
Implementation of an Asynchronous Bundled-Data
Router for a GALS NoC in the Context of a VSoC

Patrick Russell¹, Jens Döge¹, Christoph Hoppe¹, Thomas B. Preußer², Peter Reichel¹ and Peter Schneider¹
¹Fraunhofer Institute for Integrated Circuits IIS, Divison Engineering of Adaptive Systems EAS

²Technische Universität Dresden, Institute of Computer Engineering
Dresden, Germany

E-mail: patrick.russell@eas.iis.fraunhofer.de

Abstract—Designs of asynchronous networks-on-chip are of
growing interest because a complete asynchronous implemen-
tation can solve the synchronization problems of large networks.
However, asynchronous circuits suffer from the lack of proper
design flows because their functionality often relies on timing
constraints, which are not extensively supported by common
CAD synthesis tools. This paper proposes the design and im-
plementation of an asynchronous router architecture suitable for
a network-on-chip in the context of a Vision-System-on-Chip. The
developed design flow for the synthesis of asynchronous bundled-
data pipelines is based on common synthesis tools and, therefore,
enables high compatibility with synchronous designs and a low
barrier to entry.

Index Terms—network-on-chip, low power, low latency, GALS,
asynchronous circuits, vision-system-on-chip, CAD, synthesis

I. INTRODUCTION

Networks-on-Chip (NoCs) are considered to be a promising
solution for high-throughput communication between different
processing elements (PEs) within a System-on-Chip (SoC) [3]
[13]. However, synchronization of large NoCs in nanoscale
technologies using a single global clock signal can be ex-
tremely difficult and inefficient in terms of performance and
power consumption. As a result, the methodology of globally
asynchronous and locally synchronous (GALS) designs has
evolved [9] [16].

Asynchronous circuits operate with local handshaking sig-
nals (e.g. request and acknowledge) rather than a global clock
for the communication between components and pipeline
stages. They can be classified by their handshaking protocol
(2-phase or 4-phase) and their data encoding (e.g. bundled-
data, dual-rail or 1-of-N) [10] [11]. Depending on their
implementation, different timing assumptions are necessary
to ensure the correct functionality of the circuit. Although
asynchronous circuits show great advantages at low-power,
high-performance applications, they are rarely used in indus-
trial environments. A fundamental problem is their limited
support from common CAD synthesis tools and hence their
low compatibility with synchronous designs.

In this paper, we propose the implementation of an asyn-
chronous bundled-data router for GALS NoCs. The archi-
tecture is designed for low latency and very high energy
efficiency, which is mandatory for the specific requirements
of a NoC in the context of a Vision-System-on-Chip (VSoC).

A VSoC, such as the one proposed by Döge et al. [4], features
integrated signal processing of image data besides the actual
image sensor. The necessary functional units are controlled by
an integrated control unit. A VSoC is typically a very large
ASIC. A large area of the chip is occupied by the sensor matrix
and is not available for the routing of global communication
wires, complicating the synchronization problem even further.

We propose a design flow for synthesizing asynchronous
bundled-data circuits, which is based on common CAD syn-
thesis tools and therefore enables a high compatibility with
synchronous designs.

A comparison to a synchronous GALS router implementa-
tion is given, and we will show the measurement results of a
physically implemented network on a 180 nm chip.

II. RELATED WORK

Many implementations of asynchronous routers were pro-
posed in recent years, most of them utilizing the 4-phase
protocol because of its easier implementation.

The ANoC, proposed by Beigné et al. [1], utilizes the
4-phase protocol and 1-of-4 data encoding, as well as worm-
hole and source routing. A complete SystemC model of the
router has been used for its test and verification. Bjerregaard et
al. [2] proposed the MANGO router, which utilizes the 4-phase
protocol and bundled-data encoding. The router comprises a
best-effort and a guaranteed-service router. Ghiribaldi et al. [5]
were the first to propose a router utilizing the 2-phase protocol
with bundled-data encoding. The architecture is based on
the MOUSETRAP implementation of asynchronous pipelines
proposed by Singh and Nowick [14].

