
Bounded Model Checking of Contiki Applications
Thilo Vörtler, Steffen Rülke

Fraunhofer Institute for Integrated Circuits IIS
Design Automation Division EAS

Zeunerstraße 38, 01069 Dresden, Germany
Email: {thilo.voertler|steffen.ruelke}@eas.iis.fraunhofer.de

Petra Hofstedt
Brandenburg University of Technology Cottbus

Department of Computer Science
03013 Cottbus, Germany

Email: hofstedt@informatik.tu-cottbus.de

Abstract—Verification of embedded systems is a challenge due
to the tight combination of hardware and software. We present
an approach on the automatic verification of embedded system
applications for the operating system Contiki using a standard
bounded model checking tool for software. By using an operating
system a higher abstraction level to hardware is possible. Our
approach is therefore easily applicable for the verification of
different hardware platforms.

I. INTRODUCTION

The number of embedded systems (ESs) we are faced with
e.g. in consumer electronics, cars, and medical devices is
growing more and more. ES hardware is usually composed
of standard components. Due to hardware (HW) limitations
and low power constraints designing software (SW) for ESs
can be tedious. The code has to be highly optimized and is
often interrupt driven. Furthermore for SW development also
the environment of the system must be considered. As ESs
are often used in safety critical applications it is even more
important to avoid SW bugs. One trend in recent years has
been the use of event driven operating systems like Contiki
[1], [2] or TinyOS [3] that run on memory constrained low
power systems consisting only of several kilobytes of RAM.

The approach described in this paper allows it to find SW
bugs by static analysis in applications written for the operating
system Contiki before the ES is deployed. Our modelling ap-
proach for formal verification accomplishes a high abstraction
layer as it models the ES at the driver level between operating
system and HW. Therefore, it is easily portable to model
different HW platforms. As formal verification technique we
use bounded model checking (BMC) [4] and the open source
model checking (MC) tool CBMC [5] in this work.

To check ESs already at compile time static code analysis
can be applied. In [6] a survey of related SW verification
techniques is presented. The formal verification of embedded
system SW requires suitable modelling approaches. Such an
approach is described in [7], code is split up into HW-
dependent and HW-independent parts. Several MC tools (in-
cluding CBMC used in our work) are discussed. However the
use of an embedded operating system is not considered.

A complete formal verification flow for TinyOS using
CBMC is shown in [8]. As TinyOS applications are written in
nesC the code has to be translated into C to be used as input
for the MC tool. However, the abstraction level of the models
is low as it is done on the level of registers and ports of the

target CPU. In [8] this is done for an MSP430 micro-controller
[9].

In [10] the MC tool Anquiro is presented. Anquiro sup-
ports the formal verification of Contiki applications. However,
Anquiro focusses on the verification of network applications
running on several nodes without any detailed access to
external HW and handling of interrupts. As Anquiro is based
on the Bogor Model Checker it requires code transformation.

As far as we know our work presents the first formal
verification approach for Contiki-based applications including
interrupts. Working on a high abstraction layer makes it
unnecessary to model particular HW registers. Furthermore,
it is possible to fully automate loop unwinding for BMC in
our approach. We use unmodified applications without any
intermediate translations as input for MC. Therefore, generated
counterexample traces can be debugged easily.

II. PRELIMINARIES

1) BMC of Software: For our work CBMC was used as
MC tool. CBMC is a BMC based tool for the verification of
software written in ANSI-C, and is therefore suitable for the
verification of ES code. In BMC state space search is limited
by an upper bound and the MC problem is transformed into a
satisfiability problem. For verification of SW using BMC this
means, that an upper bound for all loops in a program has to
be defined, up to which the system is unwound.

In CBMC the properties to be checked for a program extend
the source code. The command assert(x<5) causes CBMC
to check for all program executions, whether it is possible
to violate this property, that means whether x may take
the value 5 or larger. Furthermore, CBMC can automatically
generate properties, including checks for correct array bounds,
numerical overflow, and null pointer dereference. CBMC also
generates unwinding assertions, which check that no pro-
gram execution path exists that has been cut off by limiting
the loop unwinding. To model non-deterministic behaviour
caused by the system environment e.g. by user input to the
system, non-determined variables are used. For example in:

int temp = nondet_int();
__CPROVER_assume(temp>=0 and temp <=10);

the variable temp is declared as a non determined variable,
restricted to all possible integer values in the interval 0..10.

