A Fast Untestability Proot for SAT-based ATPG

Daniel Tille

Rolf Drechsler

Institute of Computer Science, University of Bremen
28359 Bremen, Germany
{tille,drechsle }@informatik.uni-bremen.de

Abstract—Automatic Test Pattern Generation
(ATPG) based on Boolean satisfiability (SAT)
has been shown to be a beneficial complement to
traditional ATPG techniques. Boolean solvers work on
instances given in Conjunctive Normal Form (CNF).
The required transformation of the ATPG problem
into CNF is one main part of SAT-based ATPG and
needs a significant portion of the overall run time.
Solving the SAT instance is the other main part. Here,
the time needed is often negligible — especially for
untestable faults

This paper presents a preprocessing technique that
accelerates the classification of untestable faults. Those
occur more frequently with increasing design sizes in in-
dustrial practice. In order to avoid overhead on testable
faults, an untestability prediction is motivated. This
increases the robustness of the entire ATPG process.
The efficiency of the proposed method is shown during
the experiments.

I. INTRODUCTION

The continuous growth of today’s circuit designs re-
quires a constant improvement of state-of-the-art Com-
puter Aided Design (CAD) tools. The post-production test
is a vital step in the design flow. It ensures the functional
correctness of a circuit. To guarantee high quality produc-
tion, this step is very important.

In practice, a fault model is usually used to abstract
from the physical defects. To test the circuit for correctness
with respect to the fault model used, test patterns have to
be computed. If there exists a test pattern for a particular
fault F', then F' is called testable; otherwise F is called
untestable.

In this work, the stuck-at fault model is used. To
generate a test pattern for a stuck-at fault, there exist
many sophisticated algorithms. The D-algorithm [11] was
the first algorithm that traversed the search space by
backtracking. Improvements concerning decision strategies
and propagation/justification were given in PODEM [5]
and FAN [4]. Further algorithms are Socrates [12] and
Hannibal [7]. All these algorithms have in common that
they directly work on the circuit structure.

In contrast, there also exist approaches based on
Boolean satisfiability (SAT) [8], [13], [14], [2]. In particular
for hard-to-solve problem instances, SAT-based methods
proved to be highly advantageous. Nowadays, SAT-based

ATPG is a promising complement to the classical algo-
rithms.

Since most modern SAT solvers (e.g. [9], [10], [6], [3])
work on an instance representation in Conjunctive Normal
Form (CNF), a new SAT instance has to be generated for
each fault!. In [15], it was shown that the run time needed
for instance generation is a significant part of the overall
run time and often even dominates it. Especially CNF's of
untestable faults can mostly be solved very easily, because
in industrial circuits the reason for the conflict is often
bounded locally. In those cases, building the entire SAT
instance is a large overhead.

With the growth of the industrial designs, the number
of untestable faults increases considerably. Today’s cir-
cuits contain hundreds of thousands of untestable faults.
As a result, avoiding the above mentioned overhead can
improve the robustness of the overall SAT-based ATPG
process.

This paper presents a preprocessing method with the
objective to accelerate the SAT instance generation by
only building partial CNFs. During a detailed motivation
it is shown that the technique is only useful for untestable
faults. Therefore, the method is aimed for large indus-
trial circuits. Here, significant speed-ups can be observed.
To avoid useless preprocessing steps, a straightforward
untestability prediction is given. Hence, using the tech-
nique does not slow down the ATPG process for small cir-
cuits. As a result, the overall robustness can be increased.

This work is structured as follows: in the next section a
brief overview on SAT-based ATPG is given. In Section III
the motivation is presented in more detail. A preprocessing
technique is discussed in Section IV. Experimental results
and conclusions are given in Section V and Section VI,
respectively.

II. PrEVIOUS WORK

To make the paper self-contained, this section presents
a short overview on SAT-based ATPG. First, a general
explanation is given. Afterwards, the generation of a CNF

1In preliminary studies, we also experimented with a circuit SAT
solver, but did not consistently observe improvements in run time or
memory use for ATPG.

fault location

transitive fanin

Fig. 1. Extraction of the influenced circuit parts

for a specific fault is illustrated. Finally, a run time analysis
provides further insight.

