u

tp
u

t 
C

h
a

n
n

e
l

cr
e

d
it_

in

b
u

sy
_

o
u

t

re
q

u
e

st
_

in

In
p

u
t 

C
h

a
n

n
e

l

b
u

sy
_

in

re
q

u
es

t_
o

u
t

Memroy Access
Controller

cr
e

d
it_

o
u

t

Fig. 2. Simplified block diagram of an IP core

B. Shared-bus AMBA

The AMBA protocol [13] is an open standard, on-chip
bus specification. Three distinct buses are defined in AMBA:
advanced high-performance bus (AHB), advanced system bus
(ASB), and advanced peripheral bus (APB). Due to its high
performance and high clock-frequency, AHB has been a dom-
inant shared-bus technology [8] and is chosen in this work.
AHB has been used in similar comparisons in [8], [5].

Employing the AMBA AHB, a single-layer central mul-
tiplexor configuration with pipelined transaction is used in
this work. MPEG-2 video decoder cores are configured by
using the input port as slave port and output port as master
port (Fig. 3). Single burst transfer without waiting states and
32-bit payload of each data transaction unit (DTU) are used.
The cores share access to the bus in the sequence of IBC,
VLD, ISQ and IDCT (MC reads from local memory and
processes only). The duration for which a master core can
hold the interconnect access in AMBA depends on the types
of data being processed, for example 4 clock cycles for header
processing, 8 clock cycles for encoded macroblocks, 4 clock
cycles for skipped macroblocks.

AHB

Processor Processor Processor Processor Processor

D
ec

od
er

M
as

te
r

SDRAM SDRAM SDRAM SDRAM SDRAM

M
a

st
er

M
a

st
er

M
as

te
r

M
as

te
r

S
la

ve

S
la

v
e

S
la

ve

S
la

ve

S
la

ve

IBC VLD ISQ IDCT MC

A
rbiter

Fig. 3. Block diagram of AMBA with MPEG-2 decoder cores

C. Network on Chip

Even though application-specific NoCs outperform general
purpose NoCs, the designs of such NoCs vary depending
on the application, partitioning among multiple cores and
resource allocations [14]. Our aim, in this work, is to compare
the performance without restricting the architecture to the
application itself. Hence, a general purpose architecture for
NoCs is preferred. Due to their simplicity, performance and
scalability [15], mesh-based topology with deterministic XY

routing are considered with shortest path mapping between
communicating cores. Each NoC packet has 32-bit payload.
Single-flit-packet wormhole routing [14] is considered due to
its popularity [5].

The basic topological element of the NoC structure is the
tile, which has three major parts: processing element (PE),
network interface (NI) and switch. The MPEG-2 decoder
cores are plugged into the PE (Fig. 2) and responsible for
computation. The switches carry out the communication tasks.
Every switch in an NoC lays out five input and five output
ports and credit information to and from each port. A generic
switch architecture is shown in Fig. 4. Each transaction is

