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Abstract—The self-regulating and self-stabilizing natures of a 

Pressurized Water Reactor (PWR) make it most suitable for the 

nuclear power industry. However, handling the disturbance and 

stabilizing a PWR with the disturbance are highly challenging 

tasks for control engineers due to inherent nonlinearity in a 

reactor. It leads to change in the behavior with variation in 

reactor power. Further, plenty of uncertainties exist in a PWR 

due to the heat transfer from fuel to coolant and the reactivity 

changes due to component faults and variation in fuel and 

coolant temperatures. Thus, it is essential to design a robust 

controller which can stabilize the system in presence of 

uncertainties and disturbances as well. In this paper, a state 

space model has been considered using the point kinetics 

equations of PWR coupled with the Mann’s thermal-hydraulic 

equations. The system matrices have been evaluated at different 

power levels with uncertainty in parameters to produce an 

interval state space model. A 𝑯∞  based Full State Feedback 

Controller (SFSC) has been designed for this interval plant and 

then used for establishing a stability criterion in presence of 

disturbances. The outcomes have been validated using 

MATLAB simulations and discreetly exemplified in the result 

section.  

Index Terms— H-infinity controller, Interval system, PWR, 

State feedback controller. 

I. INTRODUCTION 

 
In nuclear power plants (NPPs), pressurized water reactors 

(PWRs) are popular due to their self-regulating and self-

stabilizing nature. However, control system design for PWRs 
is challenging due to inherent non-linear and time-varying 
nature of PWRs, which depends on the reactor thermal power 
[1]. Moreover, uncertainties in the measurements of actual 
reactor power and neutron flux add further problems and pose 
a challenge to design robust controllers for NPPs. 
Contemporary researchers have attempted to address the 
problem using various approaches such as, Full State 
Feedback with Integral plus Derivative (PID) controllers 
accompanied by Fractional Order (FO) phase shapers and 
Fractional Order PID (FOPID) controllers [5]. Optimal Full 
State Feedback Controllers (FSFCs) are known to procure 
Controllers (FSFC) [2], robust Fuzzy Logic Controllers 
(FLCs) [3], Periodic Output Feedback Techniques [4] to 
Proportional robust designs [6] although they do not 
necessarily guarantee a desired time response under bounded 
parametric uncertainties. FLC are well-known for their 
uncertainty handling capacities.  Some researchers [3] have 
also proposed the use of FLCs for control of uncertain system, 
but such controllers are difficult to validate from a stability 
point of view. 

Controller design for PWR remains a challenging task, 
especially during power maneuvering. Researchers have 
attempted to address the problem of control design during 
load-following operation of a PWR. Out of the various 
existing techniques, Model Predictive Control (MPC) has 
been studied extensively. Kim et al. [7] used MPC to design a 
controller for controlling the power distribution and level. 
They used a genetic algorithm to optimize the discrete control 
rod speed. In [8], Eliasi et al. developed robust MPC by 



 

imposing constraints on states during optimization. State 
estimators based MPC design has been considered in [9]. 
Apart from MPC, other control design techniques have been 
used during load-following. Dong et al. [10] used feedback 
dissipating controller with nonlinear observer having a 
Hamiltonian structure for a Single Input Single Output (SISO) 
system and extended it to design a controller for a low 
temperature PWR. Torabi et al. [11] proposed a controller 
design for power regulation of a PWR using Quantitative 
Feedback Theory (QFT) approach. In [12], adaptive controller 
design methodology was adopted for the power level control 
of a PWR, where the designed controller guaranteed global 
asymptotic stability. Bose et al. [13,14] designed a load 
following operation for small PWR using nonlinear dynamic 
inversion (NDI) technique showing good tracking 
capabilities. However, the approach cannot guarantee stability 
of the system. 

