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Abstract—Spiking neural networks (SNN) are biologically
plausible networks. Compared to formal neural networks, they
come with huge benefits related to their asynchronous processing
and massively parallel architecture. Recent developments in
neuromorphics aim to implement these SNNs in hardware to
fully exploit their potential in terms of low energy consumption.
In this paper, the plasticity of a multi-state conductance synapse
in SNN is shown. The synapse is a compound of multiple
Magnetic Tunnel Junction (MTJ) devices connected in parallel.
The network performs learning by potentiation and depression of
the synapses. In this paper we show how these two mechanisms
can be obtained in hardware-implemented SNNs. We present a
methodology to achieve the Spike Timing Dependent Plasticity
(STDP) learning rule in hardware by carefully engineering the
post- and pre-synaptic signals. We demonstrate synaptic plasticity
as a function of the relative spiking time of input and output
neurons only.

Index Terms—Spiking Neural Networks (SNN), unsupervised
learning, Magnetic Tunnel Junction (MTJ), neuromorphics.

I. INTRODUCTION

The rapid growth of Artificial Intelligence (AI) has enabled
ubiquitous use of smart applications like image recognition
[1], sensing [2] and decision making. Using Artificial Neural
Networks (ANN) for Al comes with a certain cost, mainly
energy & time. Indeed, software-based ANNs which are
running on classic Von Neuman computers (separated CPU
and RAM) suffer from expensive data shuffling between the
memory and the processor. In addition, formal ANNs are not
optimal because the signal circulates continuously between
the processing unit and the memory, leading to high energy
consumption [3]. This challenge has pushed researchers to take
inspiration from the biological nervous systems to solve the
problem. The biological nervous system is by far the most
energy efficient computer [3]. For example, training a state-
of-the art natural language processing model on a modern
supercomputer consumes 1000 kWh, which is the energy
consumed by a human brain for the entirety of its tasks over
a duration of six years [3].

Neuroscience research states that signals in the brain cir-
culate in the form of spikes between neurons via synapses
[4]. A first step towards highly energy efficient ANNs is to
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move from formal NNs to Spiking Neural Networks (SNNs)
in which all signals are coded and transmitted as spikes. Due
to this special signal coding, the traditional training algorithms
such as linear regression or backpropagation become incom-
patible, so new training algorithms have to be considered.
Looking again to neuroscience, we find the theory which states
that “cells that fire together wire together” [5]. This causality
theory is the bases of the Spike Timing Dependent Plasticity
(STDP) learning rule which is suitable for training SNNs. The
STDP learning process consists in adjusting the connection
strengths (i.e., synaptic weights) based on the relative timing
of a particular neuron’s output and input states. A hardware
implementation of an SNN trained by STDP requires neurons
able to emit spiking signals (the Leaky-Integrate and Fire -
LIF neuron for example) and synapses able to adjust their
weights in real-time during learning (i.e., have plasticity) and
retain the value of the trained weight (i.e., have memory).
Although the applications of AI based on neural networks
are widely spread, the solutions for physically implemented
spiking neural networks (SNNs) with on-line learning are still
rare. In addition, the proposed solutions are not thoroughly
analysed in terms of quality and robustness.

To the best of our knowledge, this paper is the first work
that studies the control of probabilistic MTJ-based synapses to
obtain the STDP. Using the proposed signal profile for input
and output spikes we achieve learning in time domain, as it
is found in biology (i.e., the magnetic synapse changes its
conductance level only according to the time delay between
the spikes of its corresponding neurons). In this paper we focus
only on the learning process and synaptic plasticity, the design
and evaluation of the spiking neurons are out of our scope.

The rest of the paper is organised as follows: in section II
preliminary notions are introduced, to describe the operation
of the magnetic tunnel junction (MTJ) and the operation of a
spiking neural network (SNN); Section III briefly summarises
the related state of the art; Section IV presents the proposed
methodology, while Section V describes the obtained results;
Section VI concludes the paper.

