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Abstract - The identification of safe faults (i.e., faults which are 

guaranteed not to produce any failure) in an electronic system is 
a crucial step when analyzing its dependability and its test plan 
development.  Unfortunately,  safe  fault  identification  is  poorly 
supported  by  available  EDA  tools,  and  thus  remains  an  open 
problem.  The  complexity  growth  of  modern  systems  used  in 
safety-critical applications further complicates their 
identification.  In  this  article,  we  identify  some  classes  of  safe 
faults within an embedded system based on a pipelined 
processor. A new method for automating the safe fault 
identification is also proposed. The safe faults belonging to each 
class are identified resorting to Automatic Test Pattern 
Generation  (ATPG)  techniques.  The  proposed  methodology  is 
applied to a sample system built around the OpenRisc1200 open 
source processor.   

1. Introduction 

Electronic systems are increasingly adopted in safety-critical 
applications,  where the  effects  of  possible  faults  may  cause 
significant damages, either from an economical point of view 
(e.g., in telecommunication systems) or in terms of 
consequences for the human users (e.g., in automotive 
systems). Hence, in these kinds of applications, it is strictly 
required  to  complement  the  usual  design  process with  a 
dependability evaluation process, aiming at checking 
whether  the  system  fulfills  the  dependability  specifications. 
In the negative case, suitable counteractions have to be taken 
to improve the system dependability. Dependability 
evaluation [1] mainly corresponds to estimating the 
probability that the system produces a critical failure due to a 
fault.  The  dependability  evaluation  process  is  known  to  be 
complex, typically it starts by estimating the failure rate for 
every component of the system. When the component 
corresponds to a simple device (e.g., a resistor) the 
corresponding failure rate can be estimated resorting to 
available  data  bases  (e.g.,  FIDES  [15]).  When  it  is  a  more 
complex device (e.g., a microcontroller, or a System on Chip 
(SoC),  more  sophisticated  approaches  have  to  be  applied, 
taking  into  account  the  adopted  technology  as  well  as  the 
mission profile (describing the kinds of stresses the 
component will be subject to).  In any case, for each possible 
hardware  fault  affecting  the  component,  we  must  associate 
two probability to it: the probability of occurrence the fault, 
and the conditional probability that, if the fault arises, it may 
cause a failure. By combining  all these figures (Failure 
Modes  and  Effects  Analysis,  or  FMEA)  the  dependability 
expert can basically estimate the dependability of the whole 
system.  Since  not  all  failures  have  the  same  severity,  the 
analysis may also distinguish among different faults, basing 
on  the  severity  of  the  failures  they  may  produce  (Failure 
Modes and Effects Criticality Analysis, or FMECA). For the 
purpose of this paper we ignore any distinction within the set 

of  safe  faults  based  on  the  criticality  of  the  effects,  which 
depends on the specific application. 
Clearly,  the  system  can  include  fault  tolerance  mechanisms 
(e.g.,  based  on  redundancy)  and  in-field  test  mechanisms 
(e.g., Software Test Library approach). The adopted solution 
should be able to guarantee that a sufficiently high 
percentage  of  possible  faults  (ideally,  100%)  are  detected. 
However, when computing this percentage (known as  Fault 
Coverage)  we  should  remove  from  the  list  of  considered 
faults all those that for different reasons are known not to be 
able  to  produce  any  failure  (Safe  Faults).  The  set  of  Safe 
Faults for a given system includes the well-known 
Untestable  Faults,  that  are  usually  caused  by  structural  or 
sequential  redundancy  (which  cannot  be  tested  even  by  an 
exhaustive test) but it also contains faults that cannot produce 
any  failure  (and  thus  cannot  be  tested)  due  to  the  specific 
configuration  of  the  system,  which  in  some  way  limits  the 
controllability  and  observability  of  each  unit  inside.  It  has 
been  shown  [4]  that  the  percentage  of  Safe  Faults  may  be 
significant  (achieving  20%  or  30%  of  the  total  number  of 
faults  in  many  cases),  and  it  is  thus  crucial  to  be  able  to 
identify them. Similar figures have been obtained when 
analyzing the portion of a processor which is not used by  a 
given application [5]. On the other side, systematic methods 
able  to  automate this  step are rather immature,  thus  forcing 
most  companies  to  perform  it  in  a  manual  manner.  The 
method  described  in [11]  is  potentially  able  not  only  to 
generate  test  programs  for  a  processor,  but  also  to  identify 
safe faults given some constraints. Pruning the fault list used 
for assessing the fault coverage achieved by a functional test 
from  safe  faults  may  result  in  a  significant  computational 
time reduction. Moreover, any solution able to preliminarily 
identify Safe Fault will also be able to make the test 
generation step more effective. Following our previous work 
on  the  topic  [2][3][4],  in  this  paper  we  focus  on  the  Safe 
Faults  which  may  exist  in  an  embedded  system  based  on  a 
pipelined processor (as it commonly happens in several 
safety-critical systems). Initially, an overview about the safe 
faults is shows (Section 2). After, we introduce some 
categories  of  Safe  Faults (Section  3) that  can  be  commonly 
found,  and  then  highlight  a  method  which  is  able  to  partly 
automate their identification, leveraging on existing 
commercial  EDA  tools  (Section  4).  Finally,  we  apply  the 
proposed methodology on a sample system, and report 
experimental  (Section  5)  results  to  discuss  the  advantages 
and limitations of the proposed solutions (Section 6). 