It is a well-known fact that in industry, fixed order or 
structured controllers are preferred for output feedback 
problems, owing to their simple usage. In real scenario, 90% 
of the structured controllers are traditional PID controllers due 
to disturbance robustness, good performance and easy 
implementation [15]. However, these types of controllers do 
not always guarantee closed-loop system stability and do not 
ensure performance constraints, especially for NPPs. 
Errorless temperature measurement of coolant and estimation 
of fuel temperature are challenging tasks. Therefore, there is a 
possibility to shift closed-loop Eigen values due to the 
improper measurement of fuel and coolant temperature. 

However, it is difficult to design the demanded structure 
to overcome some basic performance requirements. The most 
common performance criteria are minimizing the  𝐻∞ norms 
of the transfer function between performance output and 
disturbance input, and some necessary parameters, such as 
maximum overshoot and settling time, which is related to the 
dynamic response of the system. 

In recent work, Yan et al in [16] proposed an interesting 
robust power controller for a small, pressurized water reactor 
based on 𝐻∞ and mixed sensitivity method. In this method, a 
multi-input and multi-output transfer function is developed. 
After that, five local controllers were designed for five power 
ranges, a multi-model approach with triangular membership 
functions was employed to integrate the five local controllers 
into a multi-model robust control system. Thus, the controller 
can work for the entire power range. However, in this paper, 
researchers did not provide information on how much 
disturbance tolerance could be handled. 

In this paper, the parametric uncertainties due to thermal 
modeling are tackled by considering a spread of the reactor 
parameters within an interval, and the resultant model is then 
used to design a Linear Matrix Inequality (LMI) based 𝐻∞ 
FSFC, for a PWR. The proposed methodology is capable of 
handling uncertainties over an interval period and allows the 
plant to be controlled by a single optimal FSFC.  

The rest of the paper is organized as follows. Section II 
describes the interval state space model of a PWR. Section III 
proposes the 𝐻∞ based FSFC controller design using the LMI 
and establishes a stability criterion for the uncertainties. 
Section IV shows the corresponding simulation result for a 

PWR in presence of disturbances. Section IV concludes the 
paper. 

II. PWR WITH THERMAL HYDRAULIC MODEL  

In this section, an interval state space model is obtained 
for a PWR. A normalized point kinetic model of a PWR has 
been considered with a thermal hydraulic model. The Xenon 
and Iodine dynamics have little effects during total power 
control, so they are not considered here.  

The dynamic model is given by: 

 

 

 

where 𝑃𝑛 is neutronic power, 𝜌𝑡   is total reactivity, 𝛬   is 

neutron generation time, 𝜆𝑖 , 𝛽𝑖 , and 𝐶𝑖𝑛  are decay constant, 

fraction of delayed neutrons, and delayed neutron precursors’ 

concentration of 𝑖𝑡ℎ  group, respectively.  

The core thermal-hydraulics model is given by Mann’s model 

[17] which considers two coolant lumps for every fuel lump, 

 
𝑑𝑇𝑓

𝑑𝑡
= 𝐻𝑓𝑃𝑛 −

1

𝜏𝑓

(𝑇𝑓 − 𝑇𝑐1), (3) 

 

 
𝑑𝑇𝑐1

𝑑𝑡
= 𝐻𝑐𝑃𝑛 +

1

𝜏𝑐

(𝑇𝑓 − 𝑇𝑐1) −
2

𝜏𝑟

(𝑇𝑐1 − 𝑇𝑐𝑖𝑛),   (4) 

 

 
𝑑𝑇𝑐2

𝑑𝑡
= 𝐻𝑐𝑃𝑛 +

1

𝜏𝑐

(𝑇𝑓 − 𝑇𝑐1) −
2

𝜏𝑟

(𝑇𝑐2 − 𝑇𝑐1). (5) 

 

where 𝑇𝑓   is average fuel temperature; 𝑇𝑐1   and 𝑇𝑐2  are 

average coolant temperatures in node 1 and node 2, 

respectively; 𝑇𝑐𝑖𝑛  is inlet temperatures of the first coolant 

node; 𝐻𝑓  and 𝐻𝑐  characterize the rate of rise of fuel and 

coolant temperatures respectively; 𝜏𝑓   and 𝜏𝑐  are time 

constants representing mean time for heat transfer from fuel 

to coolant and from core outlet to inlet, respectively while 𝜏𝑟  

represents coolant residence time in the core. The heat 

transfer coefficient from fuel to coolant is assumed to be 

constant. 

