
Improving the Iterative Power of Resynthesis

Petr Fišer, Jan Schmidt

Faculty of Information Technology

Czech Technical University in Prague

Prague, Czech Republic

fiserp@fit.cvut.cz, schmidt@fit.cvut.cz

Abstract— We present a method of improving the iterative power

of resynthesis of Boolean networks in this paper. In principle it is

based on iterative resynthesis of parts of the network, instead

of processing the network as a whole. The parts are randomly

selected, thus more variability is introduced. The process is

scalable, at least as much as the state-of-the-art. We show that

our method performs better than the academic state-of-the-art,

the ABC tool from Berkeley. This is documented by extensive

experiments on LGSynth’93 benchmark circuits.

Keywords- logic synthesis, resynthesis, iterative processes, ABC

I. INTRODUCTION

The synthesis process, where the forms of its input and
output are equal (Boolean networks, AIGs), is called
resynthesis [1]. Thus, by resynthesis we understand a process
modifying the circuit in some way, while keeping the format
of its description the same.

The state-of-the-art logic synthesis consists of two
subsequent steps: the technology independent optimization and
technology mapping, which may be iterated, i.e., repeatedly
re-run several times, to improve the result quality.

The academic state-of-the-art logic synthesis tool is ABC
[2] from Berkeley, a successor of SIS [3] and MVSIS [4]. Here
iteration is suggested by the authors of ABC, too.

We have investigated the iterative power of iterative
processes in ABC and have found it insufficient in many cases.
Hence, we have looked for an alternative iterative process.

We propose a resynthesis method, where the circuit is
iteratively resynthesized by parts only, instead
of resynthesizing the circuit as a whole – resynthesis by parts.
Let us point out that in ABC resynthesis, also parts of the
circuits are being resynthesized at a time (e.g., using the
k-feasible cuts [5] or windowing [1] techniques). However,
these parts are relatively small, given by limits of the
algorithms they are processed by. Conversely, we propose
resynthesis where major parts of the circuits are extracted
(up to 99%). “Resynthesis” here means applying the whole
ABC synthesis process, not just, e.g., one rewriting step [5].

Such an approach may look weird and condemned to be
less efficient than resynthesis of the whole (100%) circuit,
since global information is lost. Surprisingly, this is not the
case; we were able to obtain circuits more than 7-times smaller
(or 87% improvement), compared to the standard resynthesis.
This could be rationalized by an increase of the iterative power

of the resynthesis – new structures can be discovered
by intentionally obscuring the structure of the whole network.

The behavior of the resynthesis by parts process is studied
thoroughly in the experimental part and its iterative power and
effectiveness are compared with a standard iterative synthesis
process in ABC on LGSynth’93 [8] and MCNC [9]
benchmarks. Only combinational circuits are assumed here,
however, the method could be extended to sequential circuits
without any principal modifications.

II. THE PROPOSED ALGORITHM

Let us assume an iterative resynthesis process, i.e., a
process which could gradually improve the solution when it is
run several times consecutively. Let the network N

1
 be

obtained by running a resynthesis process P on N
0
, i.e.,

N
1
 = P(N

0
). The subsequent iterations of this process produce

different networks, N
i
 = P(N

i-1
). In an ideal case,

cost(N
i
) ≤ cost(N

i-1
) for each i, where cost() is the selected

optimization criterion (area, delay). Area, in terms of 2-input
gates, will be considered throughout this paper.

The proposed iterative resynthesis by parts is based
on dividing the processed network into two disjoint parts

in each iteration, N
i
 = N

i
A  N

i
B, N

i
A  N

i
B = , nothing is said

about the sizes of N
i
A and N

i
B for now. Then one part (N

i
A) is

resynthesized, to obtain a functionally equivalent network N
i
R.

This network is then merged with the second part (N
i
B),

to obtain a new network N
i+1

 = N
i
R  N

i
B. Obviously, networks

N
i
 and N

i+1
 are functionally equivalent.

The overall synthesis process and part (window) selection
algorithms are presented in this section.

A. The Synthesis Process

The basic and general principles of the proposed
resynthesis process are shown in Figure 1.