Switch

Switch Controller

VC
Allocator

Router

Input Channel

busy _out
request _in

Credit_in

E
a

st
e

rn
 P

o
rt

Output Channel

Credit_out

request_out

busy_in

In
put C

ha
nn

el

busy_o
ut

re
qu

est_in

C
re

dit_in

Southern Port

O
utpu

t C
h

ann
el

C
red

it_o
ut

re
qu

est_o
ut

b
usy_in

Input Channel

busy_out
request _in

Credit_in

W
e

ste
rn P

o
rt

Output Channel

Credit_out

request_out

busy_in

In
pu

t C
ha

nn
el

bu
sy

_o
ut

re
qu

es
t_

in

C
re

di
t_

in

Northern Port

O
ut

pu
t C

h
an

ne
l

C
re

di
t_

o
ut

re
qu

es
t_

o
ut

bu
sy

_i
n

Input C
hannel

busy_out

request_in

C
redit_in

Core
 N

I P
ort

O
utput C

hannel

C redit_outreques t_out

busy_in

Fig. 4. Block diagram of switch for mesh-topology NoC

initiated with handshake signals: busy and request, followed
by credit signals with current status of the virtual channel
(VC) buffers. Input channel has buffers for eight incoming flits
(flow control units) as they arrive and hence no congestion
takes place for single flit injection per clock cycle. Flits in
different virtual channel-buffers are served by VC allocator
in a round-robin fashion to give fair waiting times for flits
in different input channel ports. The router decides for the
outgoing port for a packet depending on header information.
NI decouples between communication and computation by
incorporating necessary translations that need to take place
in order to make the core architecture compatible for packet-
based communication in NoC.

A simplified block diagram of general purpose (3 × 3)
NoC employing shortest path mapping of MPEG-2 cores and
pipelined 32-bit packet based NI architecture is shown in
Fig. 5.

III. SIMULATIONS AND COMPARATIVE ANALYSES

A. Simulation Setup and Test Cases

To compare the MPEG-based performance between NoC
and AMBA, two SystemC simulators were employed. The
basic simulation setup for NoC and AMBA used to perform
the comparisons are briefly described below:

1) The MPEG cores (Fig. 1) are configured for NoC using
NI and for AMBA using port configurations (Fig. 3).



S

IBC

S

PE

S

PE

S

VLD

S

MC

S

PE

S

ISQ

S

IDCT

S

PE

S

Inbound and outbound Link

Switch

PE Processing Elements

Tile

NI Network Interface

NI NI NI
NININI

NI NI NI

1
3 5

2

4

Fig. 5. Block diagram of (3 × 3) tile-based NoC with MPEG cores

2) Transaction level modeling is used in both NoC and
AMBA for data communication, while behavioural
modeling is used for MPEG-based data computa-
tion/processing.

3) To track simulation and performance parameters, sepa-
rate monitor modules were implemented with each core.

The MPEG-based performance comparisons between NoC
and AMBA are carried out using five different MPEG-2
video bitstreams for our cycle accurate simulation model as
shown in Table I. The bitstreams are chosen with increasing
number of frames and encoded macroblocks, giving different
compressions for the encoded video bitstreams, correspond-
ing processing times involved between encoded and skipped
macroblocks.

TABLE I
TEST VIDEO BITSTREAMS

Bitstream No. of
Frames

Encoded
MBs

Picture Size
(Pixels)

Frame
Rate (fps)

test1.m2v 55 1570 252x288 25
test2.m2v 63 1791 352x240 25
test3.m2v 68 1817 320x288 25
test4.m2v 211 5362 352x288 30
test5.m2v 323 7841 480x480 30

B. Performance Metrics

To better understand the underlying application perfor-
mance, we use different metrics that contribute to the perfor-
mance analysis of the MPEG-2 decoder to compare between
NoC and shared bus AMBA. To understand multi-core per-
formance, we define core concurrency and core efficiency and
to understand interconnect performance, we define channel la-
tency and bandwidth. Later, the performance of the application
in NoC and AMBA are compared.

1) Concurrency: Concurrency defines the number of cores
that are able to execute computation at the same time and
is dependent on the way IP cores communicate with each

other. Higher degree of concurrency effectively reduces the
total application time through overlap of executions among
cores. The fact that the MPEG cores in NoC are connected
through dedicated physical links (Fig. 5), providing it spatial
multiplexing of different channels, it is expected to exhibit
higher level of concurrency in video decoding among cores,
unlike AMBA, where all the cores share a common physical
link in time-multiplexed way (Fig. 3). In order to investigate
the actual concurrency from the simulations, we define the
average degree of concurrency, D, as

D =
∑TA

t=1 N(t)
TA

, (1)

where TA is the total application time (in clock cycles) and
N(t) is the number of cores executing the computation at t-th
clock cycle. Given, N(t) ≤ Nmax, where Nmax is the total
number of cores, it can be shown that, Dmax = Nmax.

