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1mahdi.taheri@taltech.ee

Abstract—Nowadays, the extensive exploitation of Deep Neu-
ral Networks (DNNs) in safety-critical applications raises new
reliability concerns. In practice, methods for fault injection by
emulation in hardware are efficient and widely used to study the
resilience of DNN architectures for mitigating reliability issues
already at the early design stages. However, the state-of-the-art
methods for fault injection by emulation incur a spectrum of
time-, design- and control-complexity problems. To overcome
these issues, a novel resiliency assessment method called AP-
PRAISER is proposed that applies functional approximation for
a non-conventional purpose and employs approximate computing
errors for its interest. By adopting this concept in the resiliency
assessment domain, APPRAISER provides thousands of times
speed-up in the assessment process, while keeping high accuracy
of the analysis. In this paper, APPRAISER is validated by
comparing it with state-of-the-art approaches for fault injection
by emulation in FPGA. By this, the feasibility of the idea is
demonstrated, and a new perspective in resiliency evaluation for
DNNs is opened.

Index Terms—Deep Neural Networks, approximate computing,
fault injection, reliability, resiliency assessment

I. INTRODUCTION

In recent years, Deep Neural Networks (DNNs) surpassed
human-level precision [1] that made them attractive for several
safety-critical applications such as autonomous driving [2], [3].

Faults that can be caused by soft errors, aging, etc., are
the source of threatening the reliability of DNN inference
hardware accelerators. Here, soft errors, are of particular
concern for researchers in the industry and academia. It is
a class of faults caused by ionized particles hitting transistors
that can flip a logic value in a memory cell or a logic gate.

In today’s applications, network parameters, e.g., weights,
occupy most of the inference accelerator’s areal footprint,
making them natural targets for soft-errors-caused distur-
bances. Unlike other logic structures, DNNs are known to be
relatively resilient to transient faults. However, in practice,
such faults still may cause a significant accuracy drop in
DNNs because of the large area and memory requirements
for the state-of-the-art DNNs accelerators. Although numerous
techniques have been proposed recently to evaluate the archi-
tectural fault resilience of DNNs, they are still rather costly.
Throughout the literature, Fault Injection (FI) is the most
commonly used method for resilience evaluation of DNNs.

Fault injection by emulation in hardware, usually in FPGAs,
is widely adopted by the industry [4] because of its ability to

Fig. 1: DNN fault resiliency assessment methods: (a) Fault
injection by emulation in FPGA; (b) APPRAISER approach
using errors by AxC units.

evaluate real-scale DNN accelerator designs with significantly
shorter run times compared to software-based simulation.

However, the state-of-the-art approaches for fault injection
by emulation in hardware imply iterative procedures for each
injected fault, including numerous extra memory accesses,
which make them time-consuming and imply complex imple-
mentation. Fig. 1(a) illustrates the execution overheads of the
general flow of FI by emulation in hardware. In particular, such
an iterative approach is breaking the pipeline and requires a
complex FI Controller and an extra FI control interconnect
[5]–[8]. Fig. 1 (b) illustrates the proposed approach AP-
PRAISER, which allows reducing the fault resiliency assess-
ment overheads. The ability to tolerate the impact of faults on
the output accuracy is called fault resiliency and, in practice,
it is one of the contributors to the final DNN accelerators’
reliability [9].

In this paper, our contribution is a novel method of fault re-
siliency analysis for DNN architectures that applies functional
approximation for a non-conventional purpose and harnesses
approximate computing errors for its interest. To the best of
our knowledge, for the first time, Approximate Computing
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(AxC) units are adopted to improve the processing time-
, design-, and control-complexity for DNN fault resiliency
analysis process.

APPRAISER provides a rapid exploration of different op-
tions of the network architecture, training, dataset, etc., to
study the fault resilience of the DNNs. In particular, it enables
efficient analysis of subsequent layers’ resilience to faults in
the weights of a compromised layer.

The new method has the following advantages:

• It eliminates the need for designing and deploying an
extra complex controller for the fault injection procedure.
A simple approximate units enabling circuitry (AxC
Activator) is employed instead.

• The inference pipeline process executes a batch of inputs
with no need to break this process.

• The resilience assessment process is performed without
an extra interconnect for weight sampling.

