
Synthesizing Multiplier in Reversible Logic
Sebastian Offermann1 Robert Wille1 Gerhard W. Dueck2 Rolf Drechsler1

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Faculty of Computer Science, University of New Brunswick, Fredericton, Canada

{offerman,rwille,drechsle}@informatik.uni-bremen.de
gdueck@unb.ca

Abstract—In the past, reversible logic has become an intensely
studied research topic. This is mainly motivated by its appli-
cations in the domain of low-power design and quantum com-
putation. Since reversible logic is subject to certain restrictions
(e.g. fanout and feedback are not allowed), traditional synthesis
methods are not applicable and specific methods have been
developed. In this paper, we focus on synthesis of multiplier
circuits in reversible logic. Three methods are presented that
address the drawbacks of previous approaches. In particular,
the large number of circuit lines in the resulting realizations as
well as the poor scalability. Finally, we compare the results to
circuits obtained by general purpose synthesis approaches.

I. INTRODUCTION

The number of elements integrated in digital circuits grows
exponentially, leading to enormous challenges in Computer
Aided Design (CAD). Due to this exponential growth physical
boundaries will be reached in the near future. Furthermore,
power consumption of circuits becomes a major issue. As a
consequence, researchers expect that “traditional” technologies
like CMOS will reach their limits in the near future [1]. To face
this, alternative computation technologies are needed. This
motivates research in the domain of reversible logic.

Reversible logic realizes bijections, i.e. one-to-one map-
pings of Boolean functions. The resulting reversibility allows
promising applications e.g. in the domain of low-power design
and quantum computation. In fact, it has been proven that
zero power dissipation is only possible if computations are
performed in an invertable manner [2], [3]. Reversible circuits
are driven by their input signals only (and accordingly without
additional power supplies) have already been physically im-
plemented [4]. Besides that, the application in quantum com-
putation is triggered by the fact that every quantum operation
inherently is reversible [5]. Quantum computers allow to solve
practically relevant problems (e.g. factorization) much faster
than traditional circuits [6], [7].

As a result, reversible logic has become an intensely studied
research area. In particular, synthesis aspects are of interest
since reversible circuits are subject to certain restrictions,
e.g. fanout and feedback are not allowed [5]. In the past,
several general purpose synthesis approaches have been in-
troduced (e.g. [8], [9], [10], [11], [12]). The realization of
reversible circuits for arithmetic functions is of particular
interest, since these functions occur naturally in circuit design.

In the following, we focus on synthesis of multiplier circuits
in reversible logic. First reversible realizations of multiplier
have already been introduced (see e.g. [13], [14], [15]).
However, they often rely on a very special type of reversible
gates (e.g. the TSG gate, the HNG gate, or the PFAG gate)
and additionally have been proposed for very small bit-width
only (in fact, 4× 4 multiplier have been introduced). Besides

that, multiplier can also be realized with the help of the
(general purpose) synthesis approaches mentioned above. But
since multiplication is an irreversible function, thereby often
circuits with a significant number of additional circuit lines
result. Furthermore, these approaches do not scale very well
in particular for the multiplication function.

In this paper, we present three methods that (partially)
address these drawbacks. More precisely, an adjusted multi-
plication specification is introduced that enables synthesis of
a multiplier with a significant lower number of circuit lines.
Even if this specification still is only applicable for very small
bit-widths, it provides an interesting insight in how to exploit
properties of a multiplier while synthesizing them as reversible
circuit. Additionally, two constructive approaches for synthesis
of multipliers with very large bit-width are proposed. While
the first one is a hierarchical method based on partial products,
the second one is motivated by the divide-and-conquer-method
of Karatsuba’s algorithm [16].

All proposed methods apply the well-established Toffoli
gate library. The resulting circuits are evaluated with respect
to number of circuit lines, number of gates, quantum cost,
and transistor costs, respectively. Furthermore, we compare the
results with circuits obtained by (general purpose) synthesis
approaches. Overall, methods to generate reversible realiza-
tions for practical relevant multiplier with large bit-widths are
presented and evaluated.