In Table II, a tabular comparison of core concurrency be-
tween NoC and AMBA is shown recorded from the simulation
logs. As shown in the Table II (Column 3), for video bitstream
test1.m2v, TA = 4093102 clock cycles, during which the
application is executed with N = 1 core for 492746 clock
cycles, with N = 2 cores for 481524 clock cycles, with
N = 3 cores for 436943 clock cycles and with N = 4
cores for 214020 clock cycles. Hence, TA in AMBA is made
up mostly with N = 1, 2 and 3 cores. With the application
times and concurrent execution times obtained from Table II
and using the Equation 1, DAMBA for test1.m2v is given as
0.89. On the other hand, due to dedicated links among cores,
NoC is able to exploit the concurrency at a higher level. For
video bitstream test1.m2v, while only 12 clock cycles are
executed with single core, N = 2, 3, 4 and 5 cores execute
for 839, 337763, 388561 and 210696 clock cycles (mostly
made up of N = 3, 4 and 5 concurrent core executions),
respectively (Table II, Column 2). Thus, NoC allows more
overlap among core execution and reduces TA to only 1198080
clock cycles and gives NoC a higher DNoC of 3.05 according
to Equation 1.

Referring to Table II, with higher number of macroblocks in
other video bitstreams, concurrent execution times for different
N increase but the degree of concurrency almost remains
same due to inter-dependent processing of macroblocks among
VLD, ISQ, IDCT and MC (Section II-A). The degree of
concurrency are found by simulated concurrent execution
times in Table II and using the Equation 1 for bitstreams
test2.m2v, test3.m2v, test4.m2v and test5.m2v as 3.04,
3.05, 3.09 and 3.05, respectively for NoC and as 0.88, 0.88,
0.88 and 0.88, respectively for AMBA. NoC maintains a
higher average degree of concurrency at DNoC = 3.05, com-
pared to DAMBA = 0.88. Due to overlap of core execution,
on average TA for NoC is reduced to approximately 29% of
TA for AMBA. Hence, it is evident that NoC suits MPSoC
architectures, where concurrent processing is desirable.

2) Core Efficiency: Core efficiency defines how efficiently
the cores can utilise the execution cycles within the application



TABLE II
CORE CONCURRENCY OF NOC AND AMBA FOR DIFFERENT VIDEO BITSTREAMS

test1.m2v test2.m2v test3.m2v test4.m2v test5.m2v
N NoC AMBA NoC AMBA NoC AMBA NoC AMBA NoC AMBA
1 12 492746 12 573553 12 565186 12 1181715 12 1547034
2 839 481524 2278 571108 3964 580423 4371 1783051 9431 2519739
3 337763 436943 357264 516620 329721 519778 1113725 1585839 1205932 2284629
4 388561 214020 385174 254628 377258 255051 1101221 797316 1214726 1261325
5 210696 0 333417 0 359887 0 987957 0 1998025 0

TA 1198080 4093102 1407726 4850733 1413258 4881477 4113964 14389936 6070048 21053545
D 3.02 0.89 3.04 0.88 3.05 0.88 3.09 0.88 3.05 0.88

time. Total execution time for an IP core is given as

TE = TP + TNP ≤ TA, (2)

where TE is the execution time, TP is the total processing
time and TNP is the total non-processing time, all in clock
cycles. Non-processing time, TNP is defined as

TNP = TR + TW + TI , (3)

where TR is the reading time of the input data at the IP core
and TW is the time required for output data to be written
at the output ports and are both 0 clock cycle due to local
memory and pipelined output writing, T I is the idle time
and is the major contributor to non-processing time. The idle
time, TI , is caused by i) not having interconnect access due
to mutually exclusive sharing even though processed data is
available for writing, or ii) not having enough data to process.
Due to dedicated links among cores in NoC, there is no waiting
time for interconnect unavailability, unlike AMBA. In order
to investigate quantitatively how effectively the computation
cycles are being utilised within execution time of a core from
simulations, we define core efficiency, ρ, as