To ensure correct functionality of a bundled-data archi-
tecture, several relative timing constraints (RTCs) between
data and control signals have to be satisfied. These RTCs
have to be considered by the synthesis and must be supplied
to the corresponding tools. Several design methodologies
were proposed for the synthesis of asynchronous bundled-
data circuits using common synthesis tools, mostly using very
specific design styles resulting in a very low compatibility with
synchronous designs [8] [15]. Ghiribaldi et al. [5] describe
an iterative synthesis flow based on common CAD synthesis
tools, which expects a description in common hardware de-
scription languages. Gibiluka et al. [7] proposed a framework



data_latch[N-1...0]

D E
N

Q

req_latch

D E
N

Q
req_o

ack_i

data_o
N

ack_o
l_ena

req_i

data_i
N

Figure 1. MOUSETRAP pipeline stage implementation

Figure 2. Structure of the router (adapted from [12] and based on [6])

with a similar approach, which utilizes a XML description of
the necessary RTCs and enables the automated fulfillment of
these constraints during synthesis.

However, in most publications, no detailed information,
such as circuit description level or the utilized synthesis
process, is given about the procedure of the synthesis flow.

III. ARCHITECTURE

The proposed and implemented 5-port router is based on the
router switch presented by Ghiribaldi et al. [5], which provides
a basic architecture and an optimization of the performance of
a single router. This meets the requirements of a network in the
specific context of a VSoC. The implemented router utilizes a
2-phase bundled-data architecture for asynchronous pipelining
based on MOUSETRAP. Consequently, the router has great
potential for high performance, low area overhead and low
power consumption [10] [11]. The register of a MOUSETRAP
pipeline stage uses simple D-latches to store data. The small
stage control logic consists solely of a D-latch to store the
incoming request and a single XNOR gate to control the
pipeline register’s enable signal and the request latch [14]
(Figure 1).

Each port contains an input and an output interface and
provides distributed, highly modular routing. The structure is
presented in Figure 2. The architecture uses wormhole and
source routing as well as a single bit to determine the end of
a packet (EOP) along with an adjustable flit (flow control unit)
size of N bits.

A. Input Interface

The input interface of every port routes incoming packets to
the output interface of the addressed output port by decoding
the address in the routing information of the header flit and
rotating the routing information by two bits (source routing).
Other routing algorithms can be easily implemented as well.
The top-level view and microarchitecture are presented in
Figure 3. The handshaking stage control logic (HS_CTRL)
operates based on the principle of a mousetrap pipeline and
controls the register consisting of latches and a flip-flop to
store the EOP bit. The routing logic decodes the routing
information and places a request (arb_req) to the arbiter of the

Figure 3. Top-level view and microarchitecture of an input interface (adapted
from [12]).

Figure 4. Top-level view and microarchitecture of an output interface (adapted
from [12]).

addressed output interface. Phase converters (PC) adjust the
handshaking signals’ (HS) phases between the input interface
and the four connected output interfaces. This is necessary
because the phases do not necessarily match when the com-
munication alternates between multiple output interfaces.

B. Output Interface

The output interface of every port arbitrates between multi-
ple incoming packets from the four connected input interfaces.
The interface consists of a pipeline stage (HS_CTRL and
corresponding register (Reg)), further phase converters (PC)
and an arbiter. The top-level view and microarchitecture are
presented in Figure 4. The arbiter selects one of the requests
(arb_req) trying to access the output port at a time. The
architecture of the arbiter is based on the one presented by
Ghiribaldi et al. [5] and consists of RS-Flip-Flops, a 4-input
mutual exclusion component (mutex) and several AND-gates
that ensure a fast reset time. After forwarding an EOP bit,
the arbiter is reset and prepared for the next arbitration. The
phase converters and the multiplexer, which are controlled by
the arbiter, ensure that only the winner’s handshaking and data
signals can reach the asynchronous pipeline stage.