The remaining paper is structured as follows. Section II
introduces the basics of reversible logic. Afterwards, the three
methods to generate reversible multipliers are introduced in
Section III. This also includes a brief discussion about the
advantages and disadvantages of the respective approaches.
Finally, experimental results are presented in Section IV and
the paper is concluded in Section V, respectively.

II. PRELIMINARIES

To keep the paper self-contained, this section introduces the
basics of reversible functions and reversible circuits. For more
details we refer to the respective publications.

Definition 1: A multiple-output function f : Bn → Bm is
a reversible function iff (1) its number of inputs is equal to
the number of outputs (i.e. n = m) and (2) it maps each input
pattern to a unique output pattern.

In other words, each reversible function is a bijection that
permutes the set of input patterns. A function that is not
reversible is termed irreversible. Quite often, (irreversible)
multi-output Boolean functions should be represented by re-
versible circuits. This necessitates the irreversible function to
be embedded into a reversible one which requires the addition
of circuit lines leading to constant inputs (i.e. inputs that are



TABLE I
QUANTUM COST FOR TOFFOLI GATES

NO. OF QUANTUM COST
CONTROL LINES OF A TOFFOLI GATE

0 1
1 1
2 5
3 13
4 26, if at least 2 lines are unconnected

29, otherwise
5 38, if at least 3 lines are unconnected

52, if 1 or 2 lines are unconnected
61, otherwise

6 50, if at least 4 lines are unconnected
80, if 1, 2 or 3 lines are unconnected

125, otherwise

assigned to a fixed value) and garbage outputs (i.e. outputs
that are don’t care for all possible input conditions). The
minimal number of circuit lines to be added is determined
by the number of the occurrences of the most frequent output
pattern [17].

To realize reversible functions some restrictions must be
considered, e.g. fanouts and feedback are not allowed [5]. This
is reflected in the definition of reversible circuits.

Definition 2: A reversible circuit G over inputs
X = {xi|1 ≤ i ≤ n} is a cascade of reversible gates gi,
i.e. G = Td

i=1
gi where d is the number of gates1.

In the literature, different reversible gates have been studied.
The universal multiple control Toffoli gate [18] is the most
commonly used gate.

Definition 3: Let X := {xi|1 ≤ i ≤ n} be the set of
domain variables. A multiple control Toffoli gate has the
form g(C, t), where C = {xji

|1 ≤ i ≤ k} ⊂ X is
the set of control lines and t = xl with t 6∈ C is the
target line. It inverts the target line iff all control lines are
assigned to 1, i.e. the gate maps Tl−1

i=1
xi, xl,Tn

i=l+1
xi to

Tl−1
i=1

xi, xl⊕
∧k

i=1 xji
,Tn

i=l+1
xi. If no control lines are given

(C is empty), then the target line is inverted, i.e. the input
vector of the gate is mapped to Tl−1

i=1
xi, xl ⊕ 1,Tn

i=l+1
xi.

In the following, we refer to multiple control Toffoli gates
for brevity as Toffoli gates. Furthermore, a Toffoli gate with
no control line (with k control lines) is also called NOT gate
(CkNOT gate).

To determine the effort to realize a reversible circuit, the
following cost models are applied depending on the target
technology:
• Line count denotes the number of lines the circuit uses (in

particular for the application in the domain of quantum
computing this is an important cost criterion since the
number of circuit lines correspond to the number of qubits
– so far a very restricted resource).

• Gate count denotes the number of gates the circuit
consists of (i.e. d).

• Quantum cost denotes the effort needed to transform a
reversible circuit to a quantum circuit. Table I shows the
quantum cost for a selection of Toffoli gate configurations
as introduced in [19] and further optimized e.g. in [17].

1For tuples, we are using the T-symbol which is analogously defined to
the sum-symbol

∑
: T0

i=0
xi = x0;Tn+1

i=0
xi =

((
Tn

i=0
xi

)
, xn+1

)
.

