
Reliable Execution of Statechart-Generated Correct
Embedded Software under Soft Errors

Ronaldo R. Ferreira1, Thomas Klotz2, Thilo Vörtler2, Jean da Rolt1, Gabriel L. Nazar1

Álvaro F. Moreira1, Luigi Carro1, Karsten Einwich2

1Instituto de Informática – Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

{rrferreira, jrjoaquim, glnazar, afmoreira, carro}@inf.ufrgs.br

2Fraunhofer Institute for Integrated Circuits, Dresden, Germany

{thomas.klotz, thilo.voertler, karsten.einwich}@eas.iis.fraunhofer.de

Abstract—This paper proposes a design methodology for fault-
tolerant embedded systems development that starts from soft-
ware specification and goes down to hardware execution. The
proposed design methodology uses formally verified and correct-
by-construction software created from high-level UML statechart
models for software specification and implementation. On the
hardware reliability side, this paper uses the MoMa architecture
for reliable embedded computing which we deploy as a soft-
core onto an off-the-shelf FPGA. MoMa introduces architectural
innovations that support the semantics of the UML statechart
execution in a reliable fashion. The proposed design methodology
is evaluated with a real automotive case study based on an
exhaustive FPGA-implemented fault injection campaign.

Keywords-Model-driven engineering; fault-tolerance; reliabil-
ity, soft-errors; statecharts

I. INTRODUCTION

Reliability has become a major design constraint in current

hardware designs [1]. Since the sizes of transistors get close to

a technical minimum, the logical state of a transistor can be

disrupted by small electric interferences. Soft-errors, which

were restricted to avionics and space systems a few tran-

sistor generations ago due to radiation induced interference,

will increase reliability concerns of new system designs [2].

Radiation induced soft errors are caused by highly energized

particles that strike a circuit disrupting its logical state [3].

With small transistor sizes, even particles attenuated by the

atmosphere may hit circuits in operation at sea level such as

the ones used in cars, not to mention highly exposed circuits

used in aircrafts. Soon, automotive systems will have to handle

radiation induced electromagnetic interference disrupting tran-

sistor states [4]. The solution adopted in space systems is the

use of radiation hardened microprocessors, with unitary prices

of $200,000 for a 25 MHz processor [5]. Hardened circuits are

not feasible in domains such as automotive and aviation, which

require the use of low-price off-the-shelf solutions.
‘Checkpointing’ is used to create a consistent architectural

state where the architecture can rollback in case an error is

detected. The problem with checkpointing is that its efficiency

is severely reduced depending on how many instructions are

allowed to execute before the architectural state is stored [6].

In the best case scenario, the total overhead to recover the

architecture to a consistent state is at least 25% of the total exe-

cution time. In critical embedded systems, which usually have

some sort of real-time behavior, this high overhead jeopardizes

its functional behavior. In case of ASIC designs where lock-

step execution is feasible, a simpler form of checkpointing

is the re-dispatch of the erroneous instruction followed by

a pipeline flush of the in-flight instructions, which is known

as ‘instruction replay’. However, this scheme works in ASIC

because of the duration of the transient pulse, which usually

disappears after one execution cycle. In case of long transient

pulses and when the chip is deployed onto FPGAs, the

failure model changes drastically, making instruction replay

not feasible.

For safety critical systems, hardware reliability has to go

hand in hand with software correction, where software mal-

functions due to implementation errors have to be avoided

at a reasonable cost. Software correction is also a manda-

tory requirement for system certification by governmental

authorities [7]. In an ideal scenario, software specification

has to start at a high level of abstraction based on formal

models from which verified and correct code is automatically

generated. The life cycle for critical systems requires tool

support with high scalability backed up by a well-defined

design methodology. That way, the traceability of high level

software models down to generated correct source code and

its deployment onto the reliable hardware becomes feasible.