A. SAT-based ATPG

To create a test pattern for a stuck-at fault, an assign-
ment to the inputs has to be found that guarantees at
least one different output value between the faulty circuit
and the faultless circuit. While classical algorithms work
directly on the circuit structure to find such an assignment,
in SAT-based ATPG the question whether there exists
a test pattern for a particular fault F' is encoded into a
Boolean formula, which is satisfiable if and only if F' is
testable. Then, a SAT solver proves either satisfiability or
unsatisfiability of the formula. A test pattern — if it exists
— can be derived directly from the satisfying assignment.

Modern SAT solvers work on instances represented as
CNFs. A CNF is a conjunction of clauses, a clause is
a disjunction of literals and a literal is the positive or
negative occurrence of a Boolean variable. A SAT instance
is satisfied if all clauses are satisfied; a clause is satisfied
if at least one of its literals is satisfied; a positive or a
negative literal is satisfied if the respective variable is
assigned positively or negatively, respectively.

How to transform an ATPG problem into a SAT in-
stance is explained in the following.

B. Circuit-to-CNF Conversion

Consider the schematically depicted circuit in Figure 1.
Here, a brief overview on the circuit-to-CNF conversion is
given.

After the fault location has been marked, the fault
site’s output cone is traversed by a depth first search.
This determines all Primary Outputs (POs) that may be
influenced by the fault, i.e. all POs where a difference
between the faulty circuit and the faultless circuit could
be observed. The transitive fanin of these POs influences
the detection of the fault and must be marked, too. To

generate the SAT instance for the given fault, this part of
the circuit has to be considered.

As introduced in [13], two Boolean variables g. and
gs are assigned to each gate g in order to represent
the gate’s value in the correct circuit and in the faulty
circuit, respectively. A gate’s CNF is generated by building
its characteristic function. The conjunction of all CNFs
results in the CNF for the circuit.

To find a difference between the correct circuit and the
faulty circuit, an additional Boolean variable g4 is assigned
to each gate. If the variable g4 is true, the gate’s values in
both circuits differ. Therefore, the constraint

ga=1—gc# gy
is added to the CNF in form of the two clauses

(9a + ge +97) - (Ga + e + Gy)-

To compute a test pattern for a fault, there must be a
path from the fault site to an output, where the assignment
of each variable g4 is true. Following the notation in [13],
this path is called a D-chain. Therefore, if a gate is on a
D-chain, one successor must be on a D-chain as well. This
property — encoded by the constraint

n
ga — \/ i,
1=1

where the gates h',..., h"™ denote the successors of gate ¢
— is also added to the CNF. Moreover, the variable g{; ,
where the gate g/ represents the faulty gate, is set to true
in order to inject a difference at the fault site.

As a result, the SAT instance, generated this way, is
satisfiable if and only if a D-chain exists, i.e. the SAT
instance is satisfiable if and only if the fault is testable.

Finally, as described earlier, this SAT instance is given
to a SAT solver. After the classification, the CNF is
completely discarded. Therefore, the circuit-to-CNF con-
version has to be done for each single target faults.

C. Incremental Instance Generation

In [15] a detailed run time analysis of state-of-the-art
SAT-based ATPG algorithms applied to industrial circuits
is given. The two basic steps — SAT instance generation
and solving — are compared with respect to their run time.
Moreover, the classification result was included into this
comparison.

It was shown that two main observations hold:

o Surprisingly, the generation time exceeds often the

solving time.

o The solving time of testable instances exceeds the

solving time of untestable instances significantly.