0
1
0

1
0
0

Fig. 1. Toffoli circuit

As can be seen, gates of larger size are considerably more
expensive than gates of smaller size. The sum of the
quantum cost for all gates defines the quantum cost of
the whole circuit.

• Transistor cost denotes the effort needed to realize a re-
versible circuit in CMOS according to [20]. The transistor
cost of a Toffoli gate is 8 · c where c is the number of
control lines.

Example 1: Fig. 1 shows a Toffoli circuit with 3 circuit
lines, 6 gates, quantum cost of 10, and transistor cost of
56, respectively. The control lines are thereby denoted by l,
while the target lines are denoted by ⊕. The annotated values
illustrate the computation performed by this circuit.

Finally, the following definition introduces the denotation
of controlled functions.

Definition 4: Let ◦ : Bn → Bn be a reversible function
that is realized by the reversible circuit G = Td

i=1
gi. The

controlled function
c◦ is described by the circuit

c

G which is
obtained by adding the circuit line c to the control set C of
each gate g in the circuit G.

In this way, e.g. a controlled increaser
c

+= can be obtained
from an increaser += by adding the control bit c to every
gate of the circuit, that represents this increaser.

III. REALIZING MULTIPLICATION IN REVERSIBLE LOGIC

In this section, we introduce methods to efficiently realize
multiplication in reversible logic. In a straight-forward way,
a multiplier can be synthesized by specifying the under-
lying function in terms of a truth table, binary decision
diagram, exclusive-sum-of-products, or similar descriptions,
respectively, and pass this to an appropriate synthesis approach
(e.g. [9], [11], [12]). Since multiplication is an irreversible
function, thereby often circuits with a significant number of
additional circuit lines result (even if in case of [9] circuits
with minimal number of lines can be achieved). But for the
particular case of multiplication, it is possible to reduce the
number of circuit lines if an adjusted function specification is
used. The corresponding approach is introduced in the first part
of this section. However, even then multipliers can be realized
only for very small bit-widths. Thus, two further approaches
are introduced that enable synthesis of multipliers with scal-
able bit-widths. Finally, the newly proposed realizations are
discussed.

A. Multiplier with Sub-minimal Circuit Lines

As mentioned above, usually additional circuit lines are
needed to embed an irreversible function (like multiplication)
into a reversible one. More precisely, lines must be added so
that at least dlog2(µ)e garbage outputs are available, where
µ is the maximum number of times an output pattern is



TABLE II
RESULTS OF A 3-BIT MULTIPLICATION

product (result) µ dlog2 µe factors
0 (zero) 15 4 0 · k, k · 0
6 4 2 1 · 6, 2 · 3, 3 · 2, 6 · 1
12 4 2 2 · 6, 3 · 4, 4 · 3, 6 · 2
4 3 2 1 · 4, 2 · 2, 4 · 1
2 2 1 1 · 2, 2 · 1
3, 5, 7 similar to 2
8 2 1 2 · 4, 4 · 2
10, 14, 15, 18,
20, 21, 24, 28,
30, 35, 42

similar to 8

1 1 0 1 · 1
9 1 0 3 · 3
16,25, 36, 49 similar to 9

repeated in the truth table (see [17])2. Thus, keeping µ as
small as possible helps reducing the number of circuit lines.
In the following, an adjusted specification of the multiplication
function is presented that exploits this observation.

The most frequent output pattern in a multiplier is
the binary encoding of zero. The product is zero, iff
(at least) one factor is zero. Thus, an n-bit multipli-
cation produces µ = 2 · 2n − 1 = 2n+1 − 1 zeros. Hence,
dlog2(2n+1 − 1)e = (n+ 1) lines with garbage outputs are
required. All other possible products (i.e. output patterns) are
less frequent. The main idea of this approach is to reduce
the occurrences of the zero-output by means of an additional
indicator output. As a result, the value of µ is significantly
decreased and the multiplier can be realized with less circuit
lines.

