
Self-Timed Full Adder Designs based on Hybrid Input
Encoding

P. Balasubramanian, D.A. Edwards and C. Brej
School of Computer Science,

The University of Manchester,
Oxford Road, Manchester M13 9PL, United Kingdom.

E-mail: {padmanab, doug, cbrej}@cs.man.ac.uk

Abstract—Self-timed full adder designs based on commercial
synchronous resources (standard cells), constructed using a mix
of complete delay-insensitive codes adopted for inputs are
described in this paper. While one of the adder designs
incorporates redundancy into the logic, the other design does
not. Comparisons have been carried out with respect to various
self-timed full adder designs which employ only a single widely
used delay-insensitive input encoding for both the inputs and
outputs. It has been found out from exhaustive simulations that
incorporating redundancy into the logic actually benefits in
terms of delay, but a non-redundant implementation proves to
be beneficial with respect to power and area parameters.

I. INTRODUCTION
Future deep sub-micron technologies are characterized by

parametric variations of devices. The latest Semiconductor
Industry Association’s ITRS design update projects increase
of parameter uncertainty from a current 10% to 25% by 2020
[1]. In such a scenario, self-timed (ST) design gathers interest
as a promising solution. This is mainly because ST circuits, in
general, guarantee the correctness of operation irrespective of
delays encountered in the design components or in the
communicating signal wires, as they have the innate ability to
absorb the deviations/variations of device characteristics.
Although it is an attractive alternative to conventional digital
logic design, it can be noticed that the vast majority of existing
commercial EDA tools ideally support synchronous circuits.
Therefore, in order to utilize the sophistication and advantages
offered by industry-standard EDA tools and synchronous
resources (standard cells), an attempt was made to realize ST
logic (especially, a ST full adder design) and also validate
them using the above in [2]. Additionally, realization of higher
order C-elements functionality using standard cells was done,
whilst preserving the property of indication (completion). ST
full adder designs based on different approaches [3] – [8] were
also realized in a similar fashion using elements of a standard
cell library. However, a majority of the above approaches
consider implementation targeting a widely used delay-
insensitive (DI) encoding scheme, namely dual-rail encoding
(DRE). This paper considers implementation, using a mixture
of two well known DI encoding schemes for inputs and

elucidates the benefits gained by such an approach for the case
of a robust ST ripple carry adder (RCA) realization.

II. DATA ENCODING AND HANDSHAKING PROTOCOL
In this paper, we shall restrict our focus to full adder

designs adhering to the 4-phase handshake protocol
employing DI encoding; the robust and classic approach
rooted in Muller’s pioneering work [9].

Though 1-of-2 (DR) and 1-of-4 data encodings are the
well-known DI codes, the DR code has been widely preferred
owing to its simplicity and the resulting ease of circuit design.
In fact, it is the simplest member of the general family of DI
m-of-n codes [10]. In a DRE scheme, a data bit x is encoded
into two wires, namely x1 and x0, where x1 and x0 are
identified as true and false bits respectively. A logic ‘1’ is
represented by x1 assigned a logic ‘1’ and x0 assigned a logic
‘0’, while a logic ‘0’ is represented in the reverse manner. The
state of x1 and x0, both becoming ‘0’ is referred to as the
spacer state and both x1 and x0 are not allowed to become ‘1’
simultaneously, as this is an invalid and illegal state. While
DRE is used to represent only one bit of information, a 1-of-4
code, on the other hand, can be used to represent two non-
redundant bits of information at a time by asserting only one
of the four physical lines as logic high, as shown in Table 1.
However, as in DRE, an all-zeroes state represents the spacer.

TABLE I. INPUT DATA REPRESENTATION IN DUAL-RAIL AND 1-OF-4
ENCODING STYLES

Single-rail inputs DRE 1-of-4 encoding
a b (a1 a0); (b1 b0) (i0 i1 i2 i3)
00 (01); (01) (0001)
01 (01); (10) (0010)
10 (10); (01) (0100)
11 (10); (10) (1000)

It can be noticed from Table I, that for representation of 2
bits (a, b) of information, a 1-of-4 encoding approach would
require only half as many transitions as that of a DRE
approach. Consequently, the dynamic power dissipation of the
former scheme is very likely to be better than that of the latter,

A major part of this research is funded by EPSRC, UK through the
SEDATE project grant EP/D052238/1.