2. Background 

The  purpose  of  this  Section  is  introduce  the  Safe  Faults 
concept.  The  definition  of  Safe  Fault  is  “A  fault  which  is 
guaranteed  not  to  be  able  to  produce  any  failure  in  the 
considered system”. Clearly, untestable faults (i.e., faults for 



 

which no test exists) are by definition safe faults. If a fault is 
a safe one, there is no reason for testing it. According to the 
above definition, different types of faults can be classified as 
safe. The structurally (or combinationally) untestable faults, 
are faults for which a test does not exist even if the 
combinational block where the fault is located is fully 
controllable  and  observable. An  ATPG  tool  can  identify 
these faults. The sequentially untestable faults are faults that 
do not belong to the previous group, but cannot be tested due 
to the sequential behavior of the circuit, for example, because 
the  circuit  cannot  reach  any  of  the  states  required  for  their 
test.  Several  works  proposed  techniques  to  automatically 
identify  these  faults  [7][8][9][10][13][14][16][17].  On-line 
functionally untestable faults [2], are faults that do not 
belong  to  the  previous  groups,  but  cannot  be  tested  in  a 
functional manner in the operational conditions (i.e., without 
resorting  to  Design  for  Testability)  the  target  device  works 
in,  as  defined  by  the  hardware  configuration.  Finally,  the 
application-dependent safe faults are safe faults related to the 
software  application  run  by  the  target  system.  The  above 
classification is independent on the adopted fault model.  

3. Categories of safe faults 

In this section, some categories of safe faults in a processor-
based  embedded  system  are  presented.  All  the described 
categories  of  safe  faults  are  related  to  constraints  that  are 
valid in the target embedded system during the execution of a 
given  application.  In  Section  4,  we  will  show  how  these 
constraints can be used to identify the related Safe Faults. 
SPECIAL  PURPOSE  REGISTERS.  The  first  category  of 
safe faults involves the usage of the Special Purpose 
Registers (SPRs) inside the processor. Special Purpose 
Registers can be used to configure the processor or to use the 
I/O peripherals. Each SPR is enabled by placing its identifier 
(ID) on a dedicated bus managed by an SPR addressing unit. 
The bus exiting the SPR addressing unit is able to address 2 n 
SPRs,  where  n  is  the  parallelism  of  the  bus.  Usually  the 
addressing capability is considerably higher than the number 
of SPRs really present in the processor. Therefore, there are 
numerous combinations of invalid IDs potentially generated 
by  the  SPR addressing  unit  but  which  will  never  to  be 
generated. Moreover, it is possible that some of the SPRs are 
not accessed because they are  not used by the specific 
application. Faults associated with the hardware that 
generates  these  never  used  SPR  IDs  will  never  be  excited 
during  the  work  of  the  processor,  and  thus  belong  to  the 
category  of  safe  faults.  Since  SPRs  are  located  within  the 
Register  File,  this module  will never receive  the IDs  of  the 
unused  SPRs.  Note,  if  a  User  Register  is  not  used  by  the 
application,  its  ID  is  also  never  generated,  and  further  safe 
faults may stem from this fact. 
DATA  MEMORY  ACCESS.  A  second  category  of  safe 
faults is associated with the addressing of the memory in the 
processor. The unit denoted as Memory Address Generator is 
able to address 2n memory locations, where n is the 
parallelism of the address bus. Typically, the memories used 
in embedded systems are smaller than the address space that 
can  be  generated  by  the  Memory  Address  Generator  unit. 
Therefore, there are numerous memory addresses which will 