This paper proposes a model-driven system design method-

ology where correct-by-construction software is automatically

generated from formally verified UML statechart models and

later deployed onto the Matrix Operation Microprocessor

Architecture (MoMa) reliable hardware architecture. The exe-

cution semantics based on basic block transactions guarantees

that a state either finishes correctly or it is re-executed without

corrupting the architectural state. This design methodology is

supported by the COSIDE R© [8] design environment for system

specification, making it suitable for industrial application. The

proposed hardware/software design methodology is thoroughly

evaluated using a real automotive application designed from

software specification down to hardware execution in MoMa.

This case study is evaluated for reliability with fault injection

experiments using an off-the-shelf Xilinx R© FPGA.

This paper is organized as follows: Section II presents

related work. Section III introduces the design methodology

and explains how UML statecharts are executed in a reliable

fashion by MoMa. Section IV presents the case study and

discusses the experimental evaluation of the approach. Finally,

Section V concludes the paper.

II. RELATED WORK

Brisolara et al. [9] propose the synthesis of heterogeneous

systems from UML models, which are further transformed

into low-level Simulink models. From Simulink, hardware task

partitioning and design space exploration is performed. Lever-

aging the synthesis of hardware/software systems, Mischkalla

et al. [10] utilize UML and SysML models for hardware and

software modeling, and functional verification by transforming

the UML models into equivalent SystemC ones. From the

generated SystemC models, the hardware platform is synthe-

sized onto an FPGA. UML models were considered in [11]

as a model to describe hardware platforms with fine-grained

control of how to meet real-time requirements specified in

this UML model. Although UML has been studied for many

tasks of hardware/software system specification and synthesis,

radiation induced errors and their impact on reliability have

not been considered by design methodologies yet.

The challenge of generating reliable hardware is that several

software and hardware aspects influence reliability in a non-

linear way. Parizi et al. [12] show that even the compiler

has an influence on the reliability. The focus on the hard-

ware side in the reliability for industrial practice is usually

based on reliable processors. Most efforts of the European

community are centered on the development of the LEON-FT

platform [13], with current research being led by European

Space Agency [14]. The problem with most of the radiation

tolerant microprocessors, besides their performance gap and

high unit prices, is that they triplicate most of the hardware

elements, jeopardizing power consumption [2].

Differently from previous work in the literature, we use

UML for software specification, formal verification and code

generation to a reliable hardware platform that was designed

to guarantee the correct execution of the generated software.

Correct execution is attained with a transactional data-path,

which ensures that the computation performed in a state of the

UML statechart is only persisted if it is correct. The transitions

of the UML statechart are ensured to be correct by the branch-

free state machine unit. This paper puts the existing expertise

and best-practices for UML modeling and software verification

together with a novel reliable hardware substrate ready to be

deployed onto an FPGA.

III. DESIGN METHODOLOGY FOR RELIABLE SYSTEMS

This section introduces the proposed model-driven method-

ology for reliable system design based on the fault-tolerant

execution of statecharts. Section III-A introduces the workflow

of the proposed design methodology. Section III-B presents the

UML Statecharts

EF (! p & q)

AG (q != r)

AG (e � s != r)

Formal Verification

Round Trip

Engineering

switch (state) {

case s1:

...

}

C Code Generation

Model-Driven

Engineering

�
� �

C source

code

MoMa

compiler

MTL

code

�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Branch-free state

machine unit

Transactional

data-path unit

A
B

F
T

T
B

B

Statechart transitions

Statechart actions

�

�

S
o

ft
w

a
re

 S
p

ec
if

ic
a
ti

o
n

M
o

M
a
 A

rc
h

it
e
c
tu

re

Fig. 1. Model-driven design methodology workflow. Upper swim lane
encloses SW specification and the bottom one the MoMa core.

UML statecharts and how they can be used as an executable

artifact. The execution of UML statecharts is composed of

two parts, with each one being connected to a dedicated

MoMa architectural unit: i) the data-flow execution that takes

place inside a state; and ii) the control-flow resolution, which

computes the next state transition function based on existing

Boolean guard conditions. Section III-C presents how the

code of a state is executed and protected against errors

that compromise the behavior of instructions. Section III-D

discusses how the state transition function is resolved in order

to decide the next state to be executed.