More precisely, an indicator output is added, which becomes
assigned to 1 iff the product of the multiplication is zero. In
contrast, all primary outputs can be arbitrarily assigned in this
case. In doing so, the result zero is obtained by measuring the
indicator output, while all other results still can be obtained
from the remaining primary outputs. Thus, the binary encoding
of the zero is not longer applied to obtain the minimal number
of garbage lines. Instead the next most frequent output pattern
is used for that. Therewith, the number of garbage lines can
be asymptotically reduced by one half.

Example 2: Consider a 3-bit multiplication. The possible
products and their occurrences (i.e. µ) are depicted in Table II.
The respective output patterns (ordered in terms of a truth
table) are shown in Table III. Since zero is the most frequent
product (in total occurring 15 times), at least dlog2(15)e = 4
garbage lines are conventionally needed.

In contrast, encoding the zero output by a separate indicator
output, 6 and 12 become the most frequent products – each
with only 4 occurrences. Hence, only dlog2(4)e = 2 additional
garbage outputs are needed to realize this function. As a
result, this encoding only requires 3 additional outputs (the
indicator output and the two garbage outputs) in comparison to
the 4 additional outputs required by the conventional method.
Column sub-minimal in Table III shows a possible embedding
exploiting this encoding.

Having this adjusted specification, any truth table-based
synthesis approach (e.g. [9]) can be applied to realize the
multiplier. However, since this approach still relies on a

2Note that this states not only for truth tables but for any other function
description as well.

TABLE III
ENCODING OF A 3-BIT-MULTIPLICATION

result encoded
a b decimal conventional sub-minimal

000 000 0 000000 - - - - 000000 1- -
000 001 0 000000 - - - - 000001 1- -
000 010 0 000000 - - - - 000010 1- -

...
...

...
...

...
001 000 0 000000 - - - - 001000 1- -
001 001 1 000001 - - - - 000001 0- -
001 010 2 000010 - - - - 000010 0- -

...
...

...
...

...
011 111 21 010101 - - - - 010101 0- -
100 000 0 000000 - - - - 100000 1- -

...
...

...
...

...
111 111 49 110001 - - - - 110001 0- -

truth table description, it is only applicable for multiplier of
very small bit-widths. In the following two scalable synthesis
methods are proposed.

B. Hierarchical Method
The realization of multiplier by a hierarchical method using

controlled increasers is described in this section.
A common way to multiply two factors a =

∑n−1
i=0 ai · 2i

and b =
∑n−1

i=0 bi ·2i is to compute the partial products and add
them together, i.e. a · b =

∑n−1
i=0

(
ai ·

∑n−1
j=0 bj · 2j

)
· 2i. That

is, the respective bit of bj multiplied by the respective power
of 2 is added to the product, iff the respective bit ai is assigned
to 1. This can easily be realized by controlled functions (or
more precisely controlled increasers as sketched at the end of
Section II).

Thus, using the hierarchical method an n-bit multiplier is
realized by n single n-bit controlled increasers. The respec-
tive algorithm for an n-bit multiplication with the factors
a = Tn−1

i=0
ai and b = Tn−1

i=0
bi as well as the product

c = T2·n−1
i=0

ci is depicted in Fig. 2.
Here, the ith controlled increaser is controlled by ai. It

conditionally adds the value of b to Tn−1+i
j=i

ci, i.e. to the n
bits of the product c beginning from the i-th bit. The lower bits
do not have to be considered, since the j-th bit of the product
is only modified until the j-th controlled increaser. Beyond
that, the value remains unchanged. Therefore, the controlled
increasers can sequentially be realized by an implicit bit-shift
after every increase and without concern for the lower bits.
Also, the i-th increaser writes the carry-over in the n + i-th
position of the product, which has not been used so far and,
thus, holds the value 0.