2) Operating System Contiki: The main focus of Con-
tiki are low powered and memory constrained ESs. It uses
therefore an event driven kernel. Applications for Contiki

1 PROCESS THREAD(b l i n k p r o c e s s , ev , d a t a) {
2 PROCESS BEGIN () ;
3 whi le (1) {
4 s t a t i c s t r u c t e t i m e r e t ;
5 e t i m e r s e t (& e t , CLOCK SECOND) ;
6 PROCESS WAIT EVENT UNTIL(e t i m e r e x p i r e d (& e t)) ;
7 l e d s o n (LEDS ALL) ;
8 e t i m e r s e t (& e t , CLOCK SECOND) ;
9 PROCESS WAIT EVENT UNTIL(e t i m e r e x p i r e d (& e t)) ;

10 l e d s o f f (LEDS ALL) ; }
11 PROCESS END () ; }

Fig. 1. Contiki example application using Protothreads

Application Processes

Embedded System Platform

Contiki System Processes

Contiki Libraries and APIs

Access to hardware via drivers

Access to hardware via APIs

Replaced for formal
verification with
abstract models

Platform Specific Drivers

Platform Specific Drivers

Fig. 2. Replacement of drivers for formal verification

are written using standard C with added macros to simplify
programming (protothreads programming model [11]). The
event driven kernel of Contiki consists of events and processes,
where events are used to invoke processes of the system. The
events are stored in an event queue. Processes in Contiki are
applications or system tasks, and only one process is actively
running on the processor of the system at a time. As no pre-
emption mechanism exists tasks have to hand over control to
other threads. The main task of the Contiki scheduler (or main
loop) is, to take an event from the event queue and invoke the
related process. In Fig. 1 an example of a Contiki applica-
tion (part of the official Contiki release) using protothreads
is shown. The application periodically blinks LEDs of the
system. The macro PROCESS_WAIT_EVENT_UNTIL is used
to suspend the process until a timer is expired, which is defined
by the event timer function etimer_set.

Contiki is designed as a portable operating system for
different HW platforms, therefore, for many tasks libraries
exist, which abstract access to HW specific drivers. The event
timer system used in the example in Fig. 1 allows it to suspend
a process for a specific time period. After the time is over
the waiting process is reactivated using an event. The HW
realization of the timing system is completely encapsulated
from the application. Additionally, application programming
interfaces (API) provide access to often used devices in ESs.
The LED API functions led_on and led_off used in Fig. 1
belong to the Contiki system, and can be provided by each
HW platform. If no appropriate API exists additional platform
specific drivers must be written. These drivers then access the
HW directly using e.g. ports of the processor.

III. MODELLING A SYSTEM FOR VERIFICATION

This section describes how an ES, which uses the op-
erating system Contiki, is modelled for formal verifica-
tion using CBMC. The input for the model checker shall
be a modified version of the Contiki source code includ-
ing HW models describing the environment of the sys-
tem, the application to be verified, as well as annotated
properties. Using these properties it is checked whether
the SW accesses the HW correctly, uses the operating
system correctly, and whether it is algorithmically cor-
rect. Therefore, three kinds of properties are considered:
• Application dependent properties check whether the appli-

cation performs algorithmically correct.
• Platform dependent properties are used to check, whether

processes correctly access the drivers of a HW component.
These properties have to be defined once for each embedded
system platform and must hold for all applications running
on that platform.
• Contiki specific properties have to be valid for all Contiki

applications independent of a specific embedded system
platform. They check e.g. that an API is accessed correctly.
As these properties are HW independent they have to be
written only once and must hold for all Contiki applications.

The application dependent properties are optional.
To verify the entire ES consisting of the Contiki operating

system and the application, all accesses to the HW have to
be modelled. This is done by replacing the original drivers
by abstract models with added properties, which check their
correct usage. The challenge in writing these models is to
describe all environment behaviours without generating unre-
alistic counter examples. In this case the driver model has to
be refined. Furthermore, by modelling the HW access at the
level of a driver interface the actual implementation of the
driver is not verified. Consequently no bugs can be detected,
which are caused by the driver implementation.