ρ =
TP

TE
=

TE − TNP

TE
, (4)

where TE , TP and TNP are total core execution, computation
and non-computation cycles defined by Equation 2 and 3. The
execution times and non-processing times of each core for five
different videos recorded from the simulation logs are shown
in Table III. As shown in Table III, the core IBC in NoC
has execution time of 305391 clock cycles and non-processing
times of 0 clock cycle and the core VLD has 6 clock cycles
(waiting time for data being available) non-processing time
for waiting in 1198074 clock cycles of execution time for
bitstream test1.m2v. Both cores IBC and VLD, have max-
imum 100% core efficiency in NoC. The cores ISQ, IDCT
and MC in NoC have non-processing times due to waiting for
DTUs to arrive for processing as ISQ receives DTUs from
VLD, IDCT receives DTUs from ISQ and MC receives DTUs
from VLD and IDCT. The average core efficiencies of ISQ,
IDCT and MC are found by using execution times and non-
processing times obtained from Table III and using Equation 4
as 73.14%, 70.55% and 80.43%, respectively. On the other
hand, due to shared interconnect access, re-arbitration times
make up a major component of the non-processing times of all
the cores in AMBA and hence, the application times increase

(Section III-B1). Hence, it has higher idle times and lower core
efficiencies of 57%, 22%, 24.6%, 28.6% and 22% for the cores
IBC, VLD, ISQ, IDCT and MC, respectively (Table III). A
graphical comparison of the average core efficiencies of NoC
and AMBA with given core resources (Fig. 2) are shown in
Fig. 6. Due to dedicated interconnects, cores in NoC utilise
the execution cycles more efficiently compared to AMBA.

IBC VLD ISQ IDCT MC
0

0.2

0.4

0.6

0.8

1

A
ve

ra
g

e 
C

o
re

 E
ff

ic
ie

n
cy

 

 

NoC

AMBA

Fig. 6. Average Core Efficiencies in NoC and AMBA

3) Channel Latency: Latency (in time units) represents an
important performance parameter for embedded systems. Per
data transaction unit (DTU: packet with 32-bits payload for
NoC, each 32-bit transaction data for AMBA) channel latency
is a measure of how fast per DTU is routed over the channel
from output of a core processor to input of the destination
core. For both NoC and AMBA, the pipelined transaction of
data takes place in multiple hops starting from initiator core
to destination core. Considering no waiting states in NoC and
AMBA, we define the average per DTU channel latency, L ch

as

Lch =
N∑

n=1

[
τS
c−in(n) + τS−D

in−in(n) + τD
in−c(n)

]

N
, (5)

where τS
c−in(n) is the time elapsed for data to travel from

source output port to source interconnect port, τ S−D
in−in(n) is the

time elapsed for data to travel from source interconnect port to
destination interconnect port and τ D

in−c(n) is the time elapsed
for data to travel from destination port to the destination
memory, all for n-th DTU out of total N DTUs.

For AMBA, τS
c−in(n) = 1 clock cycle after bus access is

granted and locked. During τ S−D
in−in(n) = 1 clock cycle the

arbiter does the necessary routing of the data and notifies the
slave port. Due to direct memory interface, τDin−c(n) = 0
clock cycle. Minimum channel latency (without waiting states)



TABLE III
EXECUTION AND NON-PROCESSING TIMES OF CORES IN NOC AND AMBA FOR DIFFERENT VIDEO BITSTREAMS

Bitstream IBC VLD ISQ IDCT MC
arch. TE TNP TE TNP TE TNP TE TNP TE TNP

test1.m2v
NoC 305391 0 1198074 6 877594 234756 818408 259353 1140704 223353

AMBA 907154 364325 4089720 3198694 2690195 2041280 2352726 1703817 4089684 3198664

test2.m2v NoC 349709 0 1407720 6 1024332 278977 991954 292974 1343984 261601
AMBA 1079919 405208 4803141 3777805 3047764 2284885 2715453 1952580 4849387 3777775

test3.m2v NoC 349993 0 1413252 6 1033501 277712 995838 294131 1348900 264065
AMBA 1074657 463781 4873569 3797452 3135133 2363899 2703375 1932147 4873533 3797422

test4.m2v NoC 1024130 0 4113958 6 3061612 783160 2955636 832189 3922459 767842
AMBA 3214424 1413330 14372668 11199831 9213171 6939252 8199424 5925511 14372632 11199801

test5.m2v
NoC 1484309 0 6070042 6 4377452 1220626 4350221 1232548 5794595 1137740