Example 3: Consider a 3-bit hierarchical multiplication
with the factors a = a2a1a0 and b = b2b1b0 as well as the
product c = c5c4c3c2c1c0. In total, three controlled increasers

1 f o r i = 0 t o n− 1
2 {
3 Tn+i

j=i
ci

ai
+= Tn−1

i=0
bi

4 }

Fig. 2. Hierarchical method



are needed to realize this multiplication. The first controlled
increaser is controlled by a0. It conditionally adds the second
factor b to the three least significant bits of the product c,
i.e. to c2c1c0. It also writes the carry-over into c3. The second
controlled increaser is controlled by a1. It conditionally adds b
to c3c2c1. Again the carry-over is written into the next product-
bit c4. Finally, the third controlled increaser is controlled
by a2. It conditionally adds the second factor b to c4c3c2.
The carry-over is written into the most significant bit c5 of
the product.

C. Karatsuba Method

This section describes the realization of multipliers in
reversible logic based on the divide-and-conquer-method of
Karatsuba’s algorithm [16]. The idea behind the Karatsuba
algorithm is to realize the multiplication by multiplying two
factors with smaller bit-width and additionally perform some
less expensive operations. Consider an n-bit multiplication
with n = 2 · k. Both factors (e.g. a =

∑2·k−1
i=0 ai · 2i) are

partitioned in an upper half (a :=
∑2·k−1

i=k ai · 2i−k) and a
lower half (a :=

∑k−1
i=0 ai · 2i) such that a = a · 2k + a. With

this representation the following equations are deducible:

a · b =
(
a · 2k

+ a
)
·
(
b · 2k

+ b
)

= a · b · 22·k
+ (a · b + a · b) · 2k

+ a · b

= a · b · 22·k
+ (a · b + a · b + a · b + a · b− a · b− a · b) · 2k

+ a · b

= a · b · 22·k
+ (a · (b + b) + a · (b + b)− a · b− a · b) · 2k

+ a · b

= a · b · 22·k
+ ((a + a) · (b + b)− a · b− a · b) · 2k

+ a · b

These equations show that a (2 · k)-bit multiplication can
be realized by three k-bit multiplications, some additions,
subtractions, and bit-shifts, respectively. In reversible logic,
additionally a number of circuit lines are required (as already
shown in [21]). However, the latter can be reduced by choosing
appropriate targets of the intermediate results as well as
good orderings of the respective operations. Fig. 3 shows an
optimized approach to generate reversible multiplier based on
this observation (which requires less additional circuit lines
than the method of [21]). The general idea is illustrated by
the following example. Since the Karatsuba method is not
applicable for very small bit-widths, the variable turningPoint
denotes the bit-width below which the hierarchical multiplica-
tion is used. Beyond the turningPoint the Karatsuba method
is used for multiplication.

Example 4: Consider an 8-bit Karatsuba multiplication and
turning point t = 6. Since 8 is greater than t and even, the
two conditionals (lines 1 and 4) do not hold and k = 4 is
computed (line 7). Then, new variables d, e, f are initialized
as shown in line 8. This leads to 4 · 4 + 4 = 20 garbage lines.
Then, the two smaller multiplications c = c7c6c5c4c3c2c1c0 =
a3a2a1a0 · b3b2b1b0 = a · b (line 9) and c = a · b (line 10) are
performed, respectively. Since these are 4-bit multiplications
and the turning point in this example is t = 6, these
multiplications are realized using the hierarchical approach
described in the previous section. Afterwards, the result of
these multiplication is directly assigned to the bits of the
product. Furthermore, this result will be used later to modify
the product of the sums that are computed next. These sums
are d = d4d3d2d1d0 = a7a6a5a4+a3a2a1a0 = a+a (line 11)

1 i f (n < turningPoint )
2 c = MULTH (a, b)
3
4 i f (n%2 = 1 )
5 i n i t an, bn, c2·n, c2·n+1 wi th 0
6
7 k := bn