Fig. 2 shows which parts of the embedded system SW have
been replaced in our approach for the formal verification. By
replacing the HW drivers the implementation of the event
system of Contiki is also checked. We found that replacing
this part is unnecessary, as it is very small and allows to find
bugs in the implementation as well as the configuration of
Contiki (e.g. too small event queue size).

A. Replacing drivers

We divide HW drivers into two groups:
1) Hardware drivers that do not use interrupts: An exam-

ple of a driver abstraction of this group is shown in Fig. 3.
In Fig. 3a and 3b a function part of a memory card driver
and the corresponding verification model are shown. Depend-
ing on, whether a memory card is available or not, either
MMC_SUCCESS or MMC_INIT_ERROR are the return values
of the function. Therefore, these values are also the return
values of the abstract model. A driver function that does not
return values is the LCD driver shown in Fig. 3c and Fig. 3d.
In this case the abstract model checks, whether the HW is
accessed correctly by passing the correct function parameters.
It is checked that the display was correctly initialized, whether

1 char mmc ping (void) {
2 i f (! (MMC CD PxIN & MMC CD))
3 re turn (MMC SUCCESS) ;
4 e l s e
5 re turn (MMC INIT ERROR) ; }

(a) Cut-out from memory card driver
1 char mmc ping (void) {
2 char r v a l u e = n o n d e t c h a r () ;
3 CPROVER assume (r v a l u e == MMC SUCCESS
4 | | r v a l u e == MMC INIT ERROR) ;
5 re turn r v a l u e ; }

(b) Memory card model for verification
1 void l c d d i s p c h a r (u i n t 8 t pos , u i n t 8 t i n d e x) {
2 LCDMEM[pos+LCD MEM OFFSET] &= ˜ LCD Char Map [8] ;
3 i f (pos < LCD NUM DIGITS) {
4 i f (i n d e x < LCD MAX CHARS) {
5 LCDMEM[pos+LCD MEM OFFSET] |= LCD Char Map [i n d e x] ;
6 } } }

(c) Cut-out from LCD driver
1 void l c d d i s p c h a r (u i n t 8 t pos , u i n t 8 t i n d e x) {
2 a s s e r t (i n i t == 1) ;
3 a s s e r t (pos < LCD NUM DIGITS) ;
4 a s s e r t (i n d e x < LCD MAX CHARS) ; }

(d) LCD model for verification

Fig. 3. Replacement of hardware drivers without interrupts

1 whi le (1) {
2 / / Run a p r o c e s s from t h e e v e n t queue
3 p r o c e s s r u n () ;
4 / / C a l l t h e i n t e r r u p t r o u t i n e
5 c l o c k i n t e r r u p t () ;
6 / / Check whe ther s y s t e m t i m e has changed
7 e t i m e r r e q u e s t p o l l () ; }

(a) Main loop of the verification platform using interrupts
1 void c l o c k i n t e r r u p t (void) {
2 long i n t e r v a l = n o n d e t l o n g () ;
3 CPROVER assume (i n t e r v a l >= 0) ;
4 c o u n t = c o u n t + i n t e r v a l ;
5 s e c o n d s = s e c o n d s +(i n t e r v a l /CLOCK CONF SECOND) ; }

(b) Implementation of the clock system interrupt function

Fig. 4. Implementation of interrupts for our verification platform

the display position of the symbol to be displayed is valid, and
whether the symbol is a supported symbol of the LCD.

2) Hardware drivers relying on interrupts: In low power
ESs interrupts are often used to avoid busy waiting, when an
external device is polled for a certain value. An interrupt can
occur at any time during the program execution and introduces
a kind of parallelism into the system. To model this parallelism
[8], [12] propose to insert a call to an interrupt handling
function after each C statement. We do not implement one
of these approaches. In our case, interrupt routines are called
during the main loop between the execution of processes. This
means errors which are caused by the occurrence of interrupts
during the execution of a process are not detected.