A. Methodology Overview and Design Artifacts

Fig. 1 depicts the proposed model-driven design method-

ology split up into two swim lanes. The upper swim lane

encloses the tasks and artifacts of software specification, while

the bottom one shows how the generated C code is deployed

onto the MoMa architecture. In the following, we refer to each

artifact by its number shown inside the black circle in Fig. 1.

Software specification starts with the creation of UML

statecharts model (#1). When the designer is satisfied with

a design, it is formally verified using model checking for

correctness (#2). For this, a formal specification in terms of

properties is mandatory, which is derived from the require-

ments. The designer performs round-trip engineering until the

modeled UML statecharts are asserted as correct. From the

verified statechart, a correct-by-construction C program (#3)

is generated.

This correct C code is compiled with the MoMa compiler,

producing its corresponding machine code in so-called Matrix

Transfer Language (MTL) (#4). The state machine in MoMa

works by executing the control-flow graph of the program as a

matrix multiplication which is protected with Algorithm-Based

Fault Tolerance (ABFT) [15]. The MoMa compiler generates

the matrix structure for the state machine of the program to

be executed by the branch-free state machine execution unit

(#5), which implements ABFT in MoMa. The data-path is

protected by the architectural innovation transactional data-

path, which decodes and executes the basic blocks of the

if (transition_fired == 40) {

pulseCounter_v = pulseCounter_v - 1;

obstGapCounter_v = obstGapCounter_v + 1;

}

load r1 pulseCounter_v

load r2 obstGapCounter_v

sub r3 r1 1

add r4 r2 1

store (*pulseCounter_v) r3

store (*obstGapCounter_v) r4

�����������	
�����
 �����	
��

Fig. 2. A state in C with its respective TBB.

program as atomic transactions (#6).

B. Modeling and Verification Using UML Statecharts

The Unified Modeling Language (UML) [16] is the de-facto

standard for system modeling at distinct abstraction levels.

UML state diagrams, often also called statecharts, describe the

dynamic behavior of a system in terms of inputs, an internal

state, outputs, and the transition between states.

The formal technique model checking [17] allows to au-

tomatically prove whether a set of properties representing

the specification holds on a given system model or not. For

specifying this model some type of finite state representation is

considered, and the system requirements need to be formalized

in terms of temporal logic properties. If a property is violated

by the model, a counterexample in terms of a simulation

trace is provided. Applying model checking to formally verify

statecharts has the major advantage that design errors are

found early in the design process. However, UML statecharts

according to [16] are not suitable for modeling embedded

software, because the UML does not provide a formal exe-

cution semantics, and, hence, it does not exactly define how

events are handled. UML statecharts may also contain non-

determinism if several transitions can be fired at the same

point in time. Moreover, the application of model checking

requires additional constraints to be feasible in practice, e.g.,

restricting the supported data types.

A subset of UML statecharts has been derived to overcome

these ambiguities, which is sketched next. This subset contains

simple and composite states, as well as initial, junction, and

shallow history states. Transitions are not just annotated with

trigger, guard, and activity, but also with a user-defined priority

in terms of a natural number to exclude non-determinism.

The smaller this number, the higher the priority of the cor-

responding transition. The given input and internal variables

may trigger events to fire transitions; only the event firing the

transition with the highest priority is taken into account, and all

others are rejected, i.e., there is no event queue. For a detailed

presentation of this subset readers should refer to [18].

Considering the defined subset of statecharts, formal verifi-

cation can be applied to verify their correctness. The verified

statechart is then automatically transformed into an semanti-

cally equivalent C code to be deployed in simulation or to be

executed on an embedded system. The next sections discuss

how the MoMa architecture attains the reliable execution of

the C code generated from the statechart.