never  be  generated  during  the  embedded  system  life.  This 
constraint  will  turn  several  faults  in  the  Memory  Address 
Generator unit into safe faults.  
PROGRAM  COUNTER  LOGIC.  The  third  category  of 
safe faults is similar to the previous one but associated with 
the generation of addresses towards the code memory. In this 
case,  a  Program  Counter  (PC)  Generation  unit  can  exist 
within the CPU to generate addresses on 2 n bits, where n is 
the parallelism of the address bus to the  code memory. The 
code  memory  used  in  these  processors  is  normally  smaller 
than the possible address space. Therefore, there are 
numerous  invalid memory  addresses.  Once  again, this  turns 
into a constraint which leads to Safe Faults. 
INSTRUCTION DECODING LOGIC. The fourth 
category of safe faults relates to the decoding of the 
instruction  opcode.  Assuming that the  instruction  opcode  is 
represented on n bits, this represents an input to the decode 
unit. In theory, the processor can potentially decode 2n 
possible instructions. Typically, the processor instruction set 
uses  a  lower  number  of  instructions.  Therefore,  there  are 
various invalid opcodes. When one of these invalid opcodes 
is  decoded,  an  exception  (often  called  Illegal  Instruction 
exception) is triggered. If we can assume that the application 
code is correct and no fault will happen in the system, we can 
label faults associated to the logic in charge of triggering this 
exception as safe. In other words, we can identify a 
constraint, stating that any illegal opcode will never enter the 
CPU decoding logic.  
RESET  LOGIC. This  category  of  safe  faults relates to  the 
reset of the flip flops. In all processors there is a module in 
charge of driving the reset signal  entering all or most of the 
flip  flops.  This  module  activates  the  signal  when  several 
conditions  become  trues.  For  example,  when  an  external 
asynchronous reset is activated, at power-on, or when a reset 
instruction is executed. In most system we can safely assume 
that no one of these conditions will happen during the normal 
system  operations.  Hence,  most  faults  related  to  this  logic 
can be labeled as safe.  
UNUSED INSTRUCTIONS. Once the application code 
used  by  the  system  is  known,  an  analysis  can  be  done  to 
check whether any instruction supported by the processor is 
possibly  unused.  An  instruction  never  appears  in  the  code 
may happen for different reasons, possibly connected also to 
non-functional requirements, including the following: 
•  The programmer decided to avoid its usage. As a 

common  example,  it  may  happen  that  the  programmer 
decided  not  to  use  floating  point  instructions,  although 
the  processor  supports  them  (and  includes  a  floating 
point unit), either because  floating point is not required 
by the application. 

•  The  compiler  didn’t use  the  instruction,  e.g.,  because  it 
was not necessary. As a simple example, in some 
applications you cannot find any load or store instruction 
with  byte  parallelism  (but  only  with  word  parallelism), 
since  no  8-bit  variable  is  used  in  the  code.  Division  is 
another instruction which is sometimes not required, and 
hence not used.  

The  results  reported in [5] clearly show that even with 
complex applications the percentage of unused hardware in a 
processor can be relevant.   



 

4. Safe faults identification method 

In this paper, a method is proposed to identify the safe faults 
belonging to the categories described in the previous section. 
Other safe faults can obviously exist, and other methods can 
be used for their identification.  
The proposed method is based on the following steps: 
1. Constraints extraction at the system level 
2. Identification of the involved modules and translation of 

the system-level constraints into input and output 
constraints on the single module 

3. ATPG activation. 
Step 1 corresponds to the analysis performed in the previous 
Section. This step is performed manually. Clearly, the 
constraints that we can observe in a system are not limited to 
those we listed here, and further constrains can be identified, 
depending  on  the  hardware  and  software  characteristics  of 
the  system.  Step  2  is also  performed manually,  and  aims  at 
translating  the  general  constraints  at  the  system  level  into 
simpler  constraints  affecting  input  or  output  signals  at  the 
module level. In other words, some of the considered 
constraints  can  be  expressed  stating  that  a  given  input  or 
output  signal  of  a  given  module  always  remains  at  a  given 
value  during  the  system  operational  life.  Other  constraints 
may imply that a given input or output configuration is never 
reached during the operational phase. Moving from system to 
module level is crucial to simplify the task of the ATPG used 
in the next step and make it computationally feasible. Step 3 
leverages the ATPG which is asked to identify at the module 
level (i.e., considering the module as an isolated fully 
controllable and fully observable entity) the faults that 
become  untestable  due  to  the  specified  input  and/or  output 
constraints.  Being  based  on  the  ATPG,  this  step  is  fully 
automatic. Depending on the constraint, two cases are 
consider: 
1. Constraints affecting a single input or output signal 
of  a  module:  in  this  case  we  can  straightforwardly  connect 
this signal to the fixed values 0 or 1, and then run the ATPG. 
2. Constraints  stating  that  a  given  combination  will 
never  appear  on  the  input  signals  of  the  module  (as  in  the 
case  of  an  unused  instruction).  In  this  case,  we  can modify 
the  netlist  of  the  module  by  artificially  adding  some  extra 
circuitry which is fed with the same input signals affected by 
the  forbidden  configuration  and  generates  an  extra  output 