AMBA 4740479 2117758 21015438 16395196 14047999 10736748 11196332 7885087 21015402 16395166

per DTU for AMBA is then given by Equation 5 as Lch = 2
clock cycles.

Due to symmetric nature of NoC channels, τDc−in(n) =
τSin−c(n) = 2 clock cycles involving intermediate NI pack-
etising and de-packetising. The delay, τ S−D

in−in(n), in Equation 5
involves communication over an array of switches for each
DTU that travels through the channel and depends on the
number of intermediate switches travelled. Independent of
routing algorithm or path travelled, τ S−D

in−in(n) is given by

τS−D
in−in(n) =

M−1∑

m=1

[τm
ic−r(n)+τm

r (n)+τm
r−oc(n)+τ

m−(m+1)
oc−ic (n)].

(6)
Equation 6 is a result of multi-hop communication through M
intermediate switches. The time required for the n-th packet
to travel from input channel to the router of the m-th switch,
τm
ic−r(n) is 1 clock cycle. Also, the time required for routing

decision on the m-th switch for n-th packet, τ m
r (n) is 1 clock

cycle. The n-th packet travels from router to the output channel
of the m-th switch immediately in our implementation and
hence τm

r−oc(n) = 0 clock cycle. Finally, the time required for
the n-th packet to travel from output channel of m-th switch
to input channel of the (m + 1)-th switch, τ

m−(m+1)
oc−ic (n) is

1 clock cycle. According to Equation 6, Lch for NoC has a
variable delay with a minimum of 7 clock cycles (when M = 2
for shortest path mapping and XY routing).

Our simulations also verify that channel latency for NoC
and AMBA are 7 clock cycles and 2 clock cycles, respectively.
For same traffic pattern, channel latency sets up the major
difference between the architectures. However, when pipelined
transactions are used for both architectures, NoCs can employ
concurrent and overlapped execution of cores (Section III-B1).

4) Bandwidth: Bandwidth (in bits per second) is a measure
of the amount of data that can be passed through the intercon-
nect in a given period of time. According to [6], the maximum
available bandwidth for any node in any architecture is given
by

BWarchMAX =
∑Larch

l=1 warch(l)farch(l)
Harch

, bits/cycle. (7)

where BWarchMAX
is the maximum bandwidth for the ar-

chitecture concerned, Larch is the number of outgoing links
being used, warch(n) is the size of the l-th link in data bits

only (or number of data wires), farch(l) is the frequency of
l-th link of the architecture being considered and Harch is
the number of hops (in clock cycles) required for node-to-
node communication. As shown in Section II-C, due to spatial
multiplexing of outgoing channels in NoC switch, LNoC = 4
links (Fig. 5) and HNoC = 7 clock cycles, as compared to
LAMBA = 1 link (assuming the aggregate usage scenario)
and HAMBA = 2 clock cycles. Considering single-packet
per clock cycle injection rate in NoC and AMBA and time-
sharing of bandwidth among 4 communicating cores in AMBA
in 7, Equations 8 and 9 show that NoC has 14.2% bandwidth
advantage over AMBA.

BWNoC =
(32 × fNoC)

7
bits/cycle (8)

BWAMBA =
(32 × fAMBA)

(2 × 4)
bits/cycle (9)

In practice, the actual switching frequency will also de-
pend on capacitive loading. According to [7], due to capac-
itive loading and global wire lengths in AMBA, considering
fNoC = 3×fAMBA, the bandwidth definitions in Equations 8
and 9 give NoC a 2.428 times higher bandwidth advantage.

