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Abstract

This paper presents a hybrid interconnect network con-
sisting of a local network with dedicated wires and a global
hierarchical network. A distributed memory approach en-
ables the possibility to use generic memory banks as rout-
ing buffers, simplifies the implementation and reduces the
area requirements of routers. A SystemC simulation envi-
ronment (SCENIC) has been developed to simulate and in-
strument models, and to setup different topologies and sce-
narios. Modules are designed as transaction level models
to improve design time and simulation speed.

1. Introduction

Reconfigurable architectures (RA) have proven to effec-
tively exploit parallelism and reuse available resources in
a variety of application domains [4]. These architectures
use flexible interconnects to allow communication between
resources distributed over the chip. Interconnect systems
are usually based on switches, which is reconfigured for
every new task and set up by a global supervisor. In con-
trast, the Network-On-Chip (NoC) concept propose highly
flexible interconnect topologies based on intelligent routing
networks, where any two nodes in the system can initiate
communication without global supervision [7]. However,
network routers are complex and therefore area consum-
ing. To bridge the gap between traditional RAs and NoC,
this paper presents a processing array which combines local
communication on dedicated links with a global hierarchi-
cal routing network. Hierarchical routing reduces the router
complexity since there is only a single path between pro-
cessing nodes, while the dedicated local links provide high
speed communication between neighbor resources.

The complexity of NoC systems require advanced simu-
lation platforms to evaluate performance and discover bot-
tlenecks. Design of a reconfigurable architecture needs to
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be addressed at a system-level, and simulation-based per-
formance exploration is required to evaluate the impact of
design parameters. Simulation-based performance explo-
ration is limited by simulation run-time and the required
design effort to change functionality. In this paper we will
present a simulation environment that extends SystemC [6]
to enable interactive design exploration, and how to use
Transaction Level Modeling (TLM) to simulate reconfig-
urable system.

2. Related work

Topology and routing - Recent work compares many
popular NoC architectures, including 2D mesh, ring, torus,
folded torus, and spidergon networks [1] [7]. Hybrid
topologies are discussed in [2] as a way of aggregating
bandwidth between adjacent processing cells, but introduce
longer latency and require bridges to convert between pro-
tocols. The 2D mesh architecture in Figure 1(a) is a popular
and well researched architecture in academia, with several
variations such as torus shown in Figure 1(b) and the folded
torus. Mesh architectures are both regular and scalable, but
comes with the downside of poor global communication
and often large router logic overhead. Global communica-
tion is routed along the horizontal and vertical wires from
source to destination, consuming local bandwidth along the
way. Each processing cell connects to the two-dimensional
mesh using a network router, which contains buffer queues
to store and forward packets from all directions. Since ev-
ery router can potentially handle communication from any
source to any destination, the router becomes unnecessar-
ily complex. Hence, pure mesh architectures face problems
concerning both bandwidth and high complexity.

Common switching techniques are packet switching, cir-
cuit switching, and wormhole switching, using adaptive or
deterministic routing [7]. Wormhole switching divides large
packets into smaller units called flits. This ensures that ev-
ery flit is routed through the same established path as the
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Figure 1. (a) 2D mesh with resource cells, (b) Torus, (c) Proposed architecture with nearest neighbor
and hierarchical communication. In this example, four basic cells are connected together using
dedicated wires for local communication and five network routers for global communication.

first flit in each packet, which reduces the required buffer
size and avoids packet reordering at the destination. Since
flits can not be interleaved over a physical channel, virtual
channels are commonly introduced to increase the chan-
nel utilization by inserting multiple queues for each phys-
ical link. However, this will increase the total hardware
requirements and pitfalls of wormhole switching has been
presented in [3].

We propose a hybrid network that uses a common pro-
tocol and increases the throughput using dedicated local
connections. Our approach is to keep communication sim-
ple, using the main part of the area resources to implement
memory and processing cells. The path between sender and
receiver is deterministic, which simplifies the router imple-
mentation. We also propose the use of distributed memory
to handle communication between processing cells, avoid-
ing large routing buffers in the network.