signal, which holds the value 1 iff the forbidden combination 
is  applied.  By  forcing  this  additional  output  signal  to  0  we 
can push the ATPG to identify untestable faults in the 
module, stemming from the considered constraint. The same 
approach can clearly be extended to the case in which 
multiple input combinations never appear on the inputs. 

4.1. Experimental Results 

In this section we report some experimental results computed 
using  the  method  proposed  in  Section  4  on  the  safe  faults 
categories described in Section 3. Table 1 shows the overall 
results that will be discussed in this chapter, in particular the 
number of safe faults identified for each  CPU unit. The last 
subsection  shows  the impact  of  the identified  safe  faults  on 
the achievable Fault Coverage. As a case study, an embedded 
system based on an OpenRISC 1200 [12] is was chosen. The 
implementation used by us is equipped with 2 MB of RAM 
for  data  and 2  MB  of  flash  memory  for  code.  The  OR1200 
we used has been synthetized with the NanGate 45nm library 
resulting in 115,137 possible stuck-at faults.  

4.2. Safe faults identification  

Concerning the first category (Special Purpose Registers), we 
assume  that  the  application  program  does  not  generate  IDs 
associated with registers not present in the processor and that 
the  application  program  does  not  use  the  peripherals  or  I/O 
interfaces. With these assumptions, it is possible to impose a 
constraint on the most significant 5 output bits of the 
spr_addr bus: these 5 bits are fixed to the logical zero value. 
Launching a commercial ATPG tool with the above 
constraint  on  the  sprs  module  we  could  identify  1,450  safe 
faults, as shown in Table 1. The same constraints imposed on 
the  output  signals  of  the  sprs  unit  can  be  imposed  on  the 
input signals of the Register File unit. With this constraints, 
160 safe faults in the register file unit are identified.  Moving 
to  the  data  memory  access  category,  in  the  OR1200  the 
address  bus  has  a  32-bit  parallelism,  able  to  index  4GB  of 
RAM  memory.  In  the implementation  of  the  OR1200 used, 
the RAM memory addresses range from 0x00100000 to 
0x002FFFFF.  Hence,  the 11  most  significant  bits  of  the 
RAM  address  bus  are  fixed  to  0  for  hardware  constraints. 
With the method proposed applied to the load store unit (lsu) 
with the constraints found on RAM addressing, 62 safe faults 

Unit #Faults 
Safe faults categories 

Total safe faults removed 
Reset logic 

SPR 
addressing 

Memory 
access 

PC update 
logic 

Decoding 
logic 

Unused 
instructions  

CPU 115,137 2,888 1,610 62 270 234 352 5,434 4.72% 
alu 10,967 0 0 0 0 0 0 0 0% 

cfgr 196 0 0 0 0 0 0 0 0% 
ctrl 3,998 112 0 0 0 192 18 322 8.05% 

exception 6,685 342 0 0 0 42 0 384 5.74% 
freeze 142 9 0 0 0 0 0 9 6.34% 
genpc 3,712 123 0 0 0 0 0 123 3.31% 

if 2,565 198 0 0 270 0 0 468 18.25% 
lsu 2,519 0 0 62 0 0 0 62 2.46% 

mult_mac 35,441 789 0 0 0 0 352 1,141 3.22% 
operandmuxes 3,120 82 0 0 0 0 0 82 2.63% 

rf 38,118 1,072 160 0 0 0 0 1,232 3.23% 
sprs 5,564 72 1,450 0 0 0 0 1,522 27.35% 

wbmux 2,070 38 0 0 0 0 0 38 1.83% 
Table 1: Safe faults identification results 

 