One part of Contiki that is often implemented using in-
terrupts is the event timer system, which allows applica-
tions to sleep for a certain time period. A watchdog timer
wakes up the system using an interrupt after a specified time
has passed. Our approach to handle interrupts is shown in
Fig. 4a. In the main loop of the our Contiki system the

Model checking tool

Contiki applications with
optional application
specific properties

Application is safe Property failed
 real bug

Unwinding
assertion failed

Loop unwinding
parameters

Increment loop un-
winding for failed loop

Hardware driver models
including properties

Contiki operating
system with bounded

main loop

Counterexample
exists

Fig. 5. Verification flow: Model checker input and possible results

function clock_interrupt is called, which implements
the incrementation of the system time, done in HW using
an interrupt routine. Afterwards etimer_request_poll
is called to inform the event timer system of Contiki that a
time period could have changed. In Fig. 4b the implementation
of the interrupt routine is shown. The variables count and
seconds are used to store the system time. Using these
variables the event timer system checks whether a certain time
has passed. Each time the interrupt routine is called the system
time is incremented by an arbitrary value. This allows it to
check applications for all possible time points.

B. Verification flow

The complete verification flow is shown in Fig. 5. The
input into the MC tool is the Contiki application which
should be verified, the abstract models describing the HW
environment of the system, and the Contiki operating system
implementation. In addition, the main loop of the Contiki
system (see Fig. 4a) must be bound for BMC restricting the
state space search to a finite number of events to be processed.
All other loops, especially, in application processes must
terminate as they would otherwise block the system because no
pre-emption mechanism to suspend processes exists. Looking
at the example application in Fig. 1 the loop from line 3 to
10 is bound, due to the PROCESS_WAIT macro.

As shown in Fig. 5 two results are possible when running
the verification. When the verification succeeds no counterex-
ample exists for the number of events checked. When a
counterexample exists, this can either be an actual bug or the
violation of an unwinding assertion. As the main loop was
bound using a script, all loops can be unwound automatically
to the needed depth by incrementing the loop unwinding bound
for the failing loop. Unintentionally unbounded loops can be
detected by manual inspection of loops, which have a high
unwinding bound.

IV. EXPERIMENTS AND RESULTS

We examined our approach using three Contiki applications,
which are running on embedded system HW consisting of an
MSP430 micro-controller, an acceleration sensor, LEDs, and

TABLE I
VERIFICATION RESULTS FOR EXAMPLE APPLICATIONS1

Blink LED2 Bubble sort n = 22 Bubble sort n = 52 Fall detection3

properties generated custom generated custom generated custom generated4

number of program loops 25 31 31 31 31 55 55
number of verified properties 231 23 271 23 271 5 43

main loop unwindings 4 3 3 3 3 4 4
clauses 263819 1941310 2077568 4733167 5050188 247559213 248068798

variables 731999 652571 695348 1602805 1701370 85522070 85756339
verification time in seconds 11.4 12.6 17.5 48.6 53.9 5325 5521

1 Tests run on a Intel Xeon X5675 with 3.06GHz, 48Gb RAM 2 CBMC 3.9 3 CBMC 4.1 4 only array bounds check

an LC-Display. For the ES devices drivers were replaced with
abstract models. In addition, the event timer system of Contiki
was described as in Fig 4b. An overview of the verification
results is shown in Table I. The column generated indicates the
automatically generated checks for array bounds, numerical
overflows, division by zero, and the absence of null pointer
dereferences in the code. Verification time is the runtime
reported by CBMC for a run, where all loops are unwound
so that no unwinding assertions fail. The number of clauses
and variables are a measure for the size of the SAT problem.
A description of the verified applications and the checked
properties follows:

1) Blink LED: This is the example application shown
in Fig 1, which periodically blinks all LEDs connected to
the system. For this simple application, only automatically
generated properties were checked.

2) Bubble sort: This application reads n numbers from a
memory and sorts them in ascending order using the bubble
sort algorithm. The sorted numbers are written out on an LC-
Display. By increasing the parameter n the problem size can
be increased. In addition to properties, which check the correct
use of the LCD an application specific property was defined,
which checks that the sorting of the numbers is correct.