Simulation methodology - Traditionally, computer net-
work simulations have been used to simulate NoC com-
munication [5]. However, this approach focuses only on
network communication and omits other system aspects re-
quired for design exploration, such as implementation of
processing elements and accurate hardware modeling. To
cope with the complexity and diversity of the system design
aspects, a suitable description language and simulation en-
vironment is required. SystemC is one of the candidates to
address all of these aspects [6]. Over the past years, Sys-
temC has gained more interest in both academia and indus-
try due to the capability of co-simulating software and hard-
ware and a simple way of refining abstract models down to
clock cycle accurate hardware. Simulation frameworks and
NoC models based on SystemC has been presented in [11]
and [8], but focusing mainly on communication. In contrast,
we are currently developing a simulation and exploration
tool based on the Open SystemC Initiative (OSCI) SystemC
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library to build, configure, and explore NoC architectures.
Modules are currently being developed to construct larger
Network-on-Chip architectures, which will be described in
Section 4.2. We propose using a design methodology based
on SystemC Transaction Level Modeling (TLM). As a re-
sult of raised abstraction level, model descriptions become
more flexible and simulates faster.

3. Our approach

This section presents a hybrid interconnect network and
shows how resource cells are instantiated and connected.
Our proposed topology is an interleaved mesh of resource
cells (RC), divided into processing cells (PC) and memory
cells (MC). Processing cells can consist of simple dataflow
components or more complex architectures such as compu-
tational kernels with a local routing network or processor
like building blocks. Resource cells in general have local
communication links from all four sides, connecting to its
neighboring cells. The memory cell has an additional port
connecting to a local router which forward communication
to other parts of the systems. The structure constituting of
two PC, two MC and a router is referred to as a basic cell,
connected together to form larger structures. Figure 1(c)
shows our proposed architecture consisting of four basic
cells and totally five routers. The following section will de-
scribe the hybrid interconnects, memory organization, and
communication approach.

3.1. Hybrid interconnect network

We propose a topology that splits the interconnect net-
work into local communication and a global network. Local
communication use dedicated links to connect neighboring
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Figure 2. (a) Internal building blocks in the memory cell, consisting of a port switch and four memory
banks. Each memory bank has a unique ID for routing data over the network. (b) Two memory cells
using the external memory interface to transparently emulate a larger buffer.

cells. The global network connects any two cells using hier-
archical routing. The motivation for this topology is the fact
that an optimally mapped DFG often results in a high degree
of local communication. In contrast, the mesh architecture
has a shared network for both local and global communi-
cation, where even neighboring cells communicate over the
global network. It also means that global communication
consume bandwidth from local communication. The pro-
posed topology can be viewed as two independent networks
interacting through network routers, shown in Figure 1(c).

3.2. Distributed memory cells

Most algorithms require storage in form of buffering,
data reorder, or delay feedback loops. The reason to in-
troduce distributed memories in our proposed architecture
is twofold. First, having memories placed close to the pro-
cessing cells reduce both contention for the global network
and costly communication to any external memory. Sec-
ond, keeping data in distributed memories improves data
delivery required to utilize the processing resources, since
distributed processing advocates distributed memories. To
fully utilize the computational power of the processing
cells, the distributed memory cells need to handle multi-
ple simultaneous requests. This is accomplished by plac-
ing multiple memory banks inside each memory cell which
further improves the communication capacity, as shown in
Figure 2(a). Each memory bank is assigned a unique ID
and traffic is always routed from one memory bank to an-
other memory bank. A switch is used to control data flow
between the four ports and the memory is also connected to
the local router in the basic cell.

Another advantage having memories distributed is that
they can function as an alternative to large output queues in
the network routers. Instead of dividing the total memory
resources in two static pools, i.e. local memory and router
memory, local memory will be assigned for either of these

tasks.