MicroBlaze 1

load r2

load r2

load r3

load r3’

add r1 r2 r3

add r1 r2 r3

store r1

store r1

MicroBlaze 2

load r2

load r2

load r3

load r3

Correction latency is two instructions

read/write register file
time

(a) Error detected in a load instruction. Register file is in read/write mode.

MicroBlaze 1

store r1’

store r1

load r2

load r2

load r3

load r3

add r1 r2 r3

add r1 r2 r3

store r1

store r1

MicroBlaze 2

Correction latency is TBB length

read-only register file
time

(b) Error detected in a store instruction. Register file is in read-only mode.

Fig. 3. TBB error scenarios.

C. Reliable Execution of the Actions of the UML Statechart

The architectural unit of MoMa that executes the instruc-

tions of the actions of the statechart is the transactional data-

path (TDP). The TDP contains two modified MicroBlaze R©

cores in lockstep, i.e., each core executes exactly the same in-

struction as the other one during the complete microprocessor

life cycle. The control-flow machinery of these cores has been

removed and further relational instructions have been added.

The software construct that executes in the TDP is the

transactional basic block (TBB). A TBB is a basic block,

i.e., a sequence of assembly instructions that ends with some

non-branching terminator instruction. In addition, if a TBB

produces a value that will be used by another block, this

TBB must guarantee that this value is written to main memory

before the TBB ends. Therefore, a TBB is a block that does

not share any register with another TBB.

In a TBB, a sequence of store instructions is the block

terminator. No load instructions are allowed within this set of

store instructions, i.e., all load instructions are placed before

the stores. To illustrate the TBB construction, Fig. 2 shows

a state written in C with its respective TBB. Notice that

the TBB loads the program variables pulseCounter v and

obstGapCounter v without assuming that these values were

active in the register file.

The TDP guarantees the correct execution of the TBB

through its instruction checking mechanism that compares for

all instructions of the TBB whether the two executions of

each MicroBlaze R© core of the instruction operands and the

destination registers are the same. If this comparison fails, an

error is detected and the same TBB is re-executed from the

start. Recalling the definition of the TBB, all memory loads

precede the stores. If the TBB reaches a store instruction, it is

guaranteed that all the preceding instructions are correct, and

thus the register file as well. When an error is detected in any

store instruction, the TBB is re-executed without permission

State 1

State 3

State 2

i < 43

!(i < 43)

i < 43!(i < 43)

load r1 := i

ilt c0 := r1 < 43

sgc [1, 2] := c0

sgc [1, 3] := !c0

sgc [2, 2] := c0

sgc [2, 3] := !c0

���������	
��� �������������

Fig. 4. A UML statechart with its control-flow TBB.

to modify the register file. Fig. 3 illustrates these two error

scenarios. This figure also shows the error correction latency

depending on the point of the TBB exection where the error

was detected.

Fig. 3a shows a scenario where the second TBB instruction

contains an error. In this case, only two instructions are re-

executed, thus the correction latency is small. On the other

hand, when the error is detected in the last TBB instruction,

as shown in Fig. 3b, the latency is the TBB length. Therefore,

the upper limit on the correction latency is the TBB length.

Concluding, when the code implementing a state of the

statechart is mapped to a TBB it will be executed by TDP.

The TDP guarantees that if the TBB and thus the state

of the statechart has finished to execute, its execution is

accredited as correct. The remaining statechart construct that

needs to be protected by MoMa for its reliable execution is

the computation of the next state, which is presented in the

next section.

D. Reliable Next State Transition Resolution

The control-flow machinery implemented in MoMa, called

branch-free state machine (BFSM), is based on aggressive

branch predication, i.e., on the transformation of all control-

flow dependencies into data-flow ones [19]. In statecharts

terminology, a sequence of triggers and guard conditions, i.e.,

the expressions that must hold in order to the statechart branch

from one state to another, are transformed into a set of TBBs.