II. PRELIMINARY

A. Magnetic Tunnel Junction MTJ

A Magnetic Tunnel Junction (MTJ) consists of a stack of
two magnetic layers with different thicknesses separated by
a thin oxide layer. The magnetization of the thicker magnetic
layer is fixed, whereas the magnetisation of the thinner layer is



free to be aligned or opposite to the fixed one. The orientation
of the free layer changes depending on the direction of the
writing current which should be higher in absolute value than
a certain threshold I.5. The MTJ has a low resistance when the
two magnetic layers are parallel, it has a high resistance when
the two magnetic layers are anti-parallel. This device having
two stable resistances is used as a non-volatile (NV) memory
with high resistance (logic 1) and low resistance (logic 0).
Figure 1 shows a schematic of an MTJ and the switching
between the two resistance states.

We use a VerilogA MTJ model [6] that allows a wide range
of user-defined geometric and magnetic parameters including
the MTJ dimensions, saturation magnetization, damping factor,
resistance area product, crystalline anisotropy and temperature.
The MTJ model captures the differential Landau-Lifshitz-
Gilbert (LLG) equation which describes the precessional mo-
tion of a magnetization vector.

Spin Transfer Torque (STT) is the mechanism by which the
MT]J switches between the two resistance states. The switching
mechanism is stochastic by nature due to thermal fluctuation
of magnetization. It is responsible for the large fluctuations in
the switching duration. The dynamic model mainly calculates
the average switching delay 75, (with 50% of switching prob-
ability). Depending on the magnitude of switching current, the
dynamic behavior of MTJ can be divided into two regimes:
Sun model (I > I.) and Neel-brown model (I < 0.81.)
where I is the current across the MTJ and I is the coercive
current. The Sun model is also called precessional switching
regime which addresses fast switching (switching time lower
than 3ns) but it has high energy consumption due to the
high current density. Reversely, in the Neel-Brown regime the
switching is slow but with low power consumption due to low
current density; this regime is referred to as thermally assisted
switching.
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Fig. 1. (a) The MT]J resistance as a function of time during switching (the
MTJ has only two stable states). (b) A schematic of MTJ, the upper layer’s
magnetisation is pinned, whereas the lower one is controlled by the value of
the current passing through it and its direction. Ve and Vst represent the
control signals, which in the case of the SNN under study are the spikes of
the input and the output neurons respectively.

B. Spiking Neural Networks

SNN is a network of input spiking neurons (presynaptic)
and output spiking neurons (postsynaptic) fully connected by

synapses through which the neuronal information is conveyed.
The synapses can be organized in a crossbar array, where the
input and output neurons are at one extremity of each row
and column respectively Fig. 2b. The communication between
neurons is achieved by trains of spikes. The input information
is spike-coded and fed to the input neurons. For example,
in an image recognition task, each pixel has a corresponding
input neuron, and the spiking frequency (or rate) of that input
neuron is proportional to the grayscale intensity of the pixel
that it represents. The network is trained to learn the task
(recognition) by adapting the synaptic strengths following the
local learning rule of STDP.

In this paper we analyse the behavior of a hardware-
implemented SNN with probabilistic MTJ synapses, the synap-
tic weight is coded in conductance levels, and a local training
algorithm based on STDP is used.

C. The MTJ-based Synapse

In the SNN under study, MTJ-based synapses are used.
The synaptic weights are expressed in conductance levels.
Various conductance levels for a single synapse are obtained
by connecting multiple MTJs. Indeed, a single MTJ device
is capable of only 2 conductance levels, but by connecting
several MTJ devices in series or parallel, multiple conduc-
tance levels can be achieved. Here, we propose a compound
synapse designed with multiple MTJs connected in parallel.
For demonstration purpose only, in this paper we study a
synapse built with 4 MTJs connected in parallel as shown
in Fig. 2a, the two terminals V). and V), are the spiking
voltages of presynaptic and postsynaptic neurons respectively.
Four MTJs per synapse is largely sufficient to learn simple
datasets like MNIST, this latter has even already been trained
with only two states synapses using binarized neural networks
[7]. By using (n) number of MTJs in parallel, we get (n+1)
levels of conductance in the synapse. This synapse is capable
of 5 conductance levels, the smaller conductance is achieved
when all MTJs are in anti-parallel orientation (high restive
state) and the larger conductance is achieved when all MTJs
are in parallel orientation (low restive state). Intermediary
conductance values are obtained when some MTJs are in anti-
parallel state while the others are in parallel state.