In some of the studied architectures, memory is assumed
to be either inside the processing cell, on the boundary of
the array, or as external memory banks. Placing memories
inside the processing cell results in poor memory utilization,
since it can never be shared between cells. Placing mem-
ory on the boundary results in that memory transactions are
going over the global network, which also puts restrictions
on resource mapping. These internal/external memory ap-
proaches will not offer the same advantages as distributed
memory. However, external memory can function as a way
to emulate larger buffer by connecting it between two mem-
ory cells. Data is streamed to external memory from one
memory bank and streamed back from external memory to
another memory bank, as shown in Figure 2(b). More about
external memory will be presented in Section 3.4.

3.3. Communication

In the proposed architecture, memory cells are used to
separate processing from communication. Each port on a
processing cell is connected to a neighboring memory cell,
which handles the communication with other parts of the
system. A memory bank can be configured to forward in-
coming data to any arbitrary memory bank (global commu-
nication), or to simply supply the neighbor processing cell
with the received data (local communication).

Multiple input and output ports are required to imple-
ment many signal processing algorithms. One example is
the butterfly and delay feedback structure found in pipeline
FFTs, which requires streaming from two input ports to
two output ports, as shown in Figure 3(a). Mapping this
structure to a traditional mesh topology results in poor uti-
lization of processing cells, since the cell I/O becomes the
bottleneck of local communication. In the proposed archi-
tecture the throughput of communication and processing is
balanced, resulting in full utilization. Figure 3(b-c) shows
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Figure 3. (a) Butterfly and delay feedback memory, (b) Mapped to a mesh architecture, the commu-
nication bandwidth limits the performance and resulting in a utilization of 50%, (c) Mapped to the
proposed architecture, the communication and processing is balanced resulting in 100% utilization.

the mapping of the butterfly structure.

Several proposed router architectures contain output
buffer queues to temporarily store packets traveling through
the network [2]. When the communication load increases
the buffer queues fills up, resulting in dropped packets or
poor throughput. The reason is that a packet inside the com-
munication network is only half-delivered, still waiting for
the next router to accept outgoing packets. In case the re-
ceiving node is unable to accept a packet, it is trapped inside
the communication network, resulting in increased latency
in other parts of the network. In many cases the receiving
node is assumed to always accept data, a scenario that is
not realistic. In our approach there is only one single valid
path to route network traffic. To change the routing path,
the sender must select a different receiving memory bank
to reach its final destination. This means that routing is a
simple task of forwarding data between memory cell and
network routers. If an incoming address is not known by
the router, the packet is send to the default port which is
upwards in the hierarchical routing network, as shown in
Figure 4(a). Once the path is recognized by a router, the
packets are propagated downwards until reaching its final
destination.

3.4. Connecting to external memory

Local memory can store data during computations, but
the data to be processed is usually located in on-chip scratch
pads or in external memory. To fully benefit from the com-
putational power of the mesh, data has to be streamed in
and out at high speed. External memory interfaces can be
connected to any router in the network and accessed using
a unique ID in the same way as memory banks, which is
shown in Figure 4(b). Every memory bank communicating
with the external memory can setup a transfer to or from the
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Figure 4. (a) Hierarchical connection of
routers to memory cells, (b) On-chip scratch
pads or external memory connected to
routers. The designer specifies where to con-
nect memory controllers for external mem-
ory.

memory. This transfer can be either a linear memory access
or a more complex stream specified using stride, span, and
skip parameters. The external memory controller handles
the memory access mode and provides the memory bank
with data.

External memory also functions as an extended buffer
when required. Local memory is limited and sometimes
larger memory buffers are required between computations.
A transfer between two processing cells is usually routed
from one memory cell to the other, but can transparently be
connected through an external memory controller to act as
a large intermediate buffer, shown in Figure 2(b).

4. SystemC TLM modeling

This section presents an extension to the OSCI Sys-
temC simulator to enable user interactive simulations. It
also presents the architectural modeling approach using the



FileSimulation Help

Restat | [Cellbnay

Wavefom

Figure 5. (a) Graphical user interface con-
necting to scenic using a TCP/IP socket, (b)
SCENIC console window with both command
line and scripting interface.