The difference is that a TBB implementing the control-flow

in MoMa does not modify the register file and the memory,

because triggers and guard conditions do not contain store

instructions.

Fig. 4 shows an illustrative example of a statechart with

its respective control-flow TBB. This TBB makes use of

two instructions introduced in MoMa. The ilt (is less than)

compares two operands and computes their less-than relation,

and sgc (set guard condition) sets the truth value of the

guard condition for a given transition of the statechart. In this

example, we have the Boolean expression i < 43 guarding the

transitions from state 1 to 2 and the self-transition of state 2.

The negation of this Boolean expression guards the transitions

from state 1 to 3, and from state 2 to 3.

To protect the guard conditions of the control-flow TBBs,

MoMa stores the evaluated guard conditions in a state tran-

sition matrix M . The values of this matrix are set using the

sgc instruction as shown in Fig. 4. Using the example of the

figure, the positions where the guard condition c0 holds will

be set to 1, thus M [1, 2] = M [2, 2] = 1. In the cases where

c0 does not hold, the respective M positions will be set to 0,

thus M [1, 3] = M [2, 3] = 0.

MoMa encodes each state of the statechart with a state

vector. Assuming that the statechart has n states and that

these states are labeled with an integer 1 ≤ k ≤ n, a

state k is encoded by a vector sk, where sk[k] = 1 and 0
for its remaining n − 1 positions. Using again the statechart

depicted in Fig. 4, we have the following three state vectors:

s1 = [1 0 0], s2 = [0 1 0], and s3 = [0 0 1].
Let us assume that the active state of the statechart is

encoded with the state vector sk. With the state transition

matrix and the state vectors, the next state sk+1 can be

computed as

sk+1 := sk ×M (1)

The BFSM unit implements Eq. 1, which is a matrix

multiplication, protecting it with the technique Algorithm-

Based Fault Tolerance (ABFT) [15]. ABFT computes very

efficiently the row and column checksum of matrices produced

from matrix operations. If the checksum before the matrix

operation differs from the one computed after it completes,

ABFT corrects the erroneous value using residue arithmetic.

ABFT guarantees that all single errors are corrected. The

product described in Eq. 1 is in fact a bit-matrix multiplication.

The BFSM bit-matrix multiplication implementation only uses

combinational logic (‘or’ and ‘and’ gates), eliminating the

need for memory elements to store multiplication elements.

IV. CASE STUDY: AUTOMOTIVE WINDOW LIFTER

This section evaluates the proposed design methodology us-

ing a real-world example from the automotive domain, namely

the control of a window lifter. Section IV-A describes the

functionality and the modeling of the control using statecharts,

and Section IV-B shows how the correctness of the statechart is

verified using model checking. Finally, Section IV-C presents

the error coverage evaluation of the window lifter executing

in MoMa based on exhaustive fault injection.

A. Description

The window lifter controls the window with two buttons

located in the door, controlling the motor that puts the window

in motion. A HAL sensor is utilized to detect and signal the

motion of the window.

Fig. 5 shows the statechart modeling the window lifter

control. Input, output, and internal variables are identified

with the suffixes ‘ i’, ‘ o’, and ‘ v’, respectively. First, the

internal and output variables are initialized and the state-

chart is set to the state STOP. If the down key is pressed

(downKey i), the statechart transitions to MANDOWN, where

the motor is enabled (motor en o) to move the window down

(motor dir o=true). There, the variable hallimpulse i is an

input from the hall sensor signalizing the movement of the

window; the window position is tracked by pulseCounter v.