Based on these observations, an incremental solving
scheme was proposed. By generating partial SAT instances

(a) Circuit C

w1 (Cc+ac+b)
wo: (cc+7ag)
wz: (cc+be)
wy: (de+be+7¢)
Ws (dic-l- bc)
we: (de +ce)
wr: (df +be +T5)
wsg - (@-‘r bc)
wg: (dy +cy)
wio: (dg+de+dy)
wir: (dg +de+dy)
wiz: (CGa+cc+cy)
wiz: (Cq+Cc+7Cy)
wig: (Ca+da)
wis o (ey)
wie: (cq)

(b) CNF ¢¢

Fig. 2. Example for an untestable fault

it is possible to speed up the entire ATPG process signif-
icantly.

However, the proposed approach achieves better re-
sults only for testable faults. If the considered fault is
untestable, the incremental method creates little overhead.
Due to the significant larger portion of testable faults in
an industrial circuit, however, the speed-ups outweigh this
drawback.

III. MOTIVATION

This section gives the motivation for a preprocess, that
is able to accelerate the SAT-based ATPG for untestable
faults.

Following the observations in Section II-C, untestability
is often proven in almost no time, i.e. unsatisfiability of
the respective SAT instance is shown in a few propagation
steps only. In this case, the conflict occurs due to a
contradiction in the circuit. Figure 2 gives an example.

In circuit C, depicted in Figure 2(a), a stuck-at 1 fault is
modeled on signal line c¢. Obviously, the fault is untestable,
since it is impossible to inject a difference (signal b has to
be set to 0) and to propagate it (signal b has to be set to
1) at the same time.

Figure 2(b) shows the SAT instance ¢¢, describing this
particular fault. The notation follows Section II-B. Due
to clauses wis (that models the injection of the fault)

and wig (that models the propagation of the difference),
the propagation will lead to a conflict. Therefore, analog
to the circuit-based algorithm, the fault is proven to be
untestable by a directly implied contradiction.

In both classical ATPG and SAT-based ATPG, this
contradiction is bounded locally. Even if the circuit C is
a subcircuit of large design, denoted by C’, the conflict
occurs immediately. Let ¢ be the CNF that describes
C’. Since ¢¢cr contains ¢c as unsatisfiable core?, the
SAT instance is proven to be unsatisfiable just by a few
propagation steps.

Those unsatisfiable cores can be found frequently in
SAT-based ATPG for industrial designs. With the growing
design sizes, this number even increases. However, the
reason for untestability may not occur as directly as shown
in the example, but rather due to restrictions to the
primary inputs. The fast classification can be made thus
easily anyway.

As a result, a SAT instance describing an untestable
fault is generated completely, although only an instance
describing an unsatisfiable core, i.e. describing the subcir-
cuit, would be sufficient to classify the fault. As mentioned
in Section II-C, the run time for generating an instance is a
significant part of the overall run time. Building a complete
instance where a partial one is sufficient is, therefore, an
avoidable overhead.

A technique to overcome this drawback, is proposed in
the next section.

IV. PREPROCESSING METHOD

As mentioned in the previous section, untestable faults
in industrial designs are often easy to classify, since the
reason for the untestability is bounded locally. During
preliminary studies it turned out, that most untestable
faults (about 90%) can be classified only by considering
the fault site’s fanin cone in conjunction with restrictions
to the primary inputs during the SAT instance generation.
Figure 3 gives an illustration. It can be seen that the
circuit part, considered during circuit-to-CNF conversion,
is significantly smaller than using the traditional method
(illustrated in Figure 1). Although only the marked part
of the circuit is transformed into CNF, the fault is proven
to be untestable. In this context, the fanin cone marked
in Figure 3 is an unsatisfiable core of the complete SAT
instance, generated following the traditional method.

This property can be used to perform a preprocessing
step. Transforming only the fault site’s fanin cone into
CNF needs significantly less time than generating the
entire SAT instance. If this partial CNF is unsatisfiable,

2A CNF Y is called unsatisfiable core of an unsatisfiable CNF y/
if x is a sub-CNF of ¥’/ that is already unsatisfiable.

fault location

fanin cone

Fig. 3. Extraction of circuit parts in a preprocessing step

the fault is classified correctly. Otherwise, the entire SAT
instance has to be generated.