OSCI Transaction Level Modeling (TLM) library.
4.1. Simulation environment

A SystemC Environment with Interactive Control
(SCENIC) has been constructed to evaluate NoC architec-
tures. SCENIC is based on the OSCI SystemC library and
extends the functionality with features to for example con-
trol the simulator, interact with simulation modules, and to
extract performance information during run-time. The sim-
ulator is controlled through a command line user interface,
script files, or through a socket connection to a graphical
user interface or Matlab. The graphical user interface and
the SCENIC command shell are shown in Figure 5(a-b) re-
spectively.

By extending the functionality of basic SystemC mod-
ules (SC_.MODULE), the user modules can be configured
and accessed from the user interface. An extended Sys-
temC module class (SCI_.MODULE) encapsulates features to
monitor internal variables in user modules, including both
current and historical values. The controllability and ob-
servability enables fast scripting to setup different scenarios
and to evaluate the system performance.

The SCENIC environment also supports dynamic re-
configuration, useful for dynamically loading process-
ing elements with new configurations. It is based on
a reconfigurable module which allows dynamic modules
(SCI_DYNAMIC_MODULE) to be inserted during run-time.
Reconfigurable modules can be configured either from
command line and script, or within the simulation itself.

4.2. Simulation models

Simulation models are described as Transaction Level
Models (TLM). The major advantages with TLM are high
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Figure 6. Communication between a master
and slave module connected with a mas-
ter/slave channel (containing two FIFO in-
stances). Function calls are from the mod-
ule to the channel. The OSCI-TLM library
provides channels implementing functions to
exchange transactions between modules.

simulation speed and simulation models that are easy to
modify compared to Register Transfer Level (RTL) models.
In TLM, pin-accurate models are replaced with an abstract
communication layer, which uses transactions to transfer
data. A transaction is a data structure that contains informa-
tion about the transfer, for example a structure with memory
address, transfer size and payload. The simulation speed in-
creases since processes are activated or resumed only when
transactions are exchanged between modules.

Our modules communicate using channels and interfaces
specified by the OSCI TLM standard [9]. These channels
provide a communication mechanism based on blocking
and non-blocking put and get functions. The get function
moves transactions from the channel to the module, while
the put function moves transactions from the module to
the channel. Channels are implemented as first-in-first-out
(FIFO) queues with a configurable buffer depth. Blocking
functions will block the calling process until the condition
for moving the transaction is satisfied. In the non-blocking
versions, a boolean value is returned to indicate if the call
was successful, but returns immediately even if the condi-
tion is not satisfied. There are also convenience functions
to peek the channel FIFO without consuming any data, and
special events that are triggered when transactions are sent
and received.

Figure 6 shows a point-to-point communication example
between a master and a slave device, using separate FIFO
channels in each direction. The slave module blocks on a
call to the get function until the master puts a request af-
ter 10ns. The master blocks while waiting for a response,
which is provided by the slave after another 10 ns. Note that
function calls are always made from the module to the chan-
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Figure 7. A basic cell containing two process-
ing cells, two memory cells and a router for
global communication. All modules in the
system communicate through master-slave
or FIFO channels. Master-slave channels
contain two FIFO channels to support bidi-
rectional communication.

nel, but the flow of information depends on the function.

Figure 7 shows modules, ports, bindings, and channels
inside a basic cell. TLM FIFO is one-directional and con-
tains only a single FIFO, while TLM Master/Slave con-
tains one FIFO in each direction. Modeling of channels
as distinct modules is a design abstraction used to separate
communication and behaviour. As a model is refined to a
synthesizable description the functionality implemented in
channels are separated into master and slave part and moved
into the respective module [10]. The buffer size in all chan-
nel FIFOs seen in Figure 7 is one transaction. However,
channels connecting to routers store a number of transac-
tions to improve throughput. A transaction contains a desti-
nation address, a payload and a payload type specification.
The type specification is needed as the payload could be
data, memory address, dynamic configuration, or informa-
tion exchanged between network routers.

Each module contains a set of parameters that can be
used for design exploration. These parameters are for ex-
ample, link and router capacity, clock period and latency.
Some parameters directly relate to physical entities such as
clock period to execution time and memory size to hardware
area. The goal of exploration is to understand how the sys-
tem parameters affect performance, area and functionality
of the architecture.