978-1-4244-3339-1/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: The University of Manchester. Downloaded on July 23, 2009 at 09:35 from IEEE Xplore. Restrictions apply.

due to reduced switching activity. This phenomenon was
confirmed with the practical example of an ARM thumb
instruction decoder in [11].

Both these coding schemes are known to be unordered
[12]. A binary coding scheme is said to be unordered, when
none of its code words is contained in any other codeword. In
simple terms, the positions of ones in a codeword are never a
subset of the positions of ones in a different codeword. When
a DR code and a 1-of-4 code are used to represent exactly one
bit and two bits of information respectively, they are said to be
complete [13]. A code is said to be complete if and only if it
contains all code words, as implied by its definition. Even
with one missing codeword, it would be labeled ‘incomplete’.

The 4-phase handshake protocol is also known as the
return-to-zero protocol, wherein input data alternates between
a sequence of valid data and a sequence of empty data (all
zeroes, also called spacer). It is explained through figure 1,
using a simple DR encoded data bus. Nevertheless, the
explanation remains valid for encoding using any DI code.

Figure 1. Four-phase handshake protocol

The 4-phase protocol consists of the following 4 steps:

• The DR data bus is initially in the spacer state. The
sender transmits the codeword (valid data). This
results in low to high transitions on the bus wires,
which correspond to non-zero bits of the codeword.

• After the receiver receives the codeword, it drives the
Ackout (Ackin) wire high (low).

• The sender waits for the Ackin to go low and then
resets the data bus (i.e. it is driven to the spacer state).

• After an unbounded (positive), but finite amount of
time, the receiver drives the Ackout (Ackin) wire low
(high); thereby the system is made ready to proceed
with the next transaction.

III. ADDER DESIGNS BASED ON HYBRID INPUT ENCODING
The hybrid input encoding (HIE) approach comprises of

two different encoding schemes, adopted for the adder inputs:
1-of-4 encoding scheme for the augend and addend bits
combined, and a DRE scheme for the input carry. The
assignment of 1-of-4 encoding states for the augend and
addend inputs are as mentioned in Table I. However, a
different assignment can also be made. The sum and carry
outputs are encoded in a DR format. Let the augend and
addend inputs of the ST full adder be identified by a 1-of-4
codeword as (i0, i1, i2 and i3) and let cin1 and cin0 be the DR

carry input. The adder’s sum and carry outputs are specified
by Sum1, Sum0 and Cout1 and Cout0 respectively. The
general equations governing the DR sum and carry outputs
would then be given by,

Sum1 = i3cin1 + i2cin0 + i1cin0 + i0cin1 (1)

Sum0 = i3cin0 + i2cin1 + i1cin1 + i0cin0 (2)

Cout1 = i2cin1 + i1cin1 + i0cin0 + i0cin1 (3)

Cout0 = i3cin0 + i3cin1 + i2cin0 + i1cin0 (4)

Amongst the different ST design methods proposed [3] –
[8], [8] is suitable for logic implementation with any generic
m-of-n codes, while the remaining suit realizations primarily
targeting a DRE approach. Hence, the proposed adder designs
would be compared, only with that resulting from [8].
Methods [3] and [6] can be used for function block realization
(asynchronous equivalent of a synchronous combinatorial
logic circuit), pertaining to strongly indicating or weakly
indicating regimes; [4] and [8] enable function block
realization corresponding to strong-indication alone and [7]
facilitates function block implementation corresponding to the
weak-indication timing model. Function blocks need to be
indicating, apart from satisfying the required functionality.
This property enables them to be transparent to handshaking,
as implemented by their surrounding latches.