• The proposed approach is not iterative for each potential
fault location, unlike the traditional fault injection. Thus,
the analysis complexity is vastly reduced.

The rest of the paper is organized as follows. An analysis of
Related Works in Section II is followed by the new methodol-
ogy presented in Section III. The experimental results, along
with their discussion, are presented in section IV. Finally, this
work is concluded in Section V.

II. RELATED WORKS

The extensive growth of the memory footprint size in
today’s practical DNN inference HW accelerators increases the
chances of soft errors’ occurrences causing prediction failures.
Even a minor change in the DNN architecture may cause a
notable difference in the DNNs’ architectural fault resiliency
[9]. Evaluating the resiliency of DNNs with FI by emulation
in hardware is a practical method used today by the industry.
There are several works emulating fault injection on FPGAs
as a hardware platform.

Fiji-FIN [8] is one of such DNNs’ resiliency evaluation
frameworks. It considers the model’s accuracy degradation as
a metric to study the impact of soft errors on the network’s
parameters, such as weights and activation. Unfortunately, it
implies severe effort for designing the fault injection cam-
paigns. For each single fault injection, the execution of the
inference should be halted for manipulating the DNN param-
eters, and it has to be resumed thereafter. It means that the
classification time for a batch of inputs should be interrupted
to apply fault injection between the classification process of
two consecutive inputs.

A similar method is also used in [6], [7]. These works also
propose injecting transient faults into on-chip memories of
the design implemented on the FPGA. In these works, the bit
stream file of the FPGA is obtained by a High-Level Synthesis
(HLS) tool and imported to the FPGA. While the system is
running, the faults are generated and injected by the embedded
processor and the reliability is evaluated in comparison with
the golden model.

In contrast to the works mentioned above, this paper
proposes a novel non-iterative fault resilience analysis by
exploiting the approximation errors instead of fault injection

It enables keeping the inference pipeline process to be
executed on a batch of inputs unbroken.

III. PROPOSED METHOD APPRAISER
The proposed approach for applying errors of approximate

computing units for DNN fault resiliency assessment is out-
lined in Fig. 1(b). An AxC Activator unit on the Processing
System (PS) side enables the AxC units to induce errors. These
units are AxC multipliers in the multiply-and-accumulate units
(MACs), in the targeted (mimicked to be compromised) layer
of the DNN. This activator controls the multiplexers on the
Programmable Logic (PL) side to switch between the exact
implementation of the units (for the functional mode) and the
approximated one (for the resiliency assessment mode). Then,
the user runs the inference just once for the validation dataset
and stores the results of the layers’ outputs.

The flow of APPRAISER method is depicted in Fig. 2.
Step 1 is the initialization that includes the selection of the

compromised layer (e.g. one by one in the DNN structure),
the validation testset (i.e. DNN inputs), and the assumed
application-specific fault rate. In Step 2, suitable AxC units are
selected. For example, in this work, we used AxC multipliers
from the EvoApproxLib library [10]. Further, a set of ExC
units are substituted with the AxC units in the network
architecture (Step 3). The DNN inference is executed keeping
the pipeline of the network and the DNN output accuracy drop
is reported. It is used as the main DNN fault resilience analysis
metric. The more the accuracy drops with the induced errors,
the less fault-resilient the given DNN implementation is.

Fig. 2: APPRAISER Methodology

Fig. 3: APPRAISER assessment flow: Compromised layer in
the presence of faults in weights vs. layers under resiliency
test

In a traditional application of AxC, the approximation of
hardware components is based on their inexact implementa-



tion that creates a functionally tolerable mismatch with the
specification while providing gains in compute-efficiency. In
practice, there is an error induced by approximation that can
also be employed to mimic the error caused by a fault in
the inputs of a logic circuit that is propagated to the output.
Such approximation-induced errors affect their corresponding
outputs, which are also connected to several other neurons in
subsequent layers (as their activation) (Fig. 3).