5. Experiments and Results

This section presents simulation results and perfor-
mance analysis of the proposed hybrid interconnect net-
work. SCENIC is used to configure modules to define a sce-
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Figure 8. Accepted traffic as a function of in-
jection rate and localization.

nario and to reconfigure modules during simulation (con-
trollability). Throughput, latency, and other performance
metrics are extracted during simulation to evaluate the sys-
tem (observability).

Processing cells are configured to operate as traffic gen-
erators, which send random packets to neighboring cells and
to the global network. Packets are annotated with times-
tamps to keep track of when packets were produced and in-
jected into the network. The traffic generators also monitor
the incoming traffic, counting the number of received pack-
ets, and calculating the transport latency as the number of
clock cycles from successful injection to final consumption.
The throughput is measured by counting packets consumed
at the final destination. Since communication is both local
and global, a localization factor x is defined as the ratio be-
tween local and global communication, where ;1 = 1 corre-
sponds to pure local communication and ;¢ = 0 corresponds
to fully global communication.

The traffic generators inject packets into the network ac-
cording to the Bernoulli process, which is a commonly used
injection process to characterize a network. For traffic in-
jected into the global network the traffic pattern is modeled
as uniform spatial distribution, which means that every pro-
cessing cell communicates with every other processing cell
with equal probability. Injection rate, r, is the number of
packets per clock cycle and per processing cell injected into
the local or global network. Throughput is the accepted
traffic, T', measured in packets per clock cycle and per pro-
cessing cell. Ideally, accepted traffic should increase lin-
early with the injection rate. However, due to traffic con-
tention in the global network the amount of accepted traffic
will saturate at a certain level.

Figure 8 shows accepted traffic for a network with 2 x 2
basic cells were all routers and links between routers have
a capacity of one packet per clock cycle. Accepted traffic is



measured for 0.1 < r < land0 < p < 1. When p =1
there is no traffic contention and the network achieves the
optimal linear relationship between injection rate and ac-
cepted traffic. When p = 0, the saturation point for ac-
cepted traffic is 7" = 0.17 packets/cycle/PC. Assuming a
realistic localization factor, 1 = 0.8, throughput is 94% of
the optimal performance.

Figure 9 shows the average transport latency which is
measured using the same injection process and traffic pat-
tern as for the throughput measurement. The average trans-
port latency is defined as L = > L;/N where L; is the
transport latency for packet ¢ and N is the total number of
packets consumed at destination after local or global trans-
port over the interconnect network. Transport latency is
measured as the number of clock cycles between successful
injection into the network and consumption at the final des-
tination. As shown in Figure 9, the average transport latency
saturates at . = 100 clock cycles for a localization factor
= 0. The latency is bound by the available buffer capac-
ity inside the network. Since routers use round robin arbi-
tration, a packet is guaranteed to be delivered within ) B;
clock cycles, where B; is the buffer capacity in router i.

In data-driven and streaming applications, latency has
small impact on system performance. However, due to ran-
dom access and feedback loops, the impact of latency can
not be omitted in realistic applications. Hence, for these ap-
plications latency is an important parameter for the overall
performance. With the realistic localization factor p = 0.8,
the average transport latency for the proposed network is
only 4 clock cycles.

The experiments show the advantages when combin-
ing high-performance local communication with a flexible
global network for realistic localization factors. This is use-
ful in reconfigurable computing, were the flexibility can be
utilize during algorithm mapping to achieve a high local-
ization factor. Functional units with high communication
rate are mapped to adjacent processing cells, or to closely
located processing cells on the hierarchical network.

6. Conclusions

We have presented our ongoing work on high-
performance reconfigurable architectures and a SystemC
simulation environment for design exploration. We have
presented concepts on interconnect networks, memory dis-
tribution and communication, and proposed a simulation
methodology based on transaction level models, which
significantly improve design time and increase simulation
speed. Experiments show that the hybrid network achieves
a high throughput for realistic localization factors. In re-
configurable computing, high localization factors can be
achieved by mapping functional units with high communi-
cation rate to adjacent processing cells.
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