Function blocks could adhere to strong-indication or weak-
indication timing models: strongly indicating – if no outputs
(spacer/valid) are produced until all inputs (spacer/valid) have
arrived, and weakly indicating – if some outputs (spacer/valid)
could be produced based on even a subset of the inputs
(spacer/valid). However, in the latter case, at least one output
(spacer/valid) should not have been produced till all the inputs
(spacer/valid) have arrived. The above indication criteria have
been formulated by Seitz in [3]. Though [5] deals with ST
implementation of Boolean functions, it suffers from certain
drawbacks. For the worst scenario of all the false outputs of a
function block evaluating to logic high, when suitable valid
input data has been applied, all the sum terms of the
monotonic DR network would have become enabled. When
spacer is applied, even with a single sum term becoming
disabled, and with OR-network and CE-network being reset,
all the false outputs may evaluate to the correct empty state.
This is a problematic situation, as transitions on the other
intermediate gate output nodes would not get properly
acknowledged, thereby giving room for creation of gate
orphans. Gate orphans are unacknowledged transitions on gate
output nodes. Though they may not necessarily be hazardous,
they are undesirable as they can lead to erroneous output
states. Hence, timing assumptions are necessary to guarantee
proper ST operation. Moreover, the design method is bound to
suffer from high power dissipation, since all the sum terms are
activated for the worst case, leading to high switching activity.

It is to be noted that all the above methods are bound by
physical or practical limitations, in that, with increase in the
number of inputs, either the designs become physically
unrealizable, mainly because of the fact that there occurs a
linear growth in the size of the canonical product term which
is accompanied by an exponential increase in the input state
space or that the synthesis procedure cannot be expected to

Authorized licensed use limited to: The University of Manchester. Downloaded on July 23, 2009 at 09:35 from IEEE Xplore. Restrictions apply.

terminate in a realistic amount of time, though a practical
solution is feasible. In general, indicating synthesis solutions
for combinatorial logic functions are large, more so for
functions with several inputs. But they inherently consist of
the attractive features of asynchronous design; low EMI, high
modularity, elasticity, power consumption only for useful
activity and robustness, by being tolerant to variations in
supply, noise, process and temperature variations. Hence,
indicating synthesis solutions prominently figure in data path
logic realizations, in that, the resulting circuitry is usually
iterative; not the case with arbitrary combinational logic.
Nevertheless, it should be noted that methods [7] and [8]
would lead to synthesizable solutions, as they incorporate
speed-independent decomposition.

A ST full adder design based on [8], conforming to the
HIE approach, is shown in figure 2. As mentioned earlier, it
can be classified as strongly indicating, thereby the DR sum
and carry outputs acknowledge the arrival of all the inputs.
Henceforth, we shall refer to this as Toms_HIE adder.

Figure 2. Toms’ ST full adder based on hybrid input encoding

Two novel ST full adder designs have been proposed in
this work, based on the HIE approach. One of these does not
contain logic redundancy and we shall identify it by the
terminology proposed_HIE_NRL adder; the other design
encompassing logic redundancy shall be identified as
proposed_HIE_RL adder, where the acronyms NRL and RL
expand as non-redundant logic and redundant logic
respectively.

Figure 3. Proposed ST full adder design without redundant logic

Figure 3 shows the realization of the proposed_HIE_NRL
ST full adder. This adder pertains to weak-indication, wherein
only the DR sum output acknowledges the arrival of all the
inputs, while the DR carry output need not. This property
enables the DR carry to propagate faster from a lower order
adder stage to its successive higher order adder stage, in the
cascade. It is also well known that a valid combinatorial
cascade of strong/weak-indication function blocks is itself a
strong/weak-indication function block [3].

The following figure shows the proposed_HIE_RL adder
design. Similar to the previous one, this full adder is also
weakly indicating, with the responsibility of indication wholly
entrusted on the DR sum output.

Figure 4. Proposed ST full adder design with logic redundancy

In figure 4, gates C1 and C2 denote 2-input C-elements,
while gates g1 and g2 represent 2-input AND gates. It can be
noticed in the diagram, that the logic realized by C1 and C2 are
equivalent to that of g1 and g2 respectively, for transitions.
Hence, redundancy is made implicit in the design. This proves
to be beneficial in two ways. During the spacer phase, all the
sum outputs could be reset in a parallel fashion, as the DR
carry output of the kth stage could be reset based on its 1-of-4
encoded augend and addend inputs, and the DR sum output of
the (k+1)th stage depends only on the DR carry input from the
kth stage. However, this unique feature of fast reset could not
be captured using a static timing analyzer that is
predominantly used for timing analysis of synchronous
circuits, and in this work, designs have been implemented
using synchronous resources and validated using widely used
industry-standard synchronous tools. There is also a benefit in
terms of improvement in delay during the valid data phase.
This would become obvious by comparing the designs
portrayed by figures 3 and 4; it can be observed that the carry
propagation path delay is lesser in case of proposed_HIE_RL
adder than the proposed_HIE_NRL adder. This is further
substantiated by the results mentioned in the next section.