C. Comparative Application Performance

1) Per Macroblock Decoding Time: Given a video bit-
stream, the efficiency of an MPEG-2 decoder defines how
quickly the bitstreams in the video can be decoded. Due to
the fact that display sizes does not necessarily translate to
the frame size of the videos, it is often convenient to first
understand the application efficiency in terms of average per
macroblock (MB) decoding time TMB , in clock cycles [5].
Full-sized 4 : 1 : 1 picture of each frame requires 30 rows with
45 MBs per row, i.e. total of 1350 MBs per frame. Dividing
TA obtained from Table II by the number of encoded MBs
obtained from Table I, average per MB decoding time can be
found and are shown in Table IV.

Referring to Table IV, for the video bitstream test1.m2v,
T AMBA

MB = 2607 clock cycles, which is 2.42 times higher
than T NoC

MB = 763 clock cycles (due to higher concur-
rency and overlap described in Section III-B1). For larger
videos, depending on their core efficiency and concurrency
(Sections III-B2 and III-B1), TMB scales accordingly for
AMBA and NoC. Due to low concurrency and core efficiency



TABLE IV
PER MB DECODING TIME AND REQD. FREQUENCY OF NOC AND AMBA

Bitstream TNoC
MB ,

clock
cycles

T AMBA
MB ,

clock
cycles

fNoC at
standard
fps, MHz

fAMBA

at standard
fps, MHz

TA,
ms

test1.m2v 763 2607 25.8 77.9 46.53
test2.m2v 786 2708 26.5 80.7 53.07
test3.m2v 778 2687 26.3 80 53.82
test4.m2v 767 2684 31.1 95.9 132.44
test5.m2v 774 2685 31.3 95.5 193.64

(Sections III-B1 andIII-B2), AMBA has large non-processing
time and hence higher application time and T AMBA

MB (on
average 2.46 times higher than T NoC

MB ).
2) Operating Clock Frequency: Clock frequency is an im-

portant parameter as processors with high clock rates dissipate
power proportional to operating frequency [7]. The operating
clock frequency required to give standard frame rate for the
video bitstreams shown in Table I, can be found as,

f = (TMB × MBs per frame × fps), (10)

where fps is the standard frames per second shown in Table I.
The approximate operating clock frequencies found using
Equation 10 are shown in Table IV. Due to lower TMB in
NoC, it can operate at lower clock frequency, fNoC , than
operating clock frequency for shared-bus AMBA, fAMBA

to decode the video bitstreams in similar application times
shown in Table IV. For bitstream test2.m2v, NoC requires
only 26.52MHz as against 80.7MHz for AMBA to achieve the
frame rate of 25 fps (on average fNoC is 29% of fAMBA). A
graphical comparison of the required clock frequencies of the
five different bitstreams at their standard frame rate is shown
in Fig. 7. The application times (in ms) (Table IV) are found

test1.m2v @ 25 fps test2.m2v @ 25 fps test3.m2v @ 25 fps test4.m2v @ 30 fps test5.m2v @ 30 fps
0

2

4

6

8

10

12
x 10

7

R
eq

u
ir

ed
 C

lo
ck

 F
re

q
u

en
cy

 

 

NoC

AMBA

Fig. 7. Required clock frequency of NoC and AMBA for different MPEG
bitstream decoding

by dividing corresponding TA (in clock cycles) from Table II
by the associated frequencies (Table IV).

It is evident that as the number of cores increases, the
operating frequency can scale up for AMBA since core effi-
ciencies would be lower, making TMB much higher as a result.
However, the fact that high clock frequencies in AMBA can be
inhibited by capacitive loading as described in Section III-B4,
this can restrict some multi-core applications with tens of cores
to operate on AMBA.