In order to achieve the different conductance levels, the
MT]Is should be able to switch their states independently. This
condition can be met by controlling the MTJs in the proba-
bilistic region, by taking advantage of the thermal switching.
This approach is the bases of our proposed methodology and
will be described in detail in section IV.

D. The Training Algorithm

We use an adapted STDP rule to be implementable in
hardware, it works as follows: when an input neuron spikes,
the signal is transmitted to all the outputs in the bottom of
each column via the synaptic connections. As a result, output
neurons accumulate the incoming signals. Once one of them
reaches the threshold, it fires. Many of them may reach the
threshold and fire. During training, the connections between
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Fig. 2. (a) Schematic of a compound synapse with 4 MTJs in parallel, (b)
schematic of the single layer SNN implement as a synapse crossbar array
showing also the input and the output neurons

the responsible input neuron and the firing outputs should be
adjusted consequently, in two ways:

o Potentiation: If the output neuron fires immediately after
the input neuron, the corresponding synapse’s weight
(its conductance in our case) is increased. The early the
output fires, the bigger the increase of its synaptic weight.
The delay between output spike and input spike gives the
importance of causality, i.e., smaller the delay, larger the
causality.

o Depression: when the relative input-output spiking time
is very long, it means that the input neuron was not the
direct responsible of activating that specific output, this
lack of causality leads to penalising the output neuron by
decreasing its connected synaptic connection. The larger
the delay of output firing, the larger the decrease of its
synaptic weight.

III. RELATED WORK

The state of the art of the SNN hardware-implementations
is very large as different approaches exist and multiple im-
plementations are being investigated. The authors of [8] argue
that there is a big discrepancy between the promise of efficient
computing with SNNs and the actual implementations on
currently available computing hardware. This is due to the fact
that the highly parallel structure, sparse communication, and
in-memory computation proposed by SNNs stands in contrast
to the sequential and central processing of data constrained
by the memory wall between processor and memory on CPUs
and GPUs. To mitigate this problem, massively parallel digital
architectures of SNN were proposed, among the most eminent
ones are TrueNorth [9] from IBM and SpiNNaker [10] from
the University of Manchester. TrueNorth is made of 1 million
neurons connected by 256 million synapses. The chip is
trained off-line so is used only for inference. The test accuracy
reaches 99.4% on MNIST handwritten digits database, with
an energy consumption of 108u.J per image. SpiNNaker
chip on the other hand contains 18 cores with approximately
1K neurons and 1K synapse by core, it demonstrated 95%
accuracy consuming 3.3m.J per image.

A most disruptive implementation of SNN came with the
rise of the emerging non-volatile memories. First, memristors
based on conducting filaments, phase change materials and

magnetic tunnel junction were demonstrated fitted to stand as
synapses thanks to their non-volatility (to retain the synaptic
wight) and their adjustable conductance (for plasticity). Later,
the memristors were demonstrated fitted for the neurons as
well. The authors of [11] demonstrated a system level network
with synapses where one synapse is made of one memrestive
device based on the conductive filament technology, whereas
they use a CMOS based neurons which feature inhibition and
homeostasis. In nominal case, the network reaches comparable
efficiency with the state of the art when evaluated on MNIST
database (93.5 % with 300 output neurons). And has an im-
munity against variability, where a relative standard deviation
of 50 % is tolerated in all device parameters.

In [12] the authors propose an All-Spin Artificial Neural
Network (ASANN) which uses spintronic devices to im-
plement both synapses and neurons. The authors propose
a Compound Spintronic Synapse (CSS) made of multiple
vertically stacked MTJs (2N resistance states can be achieved
by stacking N MTIJs). They also proposed a compound spin-
tronic neuron (CSN) enabling a multi-step transfer function.
The network performs off-line learning paradigm, then the
calculated synaptic weights are mapped into CSSs discrete
resistance states. The standard back-propagation algorithm was
employed for the training process. Many works are focused on
the training of SNNs. For instance, [13] presents a network
for digit recognition which is based on mechanisms with in-
creased biological plausibility, i.e., conductance-based instead
of current-based synapses, STDP with time-dependent weight
change, lateral inhibition, and an adaptive spiking threshold.
Using this unsupervised learning scheme, their architecture
achieves 95% accuracy on the MNIST benchmark.