IV. SIMULATION MECHANISM, RESULTS AND DISCUSSION
The ST full adder designs, based on HIE, are analyzed

using the delay-insensitive version of an n-bit RCA topology,
depicted in figure 5. As can be seen, the augend and addend
adder inputs are 1-of-4 encoded, while its carry inputs, sum
and carry outputs are DR encoded.

Authorized licensed use limited to: The University of Manchester. Downloaded on July 23, 2009 at 09:35 from IEEE Xplore. Restrictions apply.

All the adder’s outputs have been uniformly configured to
possess fanout-of-4 drive strength, while their inputs are
configured with the driving capability of a minimum sized
inverter in the library. Similar delay-optimized completion
detection (CD) circuits were used for all the ST adders, to
maintain uniformity. Minimum sized buffer cells were
provided within all the adder modules, mainly to eliminate
timing violations, that results from a single acknowledge input
feeding all the adder outputs, in every stage of the cascade.
Experimentation has been carried out across the typical, worst
and best case corners of the high-speed 130nm Faraday
CMOS process (which is compatible with the 130nm UMC
CMOS foundry process). Cadence NC-Verilog has been used
for functional simulation and also to obtain the switching
activity files for all the gate level simulations, while Synopsys
PrimeTime and PrimeTime PX have been used for delay, cells
area and power evaluation respectively, inclusive of wire load
information. A virtual clock has been used, only to act as a
remote reference to guide the application of inputs to the ST
adders at a specific data rate and does not form a part of the
designs in any way. The minimum support for asynchronous
logic, offered by synchronous tools has been exploited, by
avoiding timing loop breaking while performing static timing
analysis. The inputs of all the ST full adders correspond to the
input trace of a simple combinatorial benchmark circuit, dc1,

of the MCNC benchmark set. The inputs are assumed to arrive
from the environment and are fed to the adders every 30ns,
50ns and 20ns for the typical, worst and best case library
specifications respectively.

TABLE II. AREA METRIC FOR DIFFERENT ST ADDERS

Adder realization
style

Cells area
(μm2)

Seitz_DRE (Strong) [3] 7100
Seitz_DRE (Weak) [3] 6276
Singh_DRE (Strong) [4] 7364
DIMS_DRE (Strong) [6] 8932
DIMS_DRE (Weak) [6] 9508
Folco et al._DRE (Weak) [7] 5476
Toms_DRE (Strong) [8] 6404
Proposed_DRE (Weak) [2] 5924
Toms_HIE (Strong) [8] 4868
Proposed_HIE_NRL (Weak) 3940
Proposed_HIE_RL (Weak) 4260

The simulation results pertain to a 32-bit DI RCA,
constructed using different ST full adder modules. Table II
lists the area metric for realization of a 32-bit DI RCA based
on various ST full adder modules. Table III gives the delay

Figure 5. Delay-insensitive (self-timed) version of an n-bit ripple carry adder topology. The target library (130nm Faraday bulk CMOS process)

features an AND gate with a maximum fan-in of 4 and an OR gate with a maximum fan-in of 3

Authorized licensed use limited to: The University of Manchester. Downloaded on July 23, 2009 at 09:35 from IEEE Xplore. Restrictions apply.

metric of the different ST adders and Table IV lists the power
components of the adders, for a typical case corner. In a
similar manner, Tables V and VI and Tables VII and VIII
specify the design metrics of the various ST adders, across
worst case and best case library corners respectively. It can be
observed from the previous tabular column, that amongst all
the other ST adders, Toms_HIE adder has the best area metric.
Nevertheless, it is inferior to the proposed_HIE_NRL and
proposed_HIE_RL adders by 23.6% and 14.3% respectively.