3) Fall detection: This is the most complex of the evaluated
applications. Purpose of this application is to detect, if the
wearer of the ES has fallen down, e.g. for medical purposes.
Therefore, an acceleration sensor is used, when a certain
acceleration threshold was exceeded an LED of the system
is enabled, to show that an eventual fall was detected. In
this application the Contiki sensor API was used, which
periodically collects data from sensors and sends events to
application processes, when new data is available.

The Blink LED and Bubble Sort application could be suc-
cessfully verified using CBMC version 3.9, however, the tool
crashed on the Fall detection application with an internal error.
Using CBMC version 4.1. this application could be verified,
but only for array bounds checks due to a tool problem.

In all applications we could find no bugs related to the
Contiki source code. When adding bugs to our applications
e.g. trying to display a not supported symbol on the LCD,
these bugs were found and counter examples were generated.
In general, due to the use of BMC the absence of bugs can only
be shown with respect to the number of main loop unwindings.
The checking of additionally generated properties lead only to
a small runtime increase.

V. CONCLUSIONS

In this paper a new approach to the verification of ESs was
presented, which is easily portable to different HW platforms.
We could show, that our approach is suitable to verify real
world applications written for an MSP430 micro-controller
platform. For future work we intend to implement a technique
for more complex handling of interrupts as described in
[12]. Furthermore we want to prove completeness of the
verification with a technique like k-induction [13].

REFERENCES

[1] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” 29th Annual IEEE
International Conference on Local Computer Networks, pp. 455–462,
2004.

[2] “Contiki OS,” http://www.contiki-os.org/, Mar. 2012.
[3] “TinyOS,” http://www.tinyos.net/, Mar. 2012.
[4] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic Model Checking

without BDDs,” Tools and Algorithms for the Construction and Analysis
of Systems, pp. 193–207, 1999.

[5] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C
Programs,” in Tools and Algorithms for the Construction and Analysis
of Systems, ser. Lecture Notes in Computer Science, Kurt Jensen and
Andreas Podelski, Eds., vol. 2988. Springer, 2004, pp. 168–176.

[6] V. D’Silva, D. Kroening, and G. Weissenbacher, “A Survey of Auto-
mated Techniques for Formal Software Verification,” IEEE Transactions
on Computer Aided Design of Integrated Circuits and Systems, vol. 27,
no. 7, pp. 1165–1178, 2008.

[7] L. Cordeiro, B. Fischer, H. Chen, and J. Marques-Silva, “Semiformal
verification of embedded software in medical devices considering strin-
gent hardware constraints,” in International Conference on Embedded
Software and Systems, 2009, pp. 396 –403.

[8] D. Bucur and M. Kwiatkowska, “On software verification for sensor
nodes,” Journal of Systems and Software, vol. 84, no. 10, pp. 1693–
1707, 2011.

[9] “MSP430 Low Power Microcontroller,” http://www.ti.com/430brochure,
Mar. 2012.

[10] L. Mottola, T. Voigt, F. Österlind, J. Eriksson, L. Baresi, and C. Ghezzi,
“Anquiro: enabling efficient static verification of sensor network soft-
ware,” in Proceedings of the 2010 ICSE Workshop on Software Engi-
neering for Sensor Network Applications. ACM, 2010, pp. 32–37.

[11] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Simpli-
fying Event-Driven Programming of Memory-Constrained Embedded
Systems,” in Proceedings of the Fourth ACM Conference on Embedded
Networked Sensor Systems, 2006.

[12] B. Schlich, T. Noll, J. Brauer, and L. Brutschy, “Reduction of inter-
rupt handler executions for model checking embedded software,” in
Hardware and Software: Verification and Testing, ser. Lecture Notes
in Computer Science, K. Namjoshi, A. Zeller, and A. Ziv, Eds., vol.
6405. Springer, 2011, pp. 5–20.

[13] M. Sheeran, S. Singh, and G. Stålmarck, “Checking Safety Properties
Using Induction and a SAT-Solver,” in Proceedings of the Third In-
ternational Conference on Formal Methods in Computer-Aided Design.
Springer, 2000.