Most of the proposed techniques to implement SNN in
hardware are capable of inference only. Whereas it is the
on-line training which should be tackled in order to reduce
energy consumption. The authors of [14] propose a toy model
of a post-synaptic neuron spiking as a response to the activity
of two pre-synaptic neurons, then the memrestive synapses
update their state variable consequently, but in one direction
only. Their training rule is lacking time dependence also, the
output neuron spikes whenever it receives an activity. A similar
implementation was proposed in [15] using different CMOS
neurons for input and output, with a memristive synapse. A
postsynaptic neuron potentiates simultaneously the responsible
synapse and depresses all the others systematically. STDP time
dependence is again not properly implemented. The novelty
of our work is the proper implementation of STDP with
a clear time dependence which can be used in hardware-
implemented SNN. This will allow online local learning with a
compound spintronic synapses (synaptic weight is encoded as
conductance). We show how, by carefully choosing the signal
shape to emulate the pre- and post-synaptic spikes, the STDP
can be implemented in hardware.

IV. METHODOLOGY

We focus in this study only on the synapse and we analyse
its behavior during the network training process. Our goal is



to design a signal profile for the pre- and post-synaptic spikes
respectively, which allow for the implementation of the STDP
learning. We carried out electrical simulations of the synapse
presented in Fig. 2a, where the signals V.. and V.. are
chosen so that the voltage drop Ve — Vpost demonstrates
the desired behaviour, i.e., it can change the conductance
of the synapse to emulate time-dependent potentiation and
depression. In order to tune the synapse conductance, the MTJs
should be able to switch their states independently. This con-
dition can be met by controlling the MTJs in the probabilistic
region. The probability of MTJ switching depends directly on
the applied voltage: amplitude and pulse width. In other words,
we can use the MTJ stochasticity to our advantage and control
the compound synapse in such a way, that when applying a
voltage pulse of a certain amplitude, each MTJ will have a
different switching delay. In this case, if the synapse is at
minimum conduction level (all MTJs in high resistive state)
there exist a positive voltage of amplitude V},,.,;, which, when
applied across the synapse, will cause the MTJs to switch one
by one to the low-resitive state. In this way, the conductance
of the synapse will gradually increase to its highest value (all
MTIs in low resistive state), thus effectively emulating the
synaptic potentiation. In a similar manner, the depression can
also be emulated. The purpose of this work is to identify the
value of V.., for synaptic potentiation and depression and
to optimise it for STDP learning. Network training consists
of adjusting the synaptic weights (i.e., the conductance). In
section II.D we described the basics of the STDP rule where
the important parameter is the relative spiking time between
input and output neurons. In order to reproduce this behaviour
for the spintronic compound synapse under study, the voltage
drop Vpre — Vpost across the MTJs should be delay-dependent
as shown in Fig. 3. As the pre- to post-synaptic spiking delay
increases, we distinguish five behaviours in this order:

1) High potentiation: If the postsynaptic neuron spikes
immediately after the presynaptic neuron, the voltage
drop Vpre — Vpost > 0 is maximum so the conductance
of the synapse is raised significantly.

2) Low potentiation: The voltage drop still positive but with
smaller amplitude as the delay increases, the conduc-
tance of the synapse is then raised by a small amount
accordingly.

3) Unchanged conductance: This is a transition region
between potentiation and depression, the voltage drop
decreases, it can no longer perform potentiation. It
decreases more as the time delay increases, it becomes
negative, but dose not perform depression either because
it doesn’t exceed the negative threshold voltage yet.

4) Low depression: The large delay allows the voltage drop
Viore — Vpost to have a negative amplitude which is
enough to lower the conductance level of the synapse.