TABLE III. DELAY METRICS OF VARIOUS ST ADDERS
(TYPICAL CASE – 1.2V, 25°C)

Adder realization
style

Maximum data
path delay (ns)

Function block
delay (ns)

Seitz_DRE (Strong) 20.54 19.88
Seitz_DRE (Weak) 11.36 10.71
Singh_DRE (Strong) 26.01 25.34
DIMS_DRE (Strong) 22.45 21.79
DIMS_DRE (Weak) 21.04 20.39
Folco et al._DRE (Weak) 14.67 14.02
Toms_DRE (Strong) 17.82 17.16
Proposed_DRE (Weak) 10.52 9.86
Toms_HIE (Strong) 17.78 17.12
Proposed_HIE_NRL (Weak) 14.04 13.38
Proposed_HIE_RL (Weak) 10.13 9.48

TABLE IV. POWER COMPONENTS OF ST ADDERS (TYPICAL CASE)

Adder
realization

style

Power dissipation components

Total
(μW)

Dynamic
(μW)

Leakage
(nW)

Seitz_DRE (Strong) 248.57 246.34 2225.66
Seitz_DRE (Weak) 198.52 196.65 1875.81
Singh_DRE (Strong) 246.40 244.36 2040.49
DIMS_DRE (Strong) 186.43 184.28 2147.89
DIMS_DRE (Weak) 195.67 193.46 2206.59
Folco et al._DRE (Weak) 183.85 182.27 1579.70
Toms_DRE (Strong) 186.18 184.40 1785.47
Proposed_DRE (Weak) 192.21 190.63 1586.49
Toms_HIE (Strong) 151.46 150.00 1462.99
Proposed_HIE_NRL (Weak) 160.32 159.08 1242.43
Proposed_HIE_RL (Weak) 162.91 161.58 1323.54

TABLE V. DELAY METRICS OF VARIOUS ST ADDERS
(WORST CASE – 1.08V, 125°C)

Adder realization
style

Maximum data
path delay (ns)

Function block
delay (ns)

Seitz_DRE (Strong) 35.02 33.82
Seitz_DRE (Weak) 19.62 18.44
Singh_DRE (Strong) 44.81 43.64
DIMS_DRE (Strong) 38.70 37.54
DIMS_DRE (Weak) 36.37 35.22
Folco et al._DRE (Weak) 25.11 23.94
Toms_DRE (Strong) 30.39 29.22
Proposed_DRE (Weak) 18.10 16.94
Toms_HIE (Strong) 30.30 29.12
Proposed_HIE_NRL (Weak) 24.12 22.95
Proposed_HIE_RL (Weak) 17.24 16.07

In Tables III, V and VII, function block delay (FBD)
specifies the maximum delay encountered for traversal of a

logic path from the least significant adder stage to the most
significant stage. Maximum data path delay (MDPD) is the
summation of FBD and the delay associated with the CD
circuitry. The CD logic comprises of all the 2-input OR gates,
used to combine the DR sum and final stage carry outputs and
the C-element tree, which is used to synchronize (indicate) the
arrival of all the adder outputs. In Tables IV, VI and VIII, total
power dissipation denotes the sum of dynamic and static
(leakage) power parameters. In turn, dynamic power
dissipation is the gross of switching and internal power
components. Both delay and power figures of the various ST
adders report a consistency in all the three evaluation corners.

TABLE VI. POWER COMPONENTS OF ST ADDERS (WORST CASE)

Adder
realization

style

Power dissipation components

Total
(μW)

Dynamic
(μW)

Leakage
(nW)

Seitz_DRE (Strong) 119.62 114.31 5312.77
Seitz_DRE (Weak) 95.77 91.24 4529.75
Singh_DRE (Strong) 119.53 114.57 4957.46
DIMS_DRE (Strong) 90.48 85.18 5301.35
DIMS_DRE (Weak) 95.40 89.90 5494.11
Folco et al._DRE (Weak) 88.79 84.96 3824.22
Toms_DRE (Strong) 90.28 85.94 4336.19
Proposed_DRE (Weak) 92.90 88.99 3913.68
Toms_HIE (Strong) 72.96 69.46 3502.02
Proposed_HIE_NRL (Weak) 77.02 74.06 2957.59
Proposed_HIE_RL (Weak) 78.41 75.23 3182.09

TABLE VII. DELAY METRICS OF VARIOUS ST ADDERS
(BEST CASE – 1.32V, -40°C)

Adder realization
style

Maximum data
path delay (ns)

Function block
delay (ns)