C. Timing Constraints

Several RTCs have to be satisfed to ensure correct function-
ality of the bundled-data architecture:

• The first constraint affects the delay time within the
routing logic. To prevent glitches, the address decoder
logic has to be switched before the request of the header
flit sets the corresponding arb_req signal.

• A second constraint occurs after arbitration. The mini-
mum delay time of the request signal through the phase
converters in the output interface controlled by the arbiter
must be equal to or greater than the maximum delay time



of the corresponding data through the 4-input multiplexer,
which is also controlled by the arbiter. As a result, it is
guaranteed that the data of the winning request reaches
the register of the output interface pipeline stage on time
and can be stored safely.

• A third RTC is found between the delays of the request
signal from the input interface through the two phase con-
verters to the pipeline stage of the output interfaces and
the corresponding data signals through the multiplexer to
the register of the same pipeline stage.

• Further RTCs affect the matching delays between the data
and request signals at the input and output ports.

IV. DESIGN FLOW

For the synthesis of asynchronous bundled-data pipelines,
a design flow based on common CAD synthesis tools has
been developed. The starting point is an RTL description
in common hardware description languages like Verilog or
VHDL. Therefore, the design flow provides high compatibility
with synchronous designs and a low barrier of entry. For
synthesis and place and route, the flow utilizes the Synopsys
Design Compiler and the Cadence SoC Encounter tools.

A. Hardware Description

To ensure correct operation, not only the logical func-
tionality, but also the dynamic behavior of an asynchronous
circuit is important [5]. It is mandatory to prevent the used
synthesis tools from applying harmful logic optimizations
within the control circuits of the asynchronous pipelines. The
gate level implementations of these circuits have to match the
original design exactly in order to avoid unwanted glitches of
the handshaking signals. However, adjusting driver strength
or inserting additional buffers during synthesis are desired
optimizations.

To achieve a correct mapping from design to implemen-
tation, a few specific cells inside the control path of the
handshaking signals have to be directly instantiated as standard
cells on gate level. After elaboration of the remaining circuit,
described on register-transfer level, the logic optimization
of these directly instantiated standard cells is prevented by
using the synthesis tool’s set_size_only directive, which
prevents logic optimization but allows for adjusting driver
strengths.

B. Timing Loops

By definition, asynchronous circuits contain combinational
loops inside the handshaking control logic. In order to enable
the synthesis tool to correctly analyze the circuits’ timing
properties, these timing loops have to be ignored. Thus, the
designer of the asynchronous pipeline has to detect and disable
them by using the set_disable_timing directive.

C. Enforcing Relative Timing Constraints (RTCs)

Common synthesis tools do not support RTCs. However,
they can be enforced by an iterative process similar to the
approaches proposed by Ghiribaldi et al. [5] and Gibiluka

et al. [7]. To ensure compatibility with the Synopsys design
constraints format (SDC), the proposed flow enables the
possibility to define paths between pins and/or ports inside
the design and RTCs between different paths and groups of
paths. The associated directives set_path and set_rtc
can be used along with other design constraints in a single
constraints file.

In a first initial synthesis run, only the maximum delays
of every path in the pipeline are communicated to the tool
through the set_max_delay directive. The specified delays
are a measurement for the performance of the pipeline, similar
to the clock frequency of synchronous designs. If the desired
performance cannot be reached, the constraints are adjusted
automatically and the initial synthesis is repeated.

After a successful synthesis, in a second synthesis run, the
minimum delays necessary to fulfill the RTCs of the design are
defined by the set_min_delay directive. These constraints
are determined from the maximum delays achieved in the
initial synthesis run. The second synthesis run tries to achieve
the indicated minimum delays by inserting delay cells (buffers
and inverters) by use of the compile instruction compile
-only_hold_time. If the minimum constraints cannot be
satisfied, the maximum delays are adjusted automatically and
the second synthesis is repeated.