5) High depression: If the postsynaptic pulse arrives very
late compared to the presynaptic pulse, the voltage drop
will have a very large negative amplitude, the synaptic
connection is then penalized by lowering its conductance

drastically.

The Fig. 3 shows how the plasticity in the synapse can be
obtained by tailoring the shapes of presynaptic and postsynap-
tic pulses. The V), pulse has a triangular shape with a positive
and a negative part, this decreasing voltage shape converts the
increasing delay into a gradual decrease in voltage drop.
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Fig. 3. (a)The presynaptic neuron signal, The pulse Ve has a triangular
shape of 1ps. (b) The postsynaptic neuron signal, The pulse Vjos¢ has positive
and negative rectangular parts with a total duration of 100ns. (c)left: The
voltage drop Vpre-Vpost across the synapse is positive and rises above the
threshold when Vpos¢ arrives short after Ve resulting in a potentiation.
(c)right: The voltage drop Vpre-Vpoest across the synapse is negative and falls
under the threshold when Vs arrives at the end of Ve pulse, resulting in
a depression. (d) The average conductance of the synapse over 20 simulations
for each position of the Vpost. The Vpre is fix, it always starts at 100ns, it
is delimited by the two vertical lines. Whereas Vjpos¢ comes at diffident times
(before, during and after V)-¢) the conductance is probed only at the end of
each simulation.

The signal transmitting the input spike to the synaptic array
has a duration of 1ps, a maximum positive amplitude of



210mV and a maximum negative amplitude of 60mV. These
values were chosen after a thorough study, the details will
be laid out in the next section. The V., pulse on the other
hand has two rectangular parts with amplitudes —100mV and
100mV respectively, each with 50ns pulse width.

First, when only V). or V,.s spikes, the voltage drop
across the synapse is not large enough to modify the synaptic
weight (necessary condition for network during inference).
Training requires both input and output neurons to spike in
order to update the weight of the connected synapse. When a
synapse sees both pre- and post- synaptic signal, the voltage
drop across the synapse is given by V),;.c —V}0:. Therefore, the
negative amplitude of V},,s; adds up to the positive amplitude
of Vpe. If the positive threshold is exceeded then the synapse
will potentiate. If the output neuron spikes late, and the post-
synaptic pulse arrives towards the end of the pre-synaptic
pulse, the positive part of V), is subtracted from the negative
part of V... If the negative threshold is exceeded the synapse
will depress. This way, the potentiation and depression in the
synapse, is only decided by the time delay between input and
output neuron spikes. To test the correctness of our method,
we have performed a battery of simulations as follows: (i) for
all simulations an input neuron spike V},,.. occurs at 100n.s and
ends at 1.1us (ii) for each simulation an output neuron spike
Viost occurs with a certain delay after the input neuron spike.
For each simulation a different delay is considered such that all
cases of potentiation and depression can be observed. Since we
deal with probabilistic switching, each simulation was repeated
20 times to account for stochastic effects. The results are
illustrated in Fig. 3d, where the synaptic conductance is plotted
as a function of the delay between post and pre-synaptic signal.
On the x-axis we mark the delay of the post-synaptic signal
compared to the pre-synaptic one, while on the y-axis we
mark the equivalent conductance of the synapse (obtained by
averaging the values obtained for the 20 simulations performed
under identical conditions). The delay-dependent potentiation
and depression are clearly demonstrated.

V. RESULTS & DISCUSSION

In this section, we explain how the values of the control
signals have been chosen for the analysis in Section IV. We
first studied the behaviour of the synapse under a constant
voltage drop to determine the range of values for V,,,..;, defined
in Section IV, (i.e., the voltage amplitude for which the 4
MTIJs will switch at different times due to the stochasticity
of the switching process). The synapse designed with 4 MTJs
in parallel has five conductance states: from stateO) (maximum
conductance) to state4 (minimum conductance). To analyse the
synaptic potentiation, the synapse is initialized at state4 (the
bottom left corner in Fig. 4a) and different voltage signals
applied to it (varying both their amplitude and duration).
The colormap in Fig. 4a) displays the average conductance
over 10 simulations for each applied voltage signal (couple
pulse amplitude, pulse duration). It should be noted that for
voltage amplitudes of around 340mV all 5 conductance levels
can be achieved for different pulse widths, while for voltage