In this paper, only the power control loop without secondary 

side coolant heat transfer has been considered. The change in 

total reactivity is considered due to the control rod movement 

and reactivity feedback due to fuel and coolant temperature 

change. Here, a control rod acts as an actuator and this 

actuator movement can be represented by following 

equation: 

 

  

 

 
𝑑𝑃𝑛

𝑑𝑡
=

𝜌𝑡 − ∑ 𝛽𝑖
6
𝑖=1

𝛬
𝑃𝑛 + ∑

𝛽𝑖

𝛬

6

𝑖=1

𝐶𝑖𝑛, (1) 

 
𝑑𝐶𝑖𝑛

𝑑𝑡
= 𝜆𝑖𝑃𝑛 − 𝜆𝑖𝐶𝑖𝑛,   𝑖 = 1,2… 6. (2) 

 

 
 
 
 
 
 

  

   

 
𝑑𝜌𝑒𝑥

𝑑𝑡
= 𝐺𝑧𝑐 () 



 

where 𝜌𝑒𝑥  is the external reactivity injected to the reactor 

core due to the control rod movement, 𝐺 is the reactivity 

worth of control rod while 𝑧𝑐 is the speed of the control rod 

movement. 

The total reactivity can be obtained by  

𝜌𝑡 = 𝜌𝑒𝑥 + 𝛼𝑓𝑇𝑓 + 𝛼𝑐𝑇𝑐1 + 𝛼𝑐𝑇𝑐2                     (7) 

 

where, 𝛼𝑓 and 𝛼𝑐   represent the temperature coefficients of 

the reactivity due to fuel and coolant, respectively. 

Equations (1) to (7) are used to develop a linearized state-

vector model for the PWR form of:  

𝒙̇(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) = 𝑪𝒙(𝑡)       (8) 

 

where 

𝒙 = [𝜌𝑒𝑥 𝑃 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝑇𝑓 𝑇𝑐1 𝑇𝑐2]𝑇 denotes the 

set of state variables around an equilibrium state, input𝒖 is 

considered as control rod speed and output matrix 𝑪 has been 

considered only with the reactor power of the system. 𝑨, 𝑩 

and 𝑪 can be computed by (9)-(11). 

 

𝑨 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0 0

0 −
𝛽

𝛬
𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6

𝑃0𝛼𝑓

𝛬

𝑃0𝛼𝑐

𝛬

𝑃0𝛼𝑐

𝛬

0
𝛽1

𝛬
−𝜆1 0 0 0 0 0 0 0 0

0
𝛽2

𝛬
0 −𝜆2 0 0 0 0 0 0 0

0
𝛽3

𝛬
0 0 −𝜆3 0 0 0 0 0 0

0
𝛽4

𝛬
0 0 0 −𝜆4 0 0 0 0 0

0
𝛽5

𝛬
0 0 0 0 −𝜆5 0 0 0 0

0
𝛽6

𝛬
0 0 0 0 0 −𝜆6 0 0 0

0 𝐻𝑓 0 0 0 0 0 0 −
1

𝜏𝑓

1

𝜏𝑓
0

0 0 0 0 0 0 0 0
1

𝜏𝑐
− (

1

𝜏𝑐
+

2

𝜏𝑟
) 0

0 0 0 0 0 0 0 0
1

𝜏𝑐
− (

1

𝜏𝑐
−

2

𝜏𝑟
) −

2

𝜏𝑟]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (9) 

 

𝑩 = [𝐺 0 0 0 0 0 0 0 0 0 0]𝑇
             

(10) 

 

𝑪 = [0 1 0 0 0 0 0 0 0 0 0]                (11) 

 