Resynth_by_parts(Network N) {

do {

NA = Extract_window(N);

NB = N – NA

NR = resynthesize(NA);

N’ = NR  NB;
if (cost(N’) ≤ cost(N)) N = N’;

} while (!end());

}

Figure 1. The resynthesis by parts algorithm

At the beginning of each iteration, a part NA of the network
(window) is selected and extracted from the original
network N. NB then consists of the remainder of the original
network; nodes included in NA are not present in NB.

The extracted window NA is then submitted to ABC
synthesis. Any synthesis process may be used in general.

The resynthesized network NR is then merged with NB.
If the resynthesis has brought any improvement, i.e., if the
network cost is reduced with respect to the original network,
the old network is discarded and the new one is considered for
the next iteration.

The whole procedure is repeated, until the stopping
condition is satisfied. In experiments presented in this paper,
we use a fixed number of iterations, for purposes
of comparison. However, more sophisticated stopping criteria
should be applied in practice.

B. Window Extraction Methods

The Extract_window procedure is the essential step in the
proposed resynthesis procedure. Two window extraction
algorithms will be described in detail in this subsection.

1) Random Extraction
The Random Extraction algorithm is the most naive one;

nevertheless it gives surprisingly good results. The window
(NA) is gradually constructed by just randomly selecting nodes,
while keeping the window network connected. The algorithm
is parameterized by the number of gates of the extracted
network (size).

We have also experienced with modifications of this basic
algorithm minimizing the number of the window PIs, POs, or
both. However, no significant improvement was observed [10].

2) RadiusExtract
This algorithm intentionally looks for the most connected

subcircuit. First, a pivot node is selected randomly in the
network. Then, nodes reachable in a given distance (radius)
from the pivot are moved to NA. The algorithm is
parameterized by the radius or by the maximum window size,
as in the previous case. Thus, the algorithm may operate in two
modes, or their combination.

III. EXPERIMENTAL RESULTS

As the resynthesis iterative step we have chosen the ABC
“choice” script [2] followed by the “map” command, mapping
the circuit into library gates. A library of all 2-input gates was
chosen for simplicity of comparison.

Let us note here that any synthesis process may be used,
without any loss of generality. Any structure-non-destroying
resynthesis procedure may be applied, as well as any
technology mapping process (standard cells, LUTs, etc.).

If not said otherwise, we have run all the resynthesis
processes for 5,000 iterations in our experiments. This value is
a little bit of an overkill, since only two of the examined 228
circuits needed more iteration to converge [10] using a standard
synthesis process. However, it enables us to compare rather
stable solutions and measure the convergence of the processes
more precisely.

A. Influence of the Window Size

Here we investigate the influence of the window size on the
result quality. First, we will examine the influence of the
window size, relative to the resynthesized circuit size, for the
Random Extraction algorithm. We have varied the window size
from 10% to 100%, for all the 228 circuits. Then we have
computed the average improvements obtained w.r.t. the
repeated resynthesis of the whole circuit. The results are shown
in Figure 2.

Figure 2. Influence of the window size – Random Extraction

We can see that the maximum improvement is achieved for
window sizes ranging from 80 to 90% of the resynthesized
circuit. If bigger windows are extracted, the quality of the
result quickly drops.

Very similar behavior can be observed for the
RadiusExtract. However, the maximum improvement is
achieved for smaller windows (60-70%). This is because the
RadiusExtract method naturally produces more compact
windows.

The dependency of the improvement on the radius is shown
in Figure 3. Here we see clearly, that best results are obtained
for radii ranging from 5 to 7. Higher radius values produce
inferior results, in most cases because window starts spanning
the whole circuit, i.e., results of 100% resynthesis are obtained.

Figure 3. Influence of the window size – RadiusExtract

0% 20% 40% 60% 80% 100%

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

Im
p

ro
v
e
m

e
n

t

Window size (percentage of the resynthesized circuit)

0 2 4 6 8 10 12 14 16 18 20 22

-2%

0%

2%

4%

6%

8%

Im
p

ro
v
e
m

e
n

t

Radius

We have also observed that the optimum radii 6-7 generate
windows of 60-70% of the resynthesized circuit, which
coincides with the optimum relative window sizes, as
mentioned above.

Then we have observed that the extracted window sizes
scale with the resynthesized circuit size, even when a constant
radius is set. This is a rather surprising observation, since the
window extraction procedure is strictly local. This could be
explained by the fact, that the extracted window often
prematurely reaches “the border” of the circuit for smaller
circuits. The scatter graph illustrating the dependency is shown
in Figure 4. for all the 228 circuits resynthesized
(5,000 iterations, radius 6).