If either the window is completely open (pulseCounter v==0)

STOP

entry/

motor_en_o = false

/pulseCounter_v = 20

pulseCounterMax_v =100

obstGapCounter_v = 0

motor_en_o = false

motor_dir_o = true

MANUP

entry/

motor_en_o = true

motor_dir_o = false

MANDOWN

entry/

motor_en_o = true

motor_dir_o = true

BACK

entry/

motor_en_o = true

motor_dir_o = true

hallimpulse_i/

pulseCounter_v --

hallimpulse_i/

pulseCounter_v ++

peakCurrentAfterDriveaway_i/

obstGapCounter_v = 0

(obstGapCounter_v >= obstGap_i) ||

(pulseCounter_v <= 0)

hallimpulse_i &&

pulseCounter_v > 0/

pulseCounter--

obstGapCounter_v++

pulseCounter_v ==

pulseCounterMax_v

!upKey_i ||

downKey_i

upKey_i &&

!downKey_i

pulseCounter_v == 0

!upKey_i &&

downKey_i

!downKey_i ||

upKey_i

1

1 2

3 4

2

3 2

1

1

2

Fig. 5. UML statechart modeling the window lifter control.

or the up key is pressed (upKey i), the state STOP is activated

again.
The same procedure has been modeled for closing the

window (MANUP), except that pulseCounter v may reach the

closed position (pulseCounterMax v). To avoid accidents, an

additional clamping protection has been implemented. The

presence of an obstacle is detected in terms of a peak in

the current driving the motor (peakCurrentAfterDriveaway i).

If the latter occurs while closing the window, the statechart

branches to the state BACK. In this state, the window is

opened again until either the window reaches the predefined

position obstGap i or the window is completely open (cf.

MANDOWN); obstGapCounter v tracks how much the win-

dow has been lowered.
Note: The statechart in Fig. 5 is a simplified model for

explaining our methodology. A more detailed version of the

statechart, providing additional functionality such as an auto-

matic calibration of the window lifter, can also be handled by

our design methodology.

B. Verification

For the modeling and the formal verification of the stat-

echart, the proposed methodology adopts the state-of-the-

practice design environment COSIDE R©, which automatically

generates a finite state model in terms of SMV code for the

symbolic model checker NuSMV [20] from the given state-

chart. Besides the statechart, a formal specification asserting

the expected behavior using properties expressed in temporal

logics is needed as input (in this paper we use CTL). The

verification is executed in background and, found counter

examples are visualized in the statechart. Next, a number of

properties that were proven correct are discussed1.
In the window lifter control all states of the statechart

have to be reachable at any time. Formalized in CTL this

requirement can be expressed, e.g., for the state STOP, as:

AG EF (state = STOP) (2)

1To successfully verify the control, also a simplified model of its en-
vironment is necessary: In our example, enabling motor en o results in a
corresponding hallimpulse i modeling the movement of the motor.

stating that always (AG) there exists a path such that eventu-

ally (EF) STOP will be active.

Moreover, it is required to ensure that the motor may only

close the window in the state MANUP, formalized as

AG ((¬motor dir o ∧ motor en o)

→ (state = MANUP)) (3)

The correct implementation of the clamping protection is

crucial to avoid serious accidents. The property

AG((¬motor dir o ∧ motor en o ∧

peakCurrentAfterDriveaway i) →

AX A[(motor dir o ∧ motor en o)

U (pulseCounter v ≤ 0 ∨

obstGapCounter v ≥ obstGap i)]) (4)

specifies that always if the motor closes the window

(¬motor dir o ∧ motor en o) and an obstacle is de-

tected (peakCurrentAfterDriveaway i), then in the next time

step (AX) the window is opened again (motor dir o ∧
motor en o), until (U) the window is completely open

(pulseCounter v ≤ 0) or it reaches the predefined open

position (obstGapCounter v ≥ obstGap i).

The formal verification of the statechart describing ensures

that it meets its specification. From the verified statechart,

COSIDE R© automatically generates correct-by-construction C

code which runs on an embedded control unit controlling the

mechanics and the motor of the window lifter system using

digital output ports also described in the statechart.

C. Error Coverage Evaluation

The fault injection was performed using the MoMa VHDL

code deployed on a Xilinx R© Virtex-5 FPGA board similar as

in [21]. The fault model we assume is the single error, where

only one bit is changed when the fault is injected. This fault

model accounts for Single Event Transients (SET) and Single

Event Upsets (SEU) errors. The fault injection campaign was

exhaustive, i.e., at each program cycle we have injected one

fault on each signal of the entire netlist.