2
c

8 i n i t d, e (k + 1 b i t s ) , f (2 · k + 2 b i t s ) w i th 0

9 c = MULTK(a, b)
10 c = MULTK (a, b)
11 d = a+ a

12 e = b+ b
13 h = MULTK(d, e)
14 h− = c
15 h− = c

16 T3·k+3

i=k
ci+ = h

Fig. 3. Karatsuba method

and e = b + b (line 12). They can be performed by copying
the first summand to the (still uninitialized) target and then
increasing it by the second summand. The results of these two
sums are multiplied to get the third sub-product h = d ·e (line
13). Again, since the turning point is greater than the size of
the factors, this multiplication is performed by the hierarchical
approach. After that, this third sub-product must be modified
by subtracting the two earlier computed products from lines 9
and 10 as can be seen in lines 14 and 15 . Finally, the result
is obtained by performing the addition of this value to the
product using an implicit bitshift of k bits (line 16).

D. Discussion

As reviewed in Section II, there are different cost metrics
to judge the quality of reversible circuits, namely the number
of circuit lines, the number of gates, the quantum cost, and
the transistor cost, respectively. In this section, the costs of the
circuits for an n-bit multiplier obtained by the proposed meth-
ods are briefly discussed. Experimental results are afterwards
given in Section IV.

The sub-minimal approach significantly reduces the mini-
mal number of garbage lines using approximately n

2 garbage
lines (instead of n+ 1 garbage lines that the conventional ap-
proach minimally requires). The number of gates, the quantum
cost, and the transistor costs depend on the applied synthesis
method.

For the hierarchical approach, an n-bit adder without
garbage lines is used, which needs (5 · n − 5) CNOT and
(2 ·n− 1) C2NOT gates [22]. Accordingly, a controlled adder
consists of (5 · n − 5) C2NOT gates and (2 · n − 1) C3NOT
gates. The hierarchical method realizes a multiplier with n
controlled adders. The first controlled addition can therefore
be replaced with a controlled duplication (since the product
initially is assigned to 0 and, thus, nothing has to be added).
Consequently, this implementation of the hierarchical method
leads to circuits with (n − 1) controlled adders and one
controlled duplication (which is done with n CNOT gates).
In total, circuits result including (5 · n2 − 9 · n + 5) C2NOT
gates as well as (2·n2−3·n+1) C3NOT gates. Therefore, these
circuits have quantum costs of 51·n2−84·n+38 and transistor
costs of 128 · n2 − 216 · n + 104, respectively. Furthermore,
this approach uses separate lines for primary inputs (n lines for



each factor) and primary outputs (2 · n lines for the product),
i.e. in total 4 · n lines.

The Karatsuba multiplication needs (4 · dn
2 e + 5) garbage

outputs per recursion step. Thus, if t is chosen as turning
point and Tt represents the number of circuit lines needed
for a t-bit hierarchical multiplier, circuits with approximately
3log2(n)−log2(t) · Tt +

∑log2(n)−log2(t)−1
i=0 3i · (4 · dn

2 e + 5) ≈
n
t

log2(3) · (Tt + 4 · t) + 5 · n
t − 4 · n − 5 garbage outputs are

required (additionally to the 2 ·n lines for the primary inputs).
The number of gates, the quantum cost, and the transistor costs
are in O(nlog2(3)).

In summary, the Karatsuba approach asymptotically has
less quantum cost and transistor costs than the hierarchical
approach. But, the hierarchical method requires less circuit
lines. The sub-minimal approach leads to circuits with the
lowest line count, but is limited by the truth table-based
specification.

IV. EXPERIMENTS

The proposed synthesis methods for multiplier have been
implemented in C++. In this section, we provide experimental
results generated by these methods and compare them to
realizations obtained by general purpose approaches (namely
the transformation-based [9], the ESOP-based [11], and the
BDD-based [12] approach, respectively). For the sub-minimal
specification, we used the transformation-based approach [9]
to synthesize the circuits. The turning point for the Karatsuba
approach was set to t = 8. The timeout (denoted by TO) was
set to 1000 CPU seconds.