Figure 4. Extracted window sizes

B. Comparison with Standard Synthesis

Here we will present a comparison with the state-of-the-art,
i.e., the iterative resynthesis of the whole circuit (100%).
Results of 10 largest circuits from the 228 ones (plus cordic)
are shown in TABLE I. All the iterative processes were run for
5,000 iterations.

After the benchmark name, its original size in terms
of 2-input gates is given (“orig.”). Then the number of gates
obtained by 100% resynthesis is shown (“100%”). The “conv.
iters.” column gives the number of iterations ABC needed
to reach the final solution, thus possibly converge to a stable
solution. However, very high values indicate that probably
even better solutions could be reached, if iterated further (more
than 5,000 iterations). Numbers of gates obtained by the
RadiusExtract and Random Extraction methods and percentage
improvements w.r.t. the 100% resynthesis follow. The
“eq. iters.” columns indicate the numbers of iterations needed
to reach the solution of at least the same quality as the one
obtained by 100% resynthesis. Radius 6 and 80% circuit parts
were extracted, for the RadiusExtract and Random Extraction,
respectively. The summary (for numbers of gates) and average
(for percentages and numbers of iterations, respectively) results
are presented in the last table row.

We can see that resynthesis by parts, both RadiusExtract
and Random Extraction, almost always produces better results
than 100% resynthesis. Moreover, also a speedup can be seen –
resynthesis by parts reaches the same solution as 100%
resynthesis in significantly less iterations (8-times on average).

The results obtained from all the 228 examined benchmarks
are also shown in Figure 5. The scatter-graph visualizes the
improvement achieved by the resynthesis by parts (Random
Extraction, 80%, 5000 iterations), as a function of the original
circuit size (in terms of 2-input gates). Notice the logarithmic
x-axis. Highest improvements are achieved for mid-size
circuits here, however significant improvements can be seen
even for larger circuits.

Figure 5. Summary results

C. Iterative Power

The main cause of the observed success of the method is an
increase of the iterative power. Here we present representative
results obtained from the misex3 circuit [8]. This circuit
belongs to the “hardest” ones, since even the 100% resynthesis
converges rather slow, see TABLE I.

We have resynthesized this circuit using Random
Extraction, window size 80%. Since the process is not
deterministic, different runs may produce different solutions.
Thus, we have run the resynthesis 20-times and observed the
progress of the solution and the span in the result quality.

The convergence curves are shown in Figure 6. The
topmost curve belongs to the 100% resynthesis case, the curves
obtained from the 20 random runs are drawn below. We can
see that the 100% resynthesis has never outperformed the
resynthesis by parts in the 5,000 iterations.

Such a behavior can be observed for all circuits “difficult”
for synthesis. For “easy” circuits the global optimum is found
quickly by both methods.

Figure 6. Convergence curves for misex3

100 1000 10000

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Im
p

ro
v
e
m

e
n

t

Original circuit size

0 1000 2000 3000 4000 5000

0

500

1000

1500

2000

2500

3000

3500

misex3

100% resynthesis

20x Random Extraction, 80%

Iteration

G
a
te

s

IV. DISCUSSION

A. Window Size Analysis

Experiments performed in Subsection III.A indicate that the
two window extraction algorithms behave rather consistently.
Even though the Random Selection naturally needs larger
windows to be extracted, optimum window sizes are produced
implicitly by RadiusExtract. This confirms the theory that the
processes do not behave chaotically and purely at random.

Percentages 80% (60% respectively) represent feasible
circuit portions to be resynthesized – only very local
transformations would be enforced by smaller windows; for
larger windows the synthesis quickly sinks to the
100% resynthesis behavior.

B. Convergence Analysis

The convergence curves in Figure 6. indicate that
resynthesis by parts is a process quite different from the
original one. The convergence is much slower, which
sometimes leads to local minima avoidance and better results.

However, figures in TABLE I. indicate that resynthesis
by parts is able to reach results of equal quality as 100%
resynthesis in less iterations (compare the “conv. iters.” and
“eq. iters.” columns).

Moreover, if the resynthesis by parts was implemented
directly in ABC (e.g., upon AIGs), the process would naturally
be faster than 100% resynthesis.