D. Analysis Condition and RTC Verification

The analysis condition determines which operating condi-
tions (process corner, supply voltage and temperature) are used
during the timing analysis of the synthesis tool. The following
analysis conditions can be set for the synthesis:

single - The tool only considers a single operating condition
during the analysis of maximum delays (setup) and minimum
delays (hold). Possible process, voltage or temperature (PVT)
variations are not taken into account by the timing analysis.

best-case/worst-case (bc/wc) - In bc/wc analysis, setup
violations and maximum-delay constraints are checked for a
given worst-case (worst-speed) operating condition, while hold
time violations and minimum-delay constraints are checked
for a given best-case (best-speed) operating condition. This
analysis type considers the global (“Die-to-Die”) PVT vari-
ations for setup and hold violations by assuming that the
two given operating conditions are the worst cases with
respect to their analyzed constraints. The constraints set with
the set_max_delay and set_min_delay directives are
checked for two different operating conditions.

on-chip variation (OCV) - In OCV analysis, the maximum
and minimum delays of the setup and hold times are checked
for two different operating conditions. The maximum delays
are checked for a given worst-case (worst-speed) and the
minimum delays are checked for a given best-case (best-
speed) operating condition. This analysis tries to consider local
(on-chip) PVT variations for setup and hold violations by
making very pessimistic assumptions. There is no difference
between bc/wc and OCV analysis for constraints set with
set_max_delay and set_min_delay directives. An al-
ternative solution is the use of the set_timing_derate



directive, which sets a percentage variation of the delays
specified by the operating conditions along with using the
bc/wc analysis.

RTCs of asynchronous circuits are independent of global
PVT variations. Therefore, the single analysis condition is suit-
able for the synthesis of asynchronous bundled-data circuits.

While the absolute values of the delay times may vary, the
RTCs have to be fulfilled for every operating condition. To
guarantee correct functionality under all operating conditions,
the design flow analyzes and verifies the RTCs for best-case
and worst-case operating conditions during synthesis.

The set_timing_derate directive can be used along
with the single analysis condition to ensure correct function-
ality in deep sub-micron technologies.

V. EXPERIMENTAL RESULTS

To evaluate the implementation, we first compared the
asynchronous router architecture with a synchronous imple-
mentation of a GALS NoC router. Secondly, we physically
implemented a complete network on a test chip. Both evalua-
tions used a 180 nm CMOS technology with a nominal supply
voltage of 1.8 V.

The following parameters were used for the evaluation:
Area - The area of the router Arouter in mm² and the area

Anand2 in an equivalent amount of NAND2 gates.
Latency - The latency indicates the time in nanoseconds

needed for a header flit to cross the router from one input port
to the addressed output port, if the flit is not blocked inside
the router. It contains the time for a necessary arbitration.

Cycle Time / Throughput - The cycle time tcyc in
nanoseconds of an asynchronous pipeline indicates the time
needed by a pipeline stage to acknowledge a transfer request.
The throughput Tpipe in Gigaflits per second of the router
pipeline is given by the inverse of the cycle time and indicates
the number of flits, which can cross the pipeline per second.
Because of the architecture’s highly modular structure, the
router can handle up to five parallel connections. Thus, the
total throughput Trouter in Gigaflits per second of a single
router is given by:

Trouter = 5× 1

tcyc

Area Efficiency - The area efficiency AErouter indicates the
maximum achieved throughput divided by the area needed:

AErouter =
Trouter
Arouter

A. Simulative Comparison

To compare the implemented asynchronous architecture
with a second GALS NoC Router, we implemented a multi-
synchronous architecture, which is characterized by a separate
clock domain for each router in the network. Such an imple-
mentation respects the GALS methodology and allows for the
operation of parts of the network with independent clocks.
Communication between two neighboring routers takes place
via a source-synchronous interface.