However, the described technique is only useful if the
fault is untestable. Otherwise, a classification can never
be given after solving this partial CNF, i.e. it is overhead.
As a result, the preprocess should only be applied to prove
the untestability of faults, that are likely to be untestable.
Although, certainly, the classification result is unknown
before starting the ATPG process, in the following, a
straightforward way to estimate the classification result
of a particular fault is given.

Fault lists are usually not generated randomly, i.e. con-
secutive faults are mostly in the same region of the circuit.
Moreover, faults in the same region often share the same
properties, e.g. due to restrictions it is impossible to inject
a fault. Therefore, the classification result of entire circuit
parts may be equivalent.

Based on this observation, it is likely that a fault is
testable if the previous fault is testable and, analog, a fault
is untestable if the previous fault is untestable. To confirm
this hypothesis, Table I presents information achieved by
an ATPG run. The first column shows the name of the
circuit. Both the publicly available ITC’99 benchmarks [1]
as well as industrial circuits, provided by NXP Semi-
conductors, have been considered. Column P(0|0) gives
the conditional probability (in percent) for a fault to
be untestable if the previous fault is untestable. Analog,
column P(1]1) gives the conditional probability for a fault
to be testable if the previous fault is testable.

As can be seen, the value P(0]0) is for almost all indus-
trial circuits, i.e. except for p44k, p88k and p99k, greater
than 90 percent. For the ITC’99 benchmarks, however, this
value is always less than 75 percent. The value P(1|1) is
for all circuits, except for p77k, greater than 80 percent.
These observations strengthen the hypothesis made above.

In the following, the proposed preprocessing technique
is summarized. In order to speed up the run time for

TABLE 1
PROBABILITY OF A FAULT TO HAVE THE SAME CLASSIFICATION
RESULT AS THE PREDECESSOR IN THE FAULT LIST

[Circuit][P(0J0) [PAJL) |
bl4 51.92 98.31
b15 69.73 94.11
bl17 72.76 94.70
b18 71.94 97.14
b20 46.22 97.54
b21 52.25 97.52
b22 30.02 97.18
padk 69.90 95.79
p77k 95.81 65.33
p80k 95.16 99.94
p88k 72.82 97.19
p99k 83.02 96.38

pldik 96.49 97.18
pl77k 96.42 97.05
p456k 90.23 86.86
p462k 96.80 83.79
p565k 93.20 92.09
p1330k 93.10 89.26
p2787k 98.33 83.62
p3327k 90.23 95.65
p3852k 92.28 94.52

generating a SAT instance, only a partial CNF, consisting
of the fault site’s fanin cone, is built up prior to the actual
TPG process for a particular fault. If this SAT instance is
unsatisfiable, the fault is classified to be untestable and the
next fault can be considered. Otherwise, the entire CNF
has to be generated. Since this method is promising only
for untestable faults, it is only applied if the previous fault
is untestable.

V. EXPERIMENTAL RESULTS

In this section, experimental results are given. The
preprocessing approach, described in the last section, was
implemented as a prototype into the ATPG tool of NXP
Semiconductors. MiniSat [3] was used to solve the SAT
instances. All experiments were carried out on an Intel
Xeon System (3.4 GHz, 32 GByte, Linux).

Two benchmark sets have been considered: the pub-
licly available ITC’99 benchmarks [1] and industrial cir-
cuits, provided by NXP Semiconductors Germany GmbH,
Hamburg, Germany. The names of the NXP benchmarks
indicate the number of elements contained in a circuit,
e.g. the circuit p3852k consists of approximately 3.85
million elements.