V. CONCLUSIONS

We have presented a new concept of iterative logic
synthesis – the resynthesis by parts. Instead of repeatedly
resynthesizing the whole circuit (which is the state-of-the-art),
only partially randomly selected large parts (60-90%) are
resynthesized at a time. This significantly increases the
iterative power of the synthesis. We have shown
experimentally that the process behaves consistently and the
success does not consist in introducing randomness only.

The proposed method was evaluated on standard logic
synthesis benchmarks. The average improvement w.r.t. the

state-of-the-art, in terms of the area, was 9%. However,
in some cases we have obtained up to 7-fold area reduction.

We have also shown that the method is able to produce
equal results than the state-of-the-art in a significantly shorter
time (8-times, on average).

The process is highly scalable, at least as much as the
state-of-the-art resynthesis, for two reasons: 1) the window
sizes scale with the design size, 2) large windows do not
represent any problem; the method will lapse into the
state of the-art 100% resynthesis in the limit case.

ACKNOWLEDGEMENT

This research has been supported by the grant of the Czech
Technical University in Prague, SGS12/094/OHK3/1T/18.

REFERENCES

[1] R. K. Brayton et al., "SAT-based logic optimization and resynthesis", In
Proc. of International Workshop on Logic Synthesis 2007, pp. 358-364.

[2] Berkeley Logic Synthesis and Verification Group, “ABC: A System for
Sequential Synthesis and Verification”,
http://www.eecs.berkeley.edu/~alanmi/abc/

[3] E.M. Sentovich et al., “SIS: A System for Sequential Circuit Synthesis”,
Electronics Research Laboratory Memorandum No. UCB/ERL M92/41,
University of California, Berkeley, CA 94720, 1992.

[4] M. Gao, Jie-Hong Jiang, Y. Jiang, Y. Li, S. Sinha, and R.K. Brayton,
“MVSIS”, In The Notes of the International Workshop on Logic
Synthesis, Tahoe City, June 2001.

[5] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting: a fresh look at combinational logic synthesis”. In Proc. of the
43th Design Automation Conference, San Francisco, 2006, pp. 532-535.

[6] H. Savoj and R.K. Brayton, "The Use of Observability and External
Don’t Cares for the Simplification of Multi-Level Networks", In Proc. of
the Design Automation Conference, 1990, pp. 297–301.

[7] A. Mishchenko and R. Brayton, “Scalable logic synthesis using a simple
circuit structure”, In Proc. of IWLS 2006, pp. 15-22.

[8] K. McElvain, “LGSynth93 Benchmark Set: Version 4.0“, Mentor
Graphics, May 1993.

[9] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide”,
Technical Report 1991-IWLS-UG-Saeyang, MCNC, Research Triangle
Park, NC, January 1991.

[10] P. Fišer and J. Schmidt, “It Is Better to Run Iterative Resynthesis on
Parts of the Circuit”, In Proc. of IWLS 2010, Irvine, CA, pp. 17-24.

TABLE I. BENCHMARKS RESULTS

name orig.
100% Radius 6 Random 80%

gates conv. iters gates impr. eq. iters gates impr. eq. iters

s38584.1 11210 9752 1342 9692 0.6% 2187 9735 0.2% 1138

s38417 8643 7891 1934 7834 0.7% 808 7883 0.1% 261

prom1 6220 5829 3769 5548 4.8% 11 5562 4.6% 48

too_large 4182 3033 2467 3129 -3.1% N/A 2746 9.5% 215

misex3 3539 2645 4147 2362 10.7% 2909 1970 25.5% 179

mainpla 3472 3091 4215 3027 2.1% 481 2958 4.3% 19

apex2 3394 2083 41 1998 4.1% 3165 1786 14.3% 275

des 3158 2915 1233 2815 3.4% 74 2746 5.8% 39

xparc 2930 2540 396 2406 5.3% 108 2363 7.0% 14

seq 2771 2024 2161 1803 10.9% 1157 1707 15.7% 129

cordic 470 334 8 44 86.8% 17 60 82.0% 19
Sum/avg. 136,755 117,215 398.2 110,923 7.3% 102.0 109,335 9.0% 49.5

http://www.eecs.berkeley.edu/~alanmi/abc/