The results are presented in Table IV. Besides the respective
bit-width and the resulting number of primary inputs (PI), the
line count (LC), the gate count (GC), the quantum cost (QC),
and the transistor costs (TC) are listed for each method,
respectively. Additionally, the time (in CPU seconds) required
to generate the results is listed in column Time.

First of all, the results confirm that using the adjusted spec-
ification from Section III-A, multiplier with a lower number
of circuit lines can be generated. But due to the truth table-
based description, the method works for very small bit-widths
only. A similar behavior can be observed, if general purpose
synthesis approaches based on ESOP and BDDs are applied.
Indeed, somewhat larger multiplier can be synthesized, but
practical relevant bit-widths (e.g. a 32-bit or 64-bit multiplier)
cannot be generated. This can be explained by the fact that in
particular for the multiplication no efficient representation as
ESOP or as BDD, respectively, exists.

In contrast, the hierarchical method and the Karatsuba
approach enable the synthesis of reversible multipliers for
nearly arbitrary sizes. As discussed in the last section, the
Karatsuba method requires more circuit lines, but leads to
smaller realizations with respect to quantum cost and transistor
cost (in particular for large bit-width). For a better overview,
the results of both approaches are additionally illustrated in
Fig. 4.

V. CONCLUSIONS

In this paper, we introduced three methods for multiplier
synthesis that particularly address the drawbacks of previous
approaches (e.g. the large number of circuit lines in the
resulting realizations as well as the poor scalability). We

showed that multiplier with a lower number of circuit lines
can be obtained by using an adjusted specification of the
underlying function. Besides that, two constructive approaches
for synthesis of multipliers with very large bit-width are
proposed. Experiments confirmed that using these methods,
multipliers with large bit-widths can efficiently be synthesized,
while previous approaches as well as general purpose synthesis
methods do not scale very well on multiplication.

ACKNOWLEDGMENT

This work was supported by the German Research Foun-
dation (DFG) (DR 287/20-1) and the German Academic
Research Foundation (DAAD).

REFERENCES

[1] V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff, “Limits
to binary logic switch scaling – a gedanken model,” Proc. of the IEEE,
vol. 91, no. 11, pp. 1934–1939, 2003.

[2] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM J. Res. Dev., vol. 5, p. 183, 1961.

[3] C. H. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev,
vol. 17, no. 6, pp. 525–532, 1973.

[4] B. Desoete and A. D. Vos, “A reversible carry-look-ahead adder using
control gates,” INTEGRATION, the VLSI Jour., vol. 33, no. 1-2, pp.
89–104, 2002.

[5] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[6] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” Foundations of Computer Science, pp. 124–134, 1994.

[7] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H.
Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quan-
tum factoring algorithm using nuclear magnetic resonance,” Nature, vol.
414, p. 883, 2001.

[8] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis
of reversible logic circuits,” IEEE Trans. on CAD, vol. 22, no. 6, pp.
710–722, 2003.

[9] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Conf.,
2003, pp. 318–323.

[10] P. Gupta, A. Agrawal, and N. K. Jha, “An algorithm for synthesis of
reversible logic circuits,” IEEE Trans. on CAD, vol. 25, no. 11, pp.
2317–2330, 2006.

[11] K. Fazel, M. A. Thornton, and J. E. Rice, “ESOP-based Toffoli gate
cascade generation,” in PACRIM, 2007, pp. 206–209.

[12] R. Wille and R. Drechsler, “Bdd-based synthesis of reversible logic for
large functions,” in DAC, 2009, pp. 270–275.

[13] H. Thapliyal and M. B. Srinivas, “Novel reversible multiplier archi-
tecture using reversible TSG gate,” in International Conference on
Computer Systems and Applications, 2006, pp. 100–103.

[14] M. Haghparast, S. Jassbi, K. Navi, and O. Hashemipour, “Design of a
novel reversible multiplier circuit using HNG gate in nanotechnology,”
World Applied Sciences Journal, vol. 3, no. 6, pp. 974–978, 2008.