Parameter asynchronous synchronous
typical worst-case

Arouter in mm² 0,0284 0,1451
Anand2 in NAND2 gates 3230 16525
Latency in ns 7,27 12,06 31,35
tcyc in ns 4,76 7,69 5,7
Trouter in Gflits/s 1,05 0,65 0,875
AErouter in Gflits/s per mm² 36,97 22,89 6,03

Table I
PERFORMANCE PARAMETERS (ADAPTED FROM [12])

0 1 2 3 4 5
3

4

5

6

7

8

9

Latency

Cycle Time

Link Length (mm)

T
im

e 
(n

s)

Figure 5. Link delay impact on router performance (adapted from [12]).

Both architectures were implemented with a flit size of 16
bits, an additional EOP bit and the minimum amount of flit
buffer memory at each input port needed to ensure maximum
throughput when receiving continuous packets (a single flit
buffer needed for the asynchronous implementation and 16
flit buffer memory needed for the synchronous counterpart
because of the synchronization between neighboring routers
[12]). For evaluation purposes, both routers received packets
from packet generators, which had to be routed to an addressed
receiver.

The simulation took place under typical (1.8 V, 25 °C
and typical process corner) and, for the asynchronous router,
under worst-case (1.62 V, 85 °C and worst-speed process
corner) operating conditions as well, because the performance
of asynchronous circuits is directly affected by the operating
conditions.

1) Performance: Table I summarizes the simulation results.
The multi-synchronous implementation achieved a maximum
clock frequency of 175 MHz.

The asynchronous architecture requires 80% less area and
is three times as area-efficient as its synchronous counterpart –
even under worst-case operating condition. However, it must
be noted that a majority of the area occupied by the syn-
chronous architecture is due to the amount of buffer memory
needed to synchronize neighboring routers.

Under worst-case operating conditions, the asynchronous
implementation delivers 60% lower latency compared to the
synchronous one. The total latency of 5.5 clock periods of the
multi-synchronous implementation encompasses the needed
synchronization (average 2.5 clock periods), the arbitration,
the output stage and an additional pipeline stage.

2) Link Delay: In the performance analysis, we have
assumed ideal links between the routers of the network.
However, link delay directly affects the performance of the
asynchronous architecture. To determine this influence, we
have measured the performance of the asynchronous router
with links of several millimeters in length. The results are



Figure 6. Power consumption of one router in idle state and under full
utilization (adapted from [12]).

Figure 7. Average energy required to transfer a single flit through the router
(adapted from [12]).

presented in Figure 5 and show a steady increase in latency.
At approximately 2.5 mm, the critical cycle time of the
router shifts from the inside of the router to the link between
neighboring routers, thus reducing maximum throughput.

The influence of link delay has to be considered when
implementing a complete network. If necessary, additional
pipeline stages between neighboring routers can increase the
throughput at the cost of latency.

3) Power Consumption: Power consumption of both im-
plementations have been measured in idle state as well as
under full utilization (five parallel connections). The multi-
synchronous architecture has been implemented with and
without clock gating. The results are presented in figure 6
and 7.

In idle state, no packets are sent across the router. As
expected [10], power consumption of the asynchronous im-
plementation is negligibly low in this case (<1 µW), whereas
the clock tree of the synchronous architecture still consumes
a significant amount of power. Using clock gating allowed for
reducing power consumption in idle state by 40%.

Under full utilization, the asynchronous architecture re-
quires 60% less power than the clock gated synchronous
implementation. The energy required to transfer a single flit
through the router (figure 7) is reduced by 67% with respect
to the clock gated architecture.

While power consumption of the asynchronous architecture
is noticeably reduced under worst-case operating conditions,
the energy required to transfer a single flit decreases only by a
small amount, because the maximum throughput of the router
decreases, too.