Table II gives an overview on the overall run times of
the ATPG process. The circuit’s name is shown in the
first column. The second column presents the number of
targets, i.e. the number of faults after fault collapsing. The
number of untestable targets is given in the third column.
This information is important since the preprocessing step
aims to accelerate the test pattern generation process of

RUN TIMES FOR THE ATPG PROCESS

TABLE II

Traditional Fast all Fast estimated
Circuit Targets | Untestable Ab. [Time Ab. [Class. [Prep. [Time Ab. [Class. [Prep. Time
bl4 22,700 156 0 0:56m 0 0:55m 0:10m 1:06m 0 0:55m 0:00m 0:55m
blbs 21,850 727 0 1:07m 0 1:04m 0:10m 1:14m 0 1:05m 0:02m 1:07m
bl7 76,493 1,958 0 2:54m 0 2:48m 0:32m 3:20m 0 2:48m 0:04m 2:52m
b18 264,043 2,844 0 9:06m 0 8:46m 2:02m | 10:48m 0 8:57m 0:03m 9:00m
b20 45,461 319 0 2:14m 0 2:12m 0:27m 2:39m 0 2:12m 0:01lm 2:13m
b21 46,156 378 0 2:22m 0 2:21m 0:27m 2:48m 0 2:21m 0:01lm 2:22m
b22 67,540 344 0 2:48m 0 2:47Tm 0:32m 3:19m 0 2:48m 0:01lm 2:49m
pddk 64,105 2,385 0 | 49:21m 0 | 46:54m 8:35m | 55:29m 0 | 48:51m 0:34m | 49:25m
p77k 163,310 9,181 0 0:27m 0 0:25m 0:01lm 0:26m 0 0:25m 0:00m 0:25m
p80k 197,834 124 0 6:33m 0 6:32m 0:12m 6:44m 0 6:32m 0:00m 6:32m
p88k 147,742 2,640 0 2:14m 0 2:06m 0:21m 2:37Tm 0 2:12m 0:01lm 2:13m
p99k 162,019 2,141 0 1:35m 0 1:34m 0:28m 2:02m 0 1:35m 0:00m 1:35m
pldlk 267,948 13,815 0 3:02h 0 2:48h 3:54m 2:52h 0 2:49h 0:04m 2:49h
pl77k 268,176 13,840 0 2:37h 0 2:20h 3:44m 2:24h 0 2:20h 0:04m 2:20h
p456k 740,660 35,396 14 | 47:23m 14 | 41:24m 6:45m | 48:09m 14 | 41:53m 0:50m | 42:43m
p462k 673,465 132,249 0 1:10h 0 1:04h 2:06m 1:06h 0 1:04h 1:37m 1:06h
p565k 1,025,273 28,287 0 6:25m 0 5:16m 0:24m 5:40m 0 5:30m 0:02m 5:32m
pl330k | 1,510,574 44,299 0 1:00h 0 | 41:39m 5:31m | 47:10m 0 | 41:55m 1:39m | 43:34m
p2787k | 2,395,388 651,868 15 15:15h 8 6:46h | 34:04m 7:20h 11 6:54h | 20:25m 7:14h
p3327k | 4,557,842 109,622 914 73:46h 917 70:44h 14:15h 84:59h 916 72:39h | 12:53m 72:52h
p3852k | 5,507,779 164,988 849 39:01h 851 36:45h 2:52h 39:37h 846 37:50h 7:17Tm 37:57h

untestable faults only. It can be seen that the ITC’99
benchmarks as well as the small industrial circuits contain
only few untestable faults. Therefore, it is unlikely that the
proposed technique achieves significant speed-ups on these
circuits. On the other hand, the industrial benchmark
p2787k contains more than 650,000 untestable faults.

Three configuration have been considered. Results of the
traditional SAT-based ATPG — as shown in [2] — are given
in column Traditional. Secondly, this approach was en-
hanced by performing the preprocessing step, described in
Section IV, to all faults considered during ATPG. Results
are given in column Fast all. Finally, the preprocessing step
was applied only to those faults that are estimated to be
untestable, i.e. those faults whose predecessor in the fault
list is untestable. Result of this approach can be found in
column Fast estimated.

For each method, the total run time for the ATPG
process and the number of aborts are presented in column
Time and column Ab., respectively. An abort occurs after
10 MiniSat restarts. Moreover, for the methods “Fast all”
and “Fast estimated”, the total run time is split into the
pure classification time (column Class.) and the overhead
due to preprocessing steps that are unable to classify the
fault (column Prep.).