[15] M. Islam, M. Rahman, Z. Begum, and M. Hafiz, “Low cost quantum
realization of reversible multiplier circuit,” Information Technology
Journal, vol. 8, no. 2, pp. 208–213, 2009.

[16] A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers
by automatic computers,” Doklady Akad. Nauk SSSR, vol. 145, 1963.

[17] D. Maslov and G. W. Dueck, “Reversible cascades with minimal
garbage,” IEEE Trans. on CAD, vol. 23, no. 11, pp. 1497–1509, 2004.

[18] T. Toffoli, “Reversible computing,” in Automata, Languages and Pro-
gramming, W. de Bakker and J. van Leeuwen, Eds. Springer, 1980, p.
632, technical Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

[19] A. Barenco, C. H. Bennett, R. Cleve, D. DiVinchenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” The American Physical Society, vol. 52, pp.
3457–3467, 1995.

[20] M. K. Thomson and R. Glück, “Optimized reversible binary-coded
decimal adders,” J. of Systems Architecture, vol. 54, pp. 697–706, 2008.

[21] L. A. B. Kowada, R. Portugal, and C. M. H. Figueiredo, “Reversible
Karatsuba’s algorithm,” The Journal of Universal Computer Science,
vol. 12, no. 5, pp. 499–511, 2006.

[22] Y. Takahashi, S. Tani, and N. Kunihiro, “Quantum addition circuits
and unbounded fan-out,” in Asian Conference on Quantum Information
Science, 2009.



TABLE IV
EXPERIMENTAL RESULTS

Sub-minimal (+ transformation-based [9]) Minimal (+ transformation-based [9])
Bit-width PI LC GC QC TC Time LC GC QC TC Time

1 2 3 3 11 32 <0.01 4 2 6 24 0.01
2 4 6 158 1126 2184 0.01 7 344 3294 5032 0.02
3 6 9 2323 24904 32712 0.36 – – – – TO
4 8 – – – – TO – – – – TO

ESOP-based [11] BDD-based [12]
Bit-width PI LC GC QC TC Time LC GC QC TC Time

1 2 4 1 5 16 0.01 8 5 9 32 0.01
2 4 8 6 72 128 0.01 17 20 44 160 0.01
3 6 12 36 591 720 0.02 29 49 117 448 0.01
4 8 16 169 3693 3744 0.06 47 103 279 1064 0.01
8 16 – – – – TO 609 2798 8842 33840 0.06

16 32 – – – – TO 531001 2806841 9225345 33932664 957,26
32 64 – – – – TO – – – – TO

Hierachical Karatsuba
Bit-width PI LC GC QC TC Time LC GC QC TC Time

1 2 4 1 5 16 <0.01 4 1 5 16 <0.01
2 4 8 10 74 184 <0.01 8 10 74 184 <0.01
3 6 12 33 245 608 <0.01 12 33 245 608 <0.01
4 8 16 70 518 1288 <0.01 16 70 518 1288 <0.01
8 16 32 358 2630 6568 0.01 54 517 2437 7032 <0.01

16 32 64 1606 11750 29416 0.01 176 2304 9696 29352 <0.01
32 64 128 6790 49574 124264 0.01 554 8492 34000 105296 0.01
64 128 256 27910 203558 510568 0.01 1712 28710 111966 351096 0.04

128 256 512 113158 824870 2069608 0.27 5234 92672 355972 1124432 0.12
256 512 1024 455686 3320870 8333416 0.61 15896 291174 1108206 3516312 0.38
512 1024 2048 1828870 13326374 33443944 1.34 48074 899912 3405340 10835696 0.98

1024 2048 4096 7327750 53391398 133996648 5.94 144992 2752590 10377606 33081336 1.43

(a) Line count (LC) (b) Gate count (GC)

(c) Quantum cost (QC) (d) Transistor cost (TC)

Fig. 4. Comparison between Hierachical method and Karatsuba method