B. Measured Results

The proposed architecture of an asynchronous router has
been prototyped as a complete network on a test chip in a
180 nm technology with a flit size of 8 bits and a single EOP

Figure 8. Chip photo of the test chip containing the measured NoC

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4
0

10

20

30

40

50

60

Latency
Cycle 
Time

Supply Voltage (V)

Ti
m

e 
(n

s)

Figure 9. Router performance as a function of the supply voltage.

bit. A synchronous design containing three packet generators
and three receivers is connected to the network, which can be
controlled via an SPI interface. The packet generators are able
to send whole packets or just single flits across the network.
Two request signals are connected to two bond pads to measure
cycle time and latency of one selected router.

1) Performance: The performance of a single router has
been measured at different supply voltages. The results are
presented in Figure 9. As expected, the supply voltage has
a direct influence on the performance of the asynchronous
circuit. As the supply voltage increases, both latency and
cycle time decrease and the overall performance of the router
increases.

2) Power Consumption: Power consumption of a single
router has been measured at different supply voltages, as well
as with different injection rates of flits at each input port.

The results show that the overall power consumption (Figure
10) has a larger slope than the energy required to transfer a
single flit across the router (Figure 11), because the maximum
throughput of the router increases with the supply voltage (see
previous Section).

Furthermore, the results indicate a linear correlation be-
tween the injection rate of flits per port and the corresponding

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4
0

5

10

15

20

25

30

35

Supply Voltage (V)

P
ow

er
 C

on
su

m
pt

io
n 

(m
W

)

Figure 10. Power consumption of one router under full utilization and
maximum injection rate of flits per port as a function of the supply voltage.



0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4
0

2

4

6

8

10

12

14

Supply Voltage (V)

E
ne

rg
y 

pe
r F

lit
 (p

J)

Figure 11. Average energy required to transfer a single flit through the router
as a function of the supply voltage.

0 10 20 30 40 50 60
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Injection rate per port (MFlits/s)

Po
w

er
 C

on
su

m
pt

io
n 

(m
W

)

Figure 12. Power consumption of one router under full utilization as a
function of the injection rate of flits per port (1.8 V supply voltage).

power consumption (Figure 12). Accordingly, the energy re-
quired to transfer a single flit across the network stays the
same, independent of the router utilization (Figure 13). At
very low injection rates the energy increases just a little bit,
because of an increasing amount of static power consumption
per flit.

VI. CONCLUSION

This paper proposes an implementation of an asynchronous
router architecture for a GALS NoC. The proposed design
flow is based on common CAD synthesis tools and enables
the implementation of asynchronous bundled-data circuits with
standard cells and a high compatibility with synchronous
designs. The implemented router was evaluated in comparison
to a synchronous implementation and was used to implement
a complete network on a 180 nm test chip. The comparison
shows significant resource reduction: 80% in area, 67% in en-
ergy per flit and 60% in latency. As expected, the asynchronous
circuit shows negligible power consumption in idle state (<1
µW). Furthermore, the asynchronous architecture allows for
the implementation with very little flit buffer memory at the
input ports. Therefore, the implemented router is well suited
for the requirements of a NoC in the context of a VSoC, where
latency and energy efficiency are of paramount importance and
the parallel utilization of the NoC is expected to be relatively
low.

The measured results of the physically implemented net-
work prove some very interesting properties of asynchronous
circuits, such as resistance of the functionality against vari-
ations in power supply or the linear correlation between
utilization and power consumption.

ACKNOWLEDGEMENT

This work was supported by the German Federal Ministry of
Education and Research (BMBF) within the Innovation Initia-

0 10 20 30 40 50 60
5

6

7

8

9

10

Injection rate per port (MFlits/s)

En
er

gy
 p

er
 F

lit
 (p

J)

Figure 13. Average energy required to transfer a single flit through the router
as a function of the injection rate of flits per port (1.8 V supply voltage).

tive "Entrepreneurial Regions", project consortium 3DSensa-
tion, project cSoC3D, grant number 03ZZ0427E. The authors
of this paper are solely responsible for its content.