Seitz_DRE (Strong) 13.47 13.04
Seitz_DRE (Weak) 7.37 6.95
Singh_DRE (Strong) 16.99 16.56
DIMS_DRE (Strong) 14.69 14.27
DIMS_DRE (Weak) 13.69 13.27
Folco et al._DRE (Weak) 9.65 9.23
Toms_DRE (Strong) 11.71 11.28
Proposed_DRE (Weak) 6.89 6.46
Toms_HIE (Strong) 11.74 11.32
Proposed_HIE_NRL (Weak) 9.21 8.78
Proposed_HIE_RL (Weak) 6.68 6.25

TABLE VIII. POWER COMPONENTS OF ST ADDERS (BEST CASE)

Adder
realization

style

Power dissipation components

Total
(μW)

Dynamic
(μW)

Leakage
(nW)

Seitz_DRE (Strong) 466.71 465.59 1115.92
Seitz_DRE (Weak) 373.43 372.49 942.21
Singh_DRE (Strong) 458.59 457.61 977.70
DIMS_DRE (Strong) 351.76 350.70 1059.72
DIMS_DRE (Weak) 367.92 366.84 1083.13
Folco et al._DRE (Weak) 343.37 342.61 762.67
Toms_DRE (Strong) 347.86 346.99 861.61
Proposed_DRE (Weak) 359.57 358.81 758.83
Toms_HIE (Strong) 283.99 283.28 714.69
Proposed_HIE_NRL (Weak) 299.99 299.39 604.87
Proposed_HIE_RL (Weak) 304.70 304.05 648.17

Authorized licensed use limited to: The University of Manchester. Downloaded on July 23, 2009 at 09:35 from IEEE Xplore. Restrictions apply.

We shall first consider the issue with DRE and HIE based
ST full adder designs separately, and then proceed towards a
combined comparison. It can be noticed that among all the full
adder designs based on DRE, the proposed_DRE full adder [2]
yields the minimum delay values, both in terms of MDPD and
FBD, across all the three corners. In terms of total power
dissipation, Folco et al._DRE is economical. Nevertheless, in
terms of the static power metric, the proposed_DRE adder is
comparable with Folco et al._DRE adder.

Among the adders which adopt HIE, Toms_HIE adder is
found to be power efficient, mainly in terms of total and
dynamic power parameters. This is evident from the results
highlighted in Tables IV, VI and VII. Between the two
proposed full adder designs viz. proposed_HIE_NRL and
proposed_HIE_RL, the former is found to be better in terms of
all the power components. This is because of reduced activity
and lesser number of cells due to absence of redundant logic.
However, proposed_HIE_NRL adder is expensive than
Toms_HIE adder with respect to total and dynamic power
dissipation, on an average, across all the three corners, by
5.7% and 6.1% respectively. Notwithstanding, with respect to
the static power component, Toms_HIE adder is expensive
than both proposed_HIE_NRL and proposed_HIE_RL adders,
on an average, across all the three corners by 18.1% and
10.3% respectively. With respect to MDPD and FBD
parameters, Toms_HIE adder suffers an increase compared to
the proposed_HIE_NRL adder, on an average, across all the
three corners by 26.6% and 27.9%, which is considerable. For
a similar comparison with the proposed_HIE_RL adder,
Toms_HIE exhibits a heavy delay penalty, reporting
degradation (increase in delay) to the tune of 75.7% and 81%
respectively.

Based on a combined overall comparison between various
ST full adders adopting DRE and HIE, we find that the
proposed_HIE_RL adder features the best MDPD and FBD
values, in comparison with that of the proposed_DRE adder.
On an average, for all the three cases combined, the former
reports reduction over the latter by 3.8% (in MDPD) and 4.1%
(in FBD) respectively. For a comprehensive comparison, the
reduction in delay should also be simultaneously viewed from
a power and area perspective, wherein the former proves to be
economical with less total power consumption (across all the
library cases) and reduced area occupancy by 15.4% and
28.1% respectively.

V. CONCLUSION
Throughout this article, the term ‘self-timed’ has been

used to generalize the notions of quasi-delay-insensitivity
(delay-insensitivity with isochronic fork assumption included
[14]) and speed-independency. This paper has presented two
new ST designs for a full adder functionality with HIE – one
consisting of logic redundancy and the other without any
redundant logic. While the augend and addend bits of every
full adder module is 1-of-4 encoded, the input and output
carries as well as the sum output are encoded in a DR format.
The motivation being that a 1-of-4 code experiences only half
the transitions as that of a DR code and therefore it is most
likely to yield a power efficient solution.