The simulation of SET errors was done with a ‘saboteur’

module, which after one signal of the circuit under test has

been randomly chosen, flips one of the bits of the signal

that injects the error in the circuit logic. The SEU simulation

is similar, but the bit-flip is inserted in flip-flops, i.e., in

memory elements. The fault injection campaign is composed

of 254,499 injected faults with a random walk execution on

the window lifter statechart presented in Fig. 5.

Table I presents the fault injection results for each MoMa

architectural unit divided by SETs, i.e., errors in logic, and

SEUs, i.e., errors in memory elements. The error detection

coverage found was 100%, with a measured error correction

coverage of the entire MoMa executing the statechart is

99.84203%.

The error correction coverage obtained for the BFSM unit

can be increase with a small cost in area. The BFSM has a

priority encoder, which accounts for approximately 10% of the

TABLE I
EXHAUSTIVE FAULT INJECTION RESULTS WITH ABSOLUTE NUMBER OF INJECTED FAULTS, SET+SEU TOTAL ERROR COVERAGE, AND RATE OF INJECTED

FAULTS NOT LEADING TO AN ERROR (MASKED).

MoMa Unit SET Correction SET Detection SEU Correction SEU Detection Total Coverage No. of Faults Masked Faults

TDP 100% 100% 100% 100% 100% 190,511 48.04814%

Rollback 100% 100% 100% 100% 100% 31,832 7.38251%

BFSM 92.68293% 100% 93.64243% 100% 100% 32,156 89.99876%

TOTAL ERROR CORRECTION COVERAGE 99.84203%

BFSM area. The priority encoder is responsible for checking

whether the ABFT algorithm implementation of the BFSM

unit works correctly. If the priority encoder is affected by an

error, it may compute a false positive, or even corrupt the

computed address of the next TBB to be executed. However,

the entire BFSM unit accounts for only 8% of the area MoMa

needs on the FPGA. Therefore, the triplication of the priority

encoder is feasible, so that the coverage of uncorrected errors

can be increased.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a model-based methodol-

ogy for the design of reliable embedded systems that uses

high-level UML statecharts as modeling formalism. These

statecharts are formally verified using a model checker cou-

pled with the state-of-the-practice COSIDE R© design environ-

ment. After the statecharts are asserted as correct, correct-by-

construction C code is deployed into the fault-tolerant MoMa

architecture. The MoMa architecture provides architectural

units that guarantee the reliable execution of the code gen-

erated from the statecharts by executing both the state actions

and the resolution of control-flow transitions in an atomic

fashion. This work has presented how to put together software

correctness and hardware reliability supported by an industrial

case study from the automotive domain.

As future work, we will address the use of formal properties

and verification results from the model checker embedded in

COSIDE to create fault injection assertions. These assertions

will allow the system designer to create dependability cases

based on the reuse of artifacts that have already been created

for software verification. For very critical applications the sys-

tem designer has to certify that his solution is dependable [7],

and the formal way a system designer shows that the system

is correct is writing safety cases. This idea could also be

used to plug together unit tests, e.g., JUnit, and the reliability

evaluation. At the end, using these verication artifacts the

safety cases for reliability could be generated automatically

as [22] does for software correction.

ACKNOWLEDGMENT

This work is supported by CNPq and FAPERGS, Brazil. R.

Ferreira was also supported by DAAD, Germany, during his

stay at the Fraunhofer Institute. The research leading to these

results has partially received funding from the ARTEMIS Joint

Undertaking under grant agreement Nr. 295311 and from the

German Federal Ministry of Education and Research (BMBF).

REFERENCES

[1] R. Baumann, “Soft errors in advanced computer systems,” IEEE Des.