REFERENCES

[1] E. Beigné, F. Clermidy, P. Vivet, A. Clourad, and M. Renaudin. An
Asynchronous NOC Architecture Providing Low Latency Service and Its
Multi-Level Design Framework. In 11th IEEE International Symposium
on Asynchronous Circuits and Systems, pages 54–63, March 2005.

[2] T. Bjerregaard and J. Sparsø. A Router Architecture for Connection-
Oriented Service Guarantees in the MANGO Clockless Network-on-
Chip. In Design, Automation and Test in Europe, pages 1226–1231 Vol.
2, March 2005.

[3] W. J. Dally and B. Towles. Route Packets, Not Wires: On-Chip Inter-
connection Networks. In Proceedings Design Automation Conference,
pages 684–689, June 2001.

[4] J. Döge, C. Hoppe, P. Reichel, and N. Peter. A 1 Megapixel HDR
Image Sensor SoC with Highly Parallel Mixed-Signal Processing. In
International Image Sensor Workshop (IISW), Vaals, Netherlands, 2015.

[5] A. Ghiribaldi, D. Bertozzi, and S. M. Nowick. A Transition-Signaling
Bundled Data NoC Switch Architecture for Cost-Effective GALS Mul-
ticore Systems. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 332–337, Grenoble, France, March 2013.

[6] M. Gibiluka. Design and Implementation of an Asynchronous NoC
Router using a Transition-Signaling Bundled-Data Protocol, 2013. End
of Term Work.

[7] M. Gibiluka, M. T. Moreira, N. Laert, and N. L. V. Calazans. A Bundled-
Data Asynchronous Circuit Synthesis Flow Using a Commercial EDA
Framework. In Euromicro Conference on Digital System Design, pages
79–86, August 2015.

[8] M. Iizuka, N. Hamada, H. Saito, R. Yamaguchi, and M. Yoshinaga. A
Tool Set for the Design of Asynchronous Circuits with Bundled-data
Implementation. In 29th IEEE International Conference on Computer
Design (ICCD), pages 78–83, Amherst, USA, October 2011.

[9] A. J. Martin and M. Nystrom. Asynchronous Techniques for System-on-
Chip Design. In Proceedings of the IEEE (Vol. 94), pages 1089–1120,
July 2006.

[10] S. M. Nowick and M. Singh. High-Performance Asynchronous
Pipelines: An Overview. In IEEE Design & Test of Computers (Vol.
28), pages 8–22, June 2011.

[11] S. M. Nowick and M. Singh. Asynchronous Design - Part 1: Overview
and Recent Advances. In IEEE Design & Test (Vol. 32), pages 5–18,
March 2015.

[12] P. Russell. Entwurf und Implementierung eines asynchronen Netzwerkes
für die schnelle Kommunikation auf grossen ASICs, October 2016.
Diploma Thesis.

[13] A. Sheibanyrad, A. Greiner, and I. Miro-Panades. Multisynchronous and
Fully Asynchronous NoCs for GALS Architectures. In IEEE Design &
Test of Computers (Vol. 25), pages 572–580, December 2008.

[14] M. Singh and S. M. Nowick. MOUSETRAP: High-Speed Transition-
Signaling Asynchronous Pipelines. In IEEE Transactions on Very Large
Scal Integration (VLSI) Systems (Vol. 15), pages 684–698, June 2007.

[15] C. P. Sotiriou. Implementing Asynchronous Circuits using a Conven-
tional EDA Tool-Flow. In 39th Design Automation Conference, pages
415–418, New Orleans, USA, June 2002.

[16] P. Teehan, M. Greenstreet, and G. Lemieux. A Survey and Taxonomy
of GALS Design styles. In IEEE Design & Test of Computers (Vol. 24),
pages 418–428, October 2007.