Comparing the traditional method with the “Fast all”
approach, it can be seen that for the small circuits the
overall run time increases only slightly. On most of the
large circuits, on the other hand, a speed-up could be
achieved. The ATPG process for circuit p2787k was even
accelerated by a factor of two. The increased run time

for circuits p3327k and p3852k can be explained by
the significant overhead for useless preprocessing steps
with an amount of almost three hours and more than
14 hours, respectively. Considering the pure classification
time, i.e. without regarding this overhead, results in speed-
ups for every circuit.

The “Fast estimated” method employs an untestability
prediction in order to reduce the overhead mentioned
above. Indeed, this overhead could be decreased signif-
icantly for all benchmarks, e.g. for circuit p3327k from
more than 14 hours to less than 13 minutes. As a result,
the overall run times, compared to the “Fast all” approach,
can be reduced. In comparison to the traditional method,
the impact on circuits with few untestable faults is small.
The ATPG process for large circuits, however, could be
accelerated considerably. Thus, the robustness regarding
overall run time can be increased significantly using the
proposed technique.

In Table III the average CNF sizes, i.e. the number
of variables (column Vars) and the number of clauses
(column Cls), of all three methods described above are
given. In case of the two approaches incorporating the
preprocessing technique, the given numbers refer to those
SAT instances that are able to classify a particular fault.
If a fault is proven to be untestable by the partial SAT
instance, generated during the preprocessing step, then the
size of this partial CNF is considered; otherwise, the size
of the entire CNF is considered. In all approaches, only
the clauses added during the circuit to CNF conversion
(see Section II-B) are given, i.e. no conflict clauses are

TABLE III
AVERAGE CNF SI1ZES

Circuit Traditional Fast all Fast estimated
Vars [Cls Vars [Cls Vars [Cls

bl4 5,421 14,163 5,379 | 14,046 5,398 | 14,100

b15 7,207 19,238 6,877 | 18,345 7,047 | 18,810

b17 6,385 16,576 6,108 | 15,828 6,212 | 16,109

b18 6,153 15,713 6,011 | 15,336 6,050 | 15,439

b20 7,532 19,836 7,487 | 19,713 7,507 | 19,769

b21 7,675 20,256 7,616 | 20,094 7,641 | 20,163

b22 7,383 | 19,426 || 7,344 | 19,319 || 7,368 | 19,383

p44k 29,819 72,767 || 29,401 | 71,632 || 29,497 | 71,891
pT7k 544 1,374 531 | 1,340 531 | 1,340
p80k 4,311 9,929 4,310 9,926 4,311 9,929
p88k 2,352 5,536 2,318 5,442 2,331 5,475
p99k 2,580 5,933 2,563 5,883 2,570 5,900

pl4lk 33,566 95,887 || 20,554 | 57,159 || 20,660 | 57,449
pl77k 37,402 | 108,504 || 22,063 | 62,006 || 22,186 | 62,345
p456k 6,724 18,617 4,861 | 12,749 4,991 | 13,114
p462k 4,408 12,677 3,762 | 10,569 3,770 | 10,595
p565k 1,688 4,331 1,026 2,538 1,113 2,769
pl1330k || 16,757 52,511 || 11,234 | 33,407 || 11,266 | 33,502
p2787k || 16,859 56,299 5,665 | 18,124 5,718 | 18,300
p3327k 34,428 75,032 29,196 | 61,426 29,347 | 61,812
p3852k || 20,619 47,178 || 16,684 | 36,444 || 16,824 | 36,788

considered.

It can be seen that using the proposed technique re-
sults in smaller CNF sizes. Especially for large circuits
with many untestable faults, the savings are significant.
Obviously, since the preprocess is applied for each target,
the “Fast all” method creates the smallest SAT instances.
Nevertheless, the CNFs, built by the “Fast estimated”
approach, are only slightly larger.