Test Comput., vol. 22, no. 3, pp. 258–266, 2005.
[2] S. Hamdioui, D. Gizopoulos, G. Guido, M. Nicolaidis, A. Grasset, and

P. Bonnot, “Reliability challenges of real-time systems in forthcoming
technology nodes,” in DATE. IEEE, 2013, pp. 129–134.

[3] E. Normand, “Single event upset at ground level,” IEEE Trans. Nucl.

Sci., vol. 43, no. 6, pp. 2742–2750, 1996.
[4] T. Konefal, A. Marvin, J. Dawson, and M. Robinson, “A statistical model

to estimate an upper bound on the probability of failure of a system
installed on an irradiated vehicle,” IEEE Trans. Electromag. Compat.,
vol. 49, no. 4, pp. 840–848, 2007.

[5] J. Penix and P. C. Mehlitz, “Expecting the unexpected: Radiation
hardened software,” NASA Ames Research Center, Tech. Rep., 2005.

[6] H. Chen and C. Yang, “Fault detection and recovery efficiency co-
optimization through compile-time analysis and runtime adaptation,” in
CASES ’13: int. conf. on Compilers, Arch., and Synthesis for Embedded

Systems. ACM, 2013, p. 10.
[7] Y. Moy, E. Ledinot, H. Delseny, V. Wiels, and B. Monate, “Testing

or formal verification: DO-178C alternatives and industrial experience,”
IEEE Softw., vol. 30, no. 3, pp. 50–57, 2013.

[8] “COSIDE web page,” http://www.coside.de, 2013.
[9] L. Brisolara, M. Oliveira, R. Redin, L. Lamb, and F. Wagner, “Using

UML as front-end for heterogeneous software code generation strate-
gies,” in DATE. IEEE, 2008, pp. 504–509.

[10] F. Mischkalla, D. He, and W. Mueller, “Closing the gap between
UML-based modeling, simulation and synthesis of combined HW/SW
systems,” in DATE. IEEE, 2010, pp. 1201–1206.

[11] I. Gray, N. Matragkas, N. Audsley, L. Indrusiak, D. Kolovos, and
R. Paige, “Model-based hardware generation and programming - the
MADES approach,” in ISORC. IEEE, 2011, pp. 88–96.

[12] R. B. Parizi, R. R. Ferreira, L. Carro, and Á. F. Moreira, “Compiler
optimizations do impact the reliability of control-flow radiation hardened
embedded software,” in IESS. Springer, 2013, pp. 49–60.

[13] J. Gaisler, “A portable and fault-tolerant microprocessor based on the
SPARC v8 architecture,” in DSN. IEEE, 2002, pp. 409–415.

[14] A. Pouponnot, “Strategic use of SEE mitigation techniques for the
development of the ESA microprocessors: past, present, and future,”
in IOLTS. IEEE, 2005, pp. 319–323.

[15] K.-H. Huang and J. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. Comp., vol. 33, no. 6, pp. 518–528,
1984.

[16] Object Management Group, “Unified Modeling Language Specification
version 2.4.1,” 2011.

[17] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. The
MIT Press, 2000.

[18] T. Klotz, E. Fordran, B. Straube, and J. Haufe, “Formal verification of
UML-modeled machine controls,” in ETFA. IEEE, 2009, pp. 1–7.

[19] J. R. e. a. Allen, “Conversion of control dependence to data dependence,”
in POPL. ACM, 1983, pp. 177–189.

[20] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV2: An opensource
tool for symbolic model checking,” in CAV. IEEE, 2002, pp. 359–364.

[21] M. Aguirre, V. Baena, J. Tombs, and M. Violante, “A new approach to
estimate the effect of single event transients in complex circuits,” IEEE

Trans. Nucl. Sci., vol. 54, no. 4, pp. 1018–1024, 2007.
[22] N. Basir, E. Denney, and B. Fischer, “Deriving safety cases for hierarchi-

cal structure in model-based development,” in SAFECOMP. Springer,
2010, pp. 68–81.