IV. CONCLUSIONS

In this paper, we have performed comparative analyses
between shared-bus AMBA and NoC using realistic MPEG-2
video traffic in cycle-accurate realistic simulation environment.
Supported by analytical and simulation results, it has been
shown that the NoC reduces decoding time by a factor of 2.46
on average compared to AMBA (Section III-C) for the given
mapping (Fig. 5). Despite higher channel latency, NoCs have
higher core efficiency, concurrency and bandwidth advantage
over AMBA and can operate at lower frequency (approxi-
mately 29%) than AMBA for same decoding bitstream (Sec-
tion III-C). Our comparisons focus on performance aspects
between NoC and AMBA using a real application, while it
supports the comparisons involving power, area and scalability
in [9]. It is hoped that the findings in this paper would
contribute towards the current research efforts in identifying
appropriate on-chip communication architecture for emerging
multimedia MPSoC applications.

ACKNOWLEDGEMENT

The authors would like to thank the EPSRC (UK) for
funding this research in part under grant EP/C512804/1 and
EP/E035965/1.

REFERENCES

[1] B. Al-Hashimi, Ed., System-on-Chip: Next Generation Electronics. IEE
Press, May 2006, chapter 17.

[2] H. Lee, U. Y. Ogras, R. Marculescu, and N. Chang, “Design space
exploration and prototyping for on-chip multimedia applications,” in
Proceedings of the DAC. California, USA, July 24-28 2006.

[3] E. Rijpkema, K. Goossens, and P. Wielage, “A router architecture for
networks on silicon,” in Proceedings of the 2nd Workshop on Embedded
Systems, 2001, pp. 181–188.

[4] J. Hu and R. Marculescu, “Dyad - smart routing for network-on-chip,”
in Proceedings of DAC. ACM Press, 2004, pp. 260–263.

[5] J. Chang, W. Kim, Y. Bae, J. Han, H. Cho, and H. Jung, “Performance
analysis for mpeg-4 video codec based on on-chip network,” ETRI
Journal, Korea, vol. 27, no. 5, pp. 497–503, October 2005.

[6] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “Cost considerations in
network on chip,” Special issue on Networks on chip and Reconfigurable
Fabrics of the VLSI Journal of Integration, Elsevier Science Publishers
B. V., vol. 38, no. 1, pp. 19–42, October 2004.

[7] Arteris, “A comparison of network on chip and buses,”
http://www.arteris.com/noc whitepaper.pdf.

[8] L. Benini and D. Bertozzi, “Network-on-chip architectures and design
methods,” IEE Proceedings Computers and Digital Techniques, vol. 152,
no. 2, pp. 261–272, March 2005.

[9] H. Lee, N. Chang, U. Ogras, and R. Marculescu, “On-chip communica-
tion architecture exploration: A quantitative evaluation of point-to-point,
bus, and network-on-chip approaches,” ACM Transactions on Design
Automation of Electronic Systems, vol. 12, no. 3, pp. 1–20, August 2007.

[10] E. Salminen, A. Kulmala, and T. D. Hamalainen, “On the network-on-
chip comparison,” in Proceedings of DSD, 2007, pp. 503–510.

[11] D. Puschini and F. Clermidy, “A comparison between noc and bus
architectures based on a real-application,” in Proceedings of ReCoSoC,
2006, Montelier, France, July 2006, pp. 194–200.

[12] ISO, “ISO/IEC 13818-2: 1995 (E),” http://www.iso.org.
[13] ARM, “Advanced microprocessor bus architecture (AMBA) specifica-

tion, v2.0, 1999,” http://www.arm.com.
[14] J. Xu, W. Wolf, J. Henkel, and S. Chakradhar, “A design methodol-

ogy for application-specific networks-on-chip,” ACM Transactions on
Embedded Computing Systems, vol. 5, no. 2, pp. 263–280, 2006.

[15] S. Kumar, A. Jantsch, M. Millberg, J. Oberg, J. Soininen, M. Forsell,
K. Tiensyrja, and A. Hemani, “A network on chip architecture and
design methodology,” in Proceedings of IEEE Computer Society Annual
Symposium on VLSI, 2002, pp. 105–112.