To summarize, the configuration “Fast all” — where
the proposed preprocessing technique is applied to each
fault — achieves the best results with respect to CNF
size and classification time. However, the overhead for
useless preprocessing steps is a drawback. The method
“Fast estimate”, on the other hand, reduces this overhead
thanks to an untestability prediction. Therefore, the entire
ATPG process can be accelerated significantly.

VI. CONCLUSION AND FUTURE WORK

The contribution of this paper is a method to accelerate
SAT-based test pattern generation for untestable faults in
large industrial circuits. This is done by generating only
a partial CNF during a preprocess. In order to reduce
possible overhead, an untestability prediction is given.

The experimental results confirm that the robustness
of SAT-based ATPG can be increased using the new
technique. While the impact on small circuits is slight,
the overall run time of the ATPG process for large indus-
trial circuits, containing many untestable faults, can be
significantly reduced.

It is focus of future work to combine the proposed
method with the incremental instance generation scheme.
Additionally, more sophisticated prediction heuristics
could be developed.

ACKNOWLEDGEMENTS

This work was funded in part by DFG grant

DR 287/15-1.

Furthermore, the authors would like to thank Stephan
Eggersgliifl from the University of Bremen, Germany, and
René Krenz-Baath from Mentor Graphics, Hamburg, Ger-
many, for helpful discussions.

REFERENCES

[1] F. Corno, M. Reorda, and G. Squillero. RT-level ITC 99
benchmarks and first ATPG results. In IEEE Design &
Test of Comp., pages 44-53, 2000.

[2] R. Drechsler, S. Eggersgliif}, G. Fey, A. Glowatz, F. Hapke,
J. Schloeffel, and D. Tille. On acceleration of SAT-based
ATPG for industrial designs. IEEE Trans. on CAD,
27:1329-1333, 2008.

[3] N. Eén and N. Sorensson. An extensible SAT solver. In
SAT 2003, volume 2919 of LNCS, pages 502-518, 2004.

[4] H. Fujiwara and T. Shimono. On the acceleration of test
generation algorithms. IEEFE Trans. on Comp., 32:1137-
1144, 1983.

[6] P. Goel. An implicit enumeration algorithm to generate
tests for combinational logic. IEEE Trans. on Comp.,
30:215-222, 1981.

[6] E. Goldberg and Y. Novikov. BerkMin: a fast and robust
SAT-solver. In Design, Automation and Test in FEurope,
pages 142-149, 2002.

[7] W. Kunz. HANNIBAL: An efficient tool for logic verifica-
tion based on recursive learning. In Int’l Conf. on CAD,
pages 538-543, 1993.

[8] T. Larrabee. Test pattern generation using Boolean satis-
fiability. IEEE Trans. on CAD, 11:4-15, 1992.

[9] J. Marques-Silva and K. Sakallah. GRASP: A search
algorithm for propositional satisfiability. IEEE Trans. on
Comp., 48(5):506-521, 1999.

[10] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an efficient SAT solver. In
Design Automation Conf., pages 530-535, 2001.

[11] J. Roth. Diagnosis of automata failures: A calculus and a
method. IBM J. Res. Dev., 10:278-281, 1966.

[12] M. H. Schulz, E. Trischler, and T. M. Sarfert. SOCRATES:
A highly efficient automatic test pattern generation sys-
tem. IEEE Trans. on CAD, 7(1):126-137, 1988.

[13] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli.

Combinational test generation using satisfiability. IEEE

Trans. on CAD, 15:1167-1176, 1996.

P. Tafertshofer, A. Ganz, and K. Antreich. Igraine -

an implication graph based engine for fast implication,

justification, and propagation. IEEE Trans. on CAD,

19(8):907-927, 2000.

D. Tille and R. Drechsler. Incremental SAT-instance

generation for SAT-based ATPG. In IEEE Workshop on

Design and Diagnostics of Electronic Circuits and Systems,

pages 6873, 2008.

(14]

(15]