amplitude of 360mV and pulse width larger than 40ns there is
a sudden change in conductance from its minimum to its max-
imum value. The synaptic depression is analysed in a similar
way and it is illustrated in Fig. 4b). The results illustrated
by the 2 colormaps offer the complete information on the
Synaptic behavior and allow choosing the shape and parameter
values for the pre- and post- synaptic signals described in
section IV. For instance, the 50ns width of the positive and
negative parts of the postsynaptic pulse V,s; was chosen
because the analysis shows that for both potentiation and
depression, 50n.s pulse width allows the synapse to take all the
possible synaptic states depending on the voltage amplitude.
Simulation parameters are summrised in Table L.

(a) Potentiation

(b) Depression

100 1 40
% 35

80 3.0
70 2.5

60 2.0
50 15
40 10
30 05

00

0 . v 20
280 290 300 310 320 330 340 350 360 -160 -150 -140 -130 —-120 -110 -100 -90 -80
Voltage{mv) voltage(mv)

100

Pulse widthins)

Fig. 4. (a)Potentiation: The state of the 4 MTJs synapse is initialized at state4,
a positive square pulse voltage with different widths is applied to lower the
resistance of the synapse. Each point is the average of 10 simulations. (b)
Depression: Negative square voltages of different widths are applied to a
synapse initialized at stateO (bottom right corner)

TABLE I
SIMULATION PARAMETERS
H Description Value [ ‘
Input Max voltage at the beginning 250mV
spike Voltage at the end -60mV
Pulse width 1.1us
Starting delay 100ns
Output Voltage at the positive part 100mV
spike Width at the positive part 50ns
Voltage at the negative part -100mV
Width at the negative part 50ns
Magnetic | Distribution of thermal fluctuation  exponential
Tunnel Oxide thickness 8.5 A
Juncion Magnetic free layer thickness 1.3nm
MTJ total thickness of MTJ nanopilar 33.55 nm

Fig 5 shows the increase and decrease in synapse con-
ductance AG, this depends only on the relative timing At
between presynaptic and postsynaptic spikes. The synapse is
initialized at an intermediate state, where two MTJs are in
a high resistance state and two are in a low resistance state.
The parameters giving the profiles of the input and output
spikes are given in Table 1. Figure 6 shows the behavior of
the synapse when initialised at the lowest (left) and highest
(wright) conductance respectively. Figure 7 shows the effect
of the slope of the pre-synaptic signal (in Fig. 3) on the
potentiation and depression efficiency. We found that a best
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Fig. 6. The plasticity of a 4 MTJ synapse. Initialized at the lowest then at
the highest conductance respectively

and more resolved potentiation and depression are obtained
for larger signal slopes (in absolute value).

VI. CONCLUSION

Spiking Neural Networks are attractive solutions for arti-
ficial intelligence applications, their implementation in hard-
ware is very energy efficient. We presented in this paper
a simple way to implement the synaptic connections using
the magnetic tunnel junctions, we seceded to reproduce the
most important parameter for the STDP training rule which
is time-dependence. The training which consists of adjusting
the synapse conductance is only controlled by the time delay
between the spikes of the connected neurons to the synapse.
This way the synapse is designed to be used in a bigger
network to allow unsupervised learning. The voltage pulse
shapes of input and output neurons are chosen in such a way
to allow the occurrence of the desired operation (potentiation
or depression) and its magnitude at the right time. Moreover,
potentiation and depression occur only when the two incoming
pulses arrive, making the design suitable also for inference,
where the synapse conductance stays unchanged when only
one spike arrives in the synapse.

700 4 —— V_pre slope=-0.326mV/ns
V_pre slope=-0.305mV/ns
—— V_pre slope=-0.284mV/ns
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Fig. 7. Potentiation and depression of a synapse initialized at an intermediate
state of conductance, the presynaptic pulse is fixed at 100ns and is delimited
by the two vertical line. Three simulations with different pulses are shown. a
better result is obtained for slope of —0.326mV/ns
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