 

are  identified,  as  shown  in  Table  1. Similar  considerations 
can be made for the Program Counter update logic category. 
The address bus of the flash memory has a 32-bit parallelism. 
In  the  memory  map  of  the  OR1200  system  we  considered, 
the flash memory is mapped to addresses ranging from 
0x04000000  to  0x05FFFFFF.  Hence,  the  5 most  significant 
bits of the flash address bus are fixed to 0. With the method 
proposed,  on  the  instruction  fetch  unit  (if)  and  with  the 
constraints  imposed  on  its  output  signals,  270  safe  faults 
were identified, as shown in Table 1. The method proposed is 
applied to the decoding of the instruction opcode category. In 
this  case,  we  identified  an  output  signal  of  the  decode  unit 
(ctrl  in  the  OR1200  model)  which  is  activated  when  an 
Illegal Instruction exception is triggered. The identified 
constraint corresponds to forcing this signal to 0. By running 
the ATPG with this constraint on the  ctrl unit we identified 
192  faults  as  safe.  The  same  signal  triggered  by  the  Illegal 
Instruction  exception  is  directly  connected  to  the  interrupt 
controller.  Hence,  the  same  constraint  can  be  used  on  the 
input of the exception unit (exception). Once  again, the 
signal is forced to zero. With this constraint and the proposed 
method, 42 safe faults are identified in the exception unit. As 
described in Section 4, we can assume that during the normal 
operational  phase  the  reset  signal  entering  each  flip  flop  is 
never  activated.  Hence,  we  can  force  this  signal  to  0  and 
identify the faults that become untestable as a consequence. 
By forcing the reset signal entering into the different units to 
0  and  then  running  the  ATPG  on  each  of  them  we  could 
identify 2,888 safe faults. For the unused instruction 
category,  we  selected  two  sample  instructions  performing 
integer division (l.div and ldivu). The proposed method 
applied on the mult_mac and ctrl units, amounting to 352 and 
18, respectively. 

4.3. Fault Coverage without Safe Faults 

Table 1 shows how many safe faults have been identified for 
each unit inside the processor and for each category  of safe 
faults considered here. The column Total safe faults removed 
reports  the  total  numbers  of  safe  faults  identified  for  each 
unit and their percent with respect to the number of faults of 
the unit. Overall, 5,434 safe faults have been identified in the 
OR1200  CPU.  As  a  major  result  of  this  effort,  it  is  now 
possible to compute the Fault Coverage achieved by a 

generic  test  step  by  considering  a  list  of  faults  from  which 
safe faults have been removed. For this purpose, we can use 
the Fault Coverage without Safe Faults (FC_safe) metric, as 
done already in [4], computed via the expression:  
FC_safe = #detected faults / (#faults - #safe faults) 
The proposed method for the identification of safe faults and 
for the calculation of the FC_safe is independent of the test 
method chosen to test the device. In our case study we chose 
to test the OR1200 CPU by resorting to a Self-Test Library 
(STL) based on the Software-Based Self-Test (SBST) 
paradigm. Details about the techniques followed to generate 
the adopted STL can be found in [4]. This STL consists of 13 
test programs, providing an initial stuck-at fault coverage of 
83.95%. Details on the number of faults labelled as detected 
and not detected are shown in Table 2. When computing the 
FC_safe we got a figure of 88.14%. Table 2 shows the details 
of the FC_safe for each unit of the CPU.  

5. Conclusions 
In this paper we focused on Safe Faults, and described first 
some categories of Safe Faults that can be found in 
embedded  processors.  We  also  proposed  a method to  partly 
automate their identification. 
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Unit 
Initial Fault Coverage Final Fault Coverage 

#Faults FC [%] 
#Detected 

faults 
#Safe 
Faults 

FC_safe 
[%] 

CPU 115,137 83.95 96,696 5,434 88.14 
alu 10,967 94.98 10,417 0 94.98 

cfgr 196 0 0 0 0 
ctrl 3,998 83.38 3,346 322 91.02 

exception 6,685 16.60 1,116 384 17.71 
freeze 142 67.96 98 9 73.68 
genpc 3,712 53.83 1,998 123 55.67 

if 2,565 66.14 1,698 468 80.97 
lsu 2,519 74.67 1,881 62 76.56 

mult_mac 35,441 94.16 33,381 1,141 97.32 
operandmuxes 3,120 96.12 2,999 82 98.72 

rf 38,118 93.85 35,774 1,232 96.98 
sprs 5,564 40.38 2,250 1,522 55.66 

wbmux 2,070 82.03 1,698 38 83.56 
Table 2: Fault Coverage result 

 