The characteristics of the approximation-induced errors can
be assessed by several metrics, normalized error, number of
flipped bits, and their impact on the neural network classifi-
cation accuracy drop. In this study, we rely on the following
simple set of metrics:

1) normalized error: calculated as the average error on the
output of each layer by subtracting the neurons’ outputs
of that layer from the golden output and dividing all the
error values to the maximum value;

2) network accuracy and recall drop: calculated by execut-
ing the network under different circumstances (faulty vs
approximated) over the test set;

3) bitflips in subsequent layers: calculated by comparing all
bits in the next layers’ outputs with the golden model
and counting the bits that do not match as flipped bits.

The main objective of APPRAISER is the study of the
resiliency of DNN architecture layers to faults that might
occur in the weights of a compromised layer. By using this
method, the user can rapidly explore the options of network
architecture, training, dataset, etc., in terms of fault resiliency
analysis.

Unlike some other frameworks (e.g., FijiFin [8], AP-
PRAISER does not support assessing the reliability of the
network to faults in the activations and DNN neurons and
currently is only aimed at resiliency to faults in stored DNN
weights. Other limitations are a lower diagnostic capability
and implicit correspondence to traditional fault injection based
metrics (e.g. in standards).

IV. EXPERIMENTAL RESULTS

A. Evaluation Methodology

The flow to evaluate the proposed method is illustrated in
Fig. 4. Here, Steps 1 and 2 repeat the APPRAISER method
execution (Fig. 2).

The list of candidate approximate multipliers from the
EvoApproxLib library [10] was narrowed down with several
relevant metrics adopted from EvoApproxLib with the main
focus on two established features (Variance of Error Distance
(Var-ED) and Root Mean Square (RMS-ED)) presented in
[11]. These two metrics are the most critical approximation-
induced errors’ features for the performance of an AxC unit
in DNNs. Based on these metrics, Mult8s 1KX2 (further
referred to as Mult1) and Mult8s 1KRC (Mult2) multipliers
are selected for the experiment.

For the reference part, the fault resiliency evaluation is
repeated on the original network instrumented for a state-of-
the-art FI method [8] (Step 4). Two fault models are considered
in this study:

Fig. 4: APPRAISER evaluation flow

• Injection of a single bitflip at a random location in all
weight bits of the compromised layer for every input in
the DNN validation test set,

• Injection of double bitflips in weights of the compromised
layer for every input in the DNN validation test set.

For each fault model, the experiment is repeated for 1000
random faults per image are considered to reach the 95%
FI confidence level according to the statistical fault injection
approach [12] and in the end, the average accuracy of all
repetitions is reported. Finally, the DNN accuracy drops as a
result of applying approximation and fault injection along with
normalized error, and the number of flipped bits are compared
(Step 5).

B. Experimental Setup

To evaluate the feasibility of the proposed method, a simple
Convolutional Neural Network (CNN) with two convolutional
layers, two max-pooling, and one Fully-Connected (FC) layer
was implemented and trained. The simulations were performed
on an Intel® Core™ i7-6800K CPU @ 3.40GHz × 12, and
the proposed method was implemented with Python 3. The
hardware synthesis and implementation results are produced
by the Xilinx Vivado HLS tool on a Xilinx Spartan-7 FPGA
(xc7s100-fgga676-1) at 100 MHz operational frequency.

The CNN under study is trained on a dataset of 2000
images of animals (cats and dogs) and humans for binary
classification. The accuracy of the network over the test set
(including 450 images of animals and humans) is 93.34%.
Bit truncation quantization is applied in network parameters
during training and data precision is reduced to 8-bit.

C. Evaluation Results

The similarity of the fault resiliency analysis results by
fault injection emulation and using the APPRAISER method
is analyzed using the metrics identified in Section III.

Fig. 5 illustrates normalized error distribution in the output
of the second convolutional layer (Conv2), in the presence of
random double faults in the first convolution layer (dashed
grey) vs errors induced by approximate multipliers (Mult1
solid orange, Mult2 solid blue) enabled in the first convolution
layer respectively. Fig. 6 reports the result of applying FI and
APPRAISER on the same convolutional layer and its impact
on the second pooling layer of the network. These results



Fig. 5: Normalized output error of Conv2: Applying AxC
and fault injection on the Conv1

Fig. 6: Normalized output error of Pool2: Applying AxC
and fault injection on the Conv1

TABLE I: Bitflips and Accuracy/Recall drop induced by APPRAISER vs the reference fault injection method