The designs have been analyzed on the basis of a delay-
insensitive (in fact, quasi-delay-insensitive) RCA. A delay-
insensitive RCA, constructed using only DR encoded full
adder blocks, would have a similar structure as shown in
figure 5. The logic has been implemented using the elements
of a standard cell library and validated across typical, worst
and best case library targets. Since this work relies on utilizing
synchronous standard cells for realizing robust ST designs,
comparison with [15], or improvisations based on it, is not
possible, as they are based on the requirement of custom
macros (proprietary NCL macro cells) for a cell library.

While the proposed adders feature the optimum delay and
area metrics, the full adder design employing HIE based on
[8] is found to be somewhat economical in terms of total
average power and dynamic power parameters. Nevertheless,
the proposed adders report the least static power in all the
cases. This is mainly attributable to the less number of C-gates
that were required. However, in comparison with a standard
synchronous RCA, where a full adder is constructed using two
half adder modules, the proposed_HIE_NRL adder (which
occupies the least area amongst all the ST adders) is found to
be 2.9× expensive in terms of area. On the other hand, the
synchronous adder is found to exhibit 30.5% reduced delay
compared to the proposed_HIE_RL adder (which features the
least delay), on an average, across all three process corners.

REFERENCES
[1] SIA’s ITRS report 2007 edition, Available: http://www.itrs.net
[2] P. Balasubramanian and D.A. Edwards, “A delay-efficient robust self-

timed full adder,” Proc. 3rd IEEE Intl. Design and Test Workshop, pp.
129-134, 2008.

[3] C.L. Seitz, “Chapter 7 – System Timing”, in Introduction to VLSI
Systems, C.A. Mead and L.A. Conway (Eds.), Addison-Wesley, 1980.

[4] N.P. Singh, “A design methodology for self-timed systems,” MIT
Computer Science Laboratory Tech. Report TR-258, Feb. 1981.

[5] I. David et al., “An efficient implementation of Boolean functions as
self-timed circuits,” IEEE Trans. on Comp., 41(1), pp. 2-11, Jan. ‘92.

[6] J. Sparso and J. Staunstrup, “Delay-insensitive multi-ring structures,”
Integration, the VLSI journal, vol. 15, no. 1, pp. 313-340, Oct. 1993.

[7] B. Folco et al., “Technology mapping for area optimized quasi-delay-
insensitive circuits,” Proc. IFIP VLSI-SoC, pp. 55-69, 2005.

[8] W.B. Toms, “Synthesis of Quasi-Delay-Insensitive Datapath Circuits,”
PhD thesis, University of Manchester, 2006.

[9] D.E. Muller, “Asynchronous logics and application to information
processing,” in Switching Theory in Space Technology, Stanford
University Press, pp. 289-297, 1963.

[10] T. Verhoeff, “Delay-insensitive codes: an overview,” Distributed
Computing, vol. 3, no. 1, pp. 1-8, 1988.

[11] D.W. Lloyd and J.D. Garside, “A practical comparison of asynchronous
design styles,” Proc. 7th ASYNC, pp. 36-45, 2001.

[12] B. Bose, “On Unordered Codes,” IEEE Trans. on Computers, vol. 40,
no. 2, pp. 125-131, February 1991.

[13] S.J. Piestrak and T. Nanya, “Towards totally self-checking delay-
insensitive systems,” Proc. 25th Intl. Symposium on Fault-Tolerant
Computing, pp. 228-237, 1995.

[14] A.J. Martin, “The limitations to delay-insensitivity in asynchronous
circuits,” Proc. 6th MIT Conf. on Adv. Res. in VLSI, pp. 263-278, 1990.

[15] K.M. Fant and S.A. Brandt, “Null convention logic: a complete and
consistent logic for asynchronous digital circuit synthesis,” Proc. Intl.
Conf. on Application-specific Sys., Arch., and Proc., pp. 261-273, 1996.

Authorized licensed use limited to: The University of Manchester. Downloaded on July 23, 2009 at 09:35 from IEEE Xplore. Restrictions apply.