Affected/Measured Layers
Bitflips in subsequent layers

Injection of a single fault Injection of a double fault
Fault Injection
(reference) [%]

Approximation with
MULT1 [%]

Approximation with
MULT2 [%]

Fault Injection
(reference)[%]

Approximation with
MULT1 [%]

Approximation with
MULT2 [%]

Conv1/Conv1 10.00 9.97 9.98 9.99 10.00 9.99
Conv1/Pool1 9.03 9.03 9.03 9.06 9.06 9.05
Conv1/Conv2 16.73 16.72 16.74 16.74 16.74 16.74
Conv1/Pool2 16.40 16.45 06.50 16.55 16.50 16.45

Conv1/FC 9.25 9.25 8.50 9.30 9.30 9.30
Conv2/Conv2 16.71 16.72 16.71 16.76 16.74 16.74
Conv2/Pool2 16.40 16.45 16.41 16.50 16.50 16.50

Conv2/FC 10.10 8.50 7.80 10.10 9.30 8.30
Affected Layer DNN Accuracy/Recall drop

Conv1 2.3/4.7 2.7/8.0 2.2/6.7 4.7/14.0 5.8/17.4 4.2/12.7
Conv2 1.8/6.0 1.6/5.0 2.7/8.0 9.1/26.4 9.1/26.4 8.9/26.7

TABLE II: Overheads of APPRAISER vs the reference fault
injection method (Conv1 layer)

Network Area LUT
utilization

Analysis Control
Circuitry Interconnects DNN execution

time in FPGA

Base CNN 12% N/A Data Exchange
Interconnect 131ms

Fault Resilience Assessment
CNN instrumented

with FI 23% Complex FI Controller (Data Exchange + FI)
Interconnect 632,000ms

CNN instrumented
with APPRAISER ∼29% Simple AxC

Activator
Data Exchange

Interconnect 131ms

demonstrate the similarity of the trends in error propagation
by the proposed and the reference methods.

Table I reports fault resiliency assessment by the proposed
and the reference methods using the bitflips in subsequent
layers and the DNN accuracy and recall drop metrics. These
results also demonstrate the strong similarity of the trends in
error propagation by the proposed and the reference methods.

Table II demonstrates that although APPRAISER is more
resource hungry, it is vastly faster than the reference fault
injection by emulation method. It should be noted that the
extra resources required by APPRAISER or FI are used only
for the fault resiliency analysis phase and cleaned out from
the final inference accelerator. In this example, the original
CNN occupies 12% of the FPGA resources (LUTs). The CNN
instrumented with APPRAISER occupies 29% of the FPGA
resources and provides the accuracy/recall drop measurement
for fault resiliency assessment in 131 ms, i.e. the same time
as the original network execution time. On the other hand,

the CNN instrumented with FI utilizes 23% of the FPGA
resources and performs the measurement in 632,000 ms, i.e.
thousands of times (specifically, 4,824 times in this example)
slower than the proposed method. This gain is composed of
three components: a) processing of a single image in the
CNN instrumented with APPRAISER is 0.29 ms vs 1.40 ms
in the CNN instrumented with FI; b) APPRAISER pipelines
the processing through the layers while FI has to break the
pipeline; c) FI needs numerous iterations for each image
to inject the faults (single, double or multiple) at different
locations, one combination at a time, while APPRAISER uses
only one iteration for each image.

Therefore, the time difference becomes even more drastic
when comparing these methods for deeper networks (de-
termining the number of layers in the inference execution
pipeline) or DNNs with a larger memory for storing weights
(determining the number of potential fault locations).

V. CONCLUSION

The state-of-the-art methods for fault injection by emulation
incur a spectrum of time-, design- and control-complexity
problems. To overcome these issues, a novel resiliency as-
sessment method called APPRAISER is proposed that applies
functional approximation for a non-conventional purpose and
employs approximate computing errors for its interest. By
adopting this concept in the resiliency assessment domain,
APPRAISER provides thousands of times speed-up in the as-
sessment process, while keeping high accuracy of the analysis.



In this paper, APPRAISER is validated by comparing it with
state-of-the-art approaches for fault injection by emulation in
FPGA. By this, the feasibility of the idea is demonstrated, and
a new perspective in resiliency evaluation for DNNs is opened.
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