Next, 𝑨 and 𝑩 matrices have been evaluated using parameter 

values at different power level and hence an interval matrix 

can be represented as follows: 
𝑨𝑖 ∈ [𝑨60, 𝑨100]

𝑩𝑖 ∈ [𝑩60, 𝑩100]
}                     (12) 

where, 𝑨60 and 𝑩60 are the infimum, 𝑨100 and 𝑩100 are the 

supremum of the corresponding 𝑨𝑖 and 𝑩𝑖matrices. Further 

an uncertainty has been injected into the thermal hydraulic 

parameter at the corresponding power level and the range of 

the interval has been increased and defined by: 

𝑨𝑖 ∈ [𝑨̱, 𝑨̄]

𝑩𝑖 ∈ [𝑩̱, 𝑩̄]
}  (13) 

where, 𝑨̱and 𝑩̱are the infimum, 𝑨̄and 𝑩̄are the supremum of 

the corresponding 𝑨𝑖 and 𝑩𝑖matrices at power level 60 and 

100 respectively and this notation has been used rest of this 

paper. These interval system matrices also used for the design 

of the H-infinity controller as well as to establish and analysis 

the stability criteria for the uncertain interval system.  

III. 𝐻∞ CONTROLLER DESIGN USING LMI 

For designing an LMI based 𝐻∞ controller for the system 

(13) a generalised schematic model has been considered, 

shown in Fig. 1. 

 
Fig. 1. Schematic diagram of generalised system. 

 

To obtain the controller gain, the uncertain system can be 

represented by following state space equations [18]: 
𝒙̇ = 𝑨𝒙 + 𝑩1 𝑢 + 𝑩2𝑤
𝑦 = 𝑪1𝒙 + 𝑫11𝑢 + 𝑫12𝑤
𝑧 = 𝑪2𝒙 + 𝑫21𝑢 + 𝑫22𝑤

}           (14) 

 

where, 𝑤  is the external disturbance signal, 𝑢  is the input 

signal, 𝑦 is the output signal and 𝑧 is the measured output 

signal. 

For this PWR system, as stated in an earlier section, only the 

power loop of the PWR has been considered for the 

simulation and the secondary side heat transfer has not been 

considered. When only the power control loop is considered, 

there are two inputs, first the control rod speed, z and the 

second is the inlet temperature of the primary coolant, 𝑇𝐶𝑖𝑛. 

For simplicity, in power loop the 𝑇𝐶𝑖𝑛 may be taken as a 

constant and hence the only controllable input is control rod 

speed, 𝑧𝑐  .B1 is similar to (10). However, in a real-world 

scenario 𝑇𝐶𝑖𝑛  is not constant and mostly depends on the 

secondary coolant side. So, in this case 𝑇𝐶𝑖𝑛  has been 

considered as an input B2, i.e., an input to the system, which 

is not controllable for the power loop and is described as 

follows: 

𝑩2 = [0 0 0 0 0 0 0 0 0 𝑇𝑐𝑖𝑛 0]            (15) 

 

Similarly, C1 is the same with the output matrix i.e. (11) and 

C2 is the full state identity matrix can be defined as  

𝑪2 = [𝑰11𝑥11]       (16) 

 

And all the disturbance inputs (D11 D12 D21 D22) are initially 

kept as zero. 

Further, the plant can be expressed as:  

𝑝(𝑠) = [

𝑨 𝑩1 𝑩2

𝑪1 𝑫11 𝑫12

𝑪2 𝑫21 𝑫22

] = [
𝑨 𝑩
𝑪 𝑫

]          (17) 

The relationship of the input and output can be represented 

as: 

[
𝑦
𝑧
] = [

𝑝11 𝑝12

𝑝21 𝑝22
] [

𝑢
𝑤

]                (18) 

 



 

And 𝑢 = 𝑲𝑓𝑐𝑦                            (19) 

By eliminating the measurement signal 𝑧  from (14) the 

closed loop transfer function from 𝑢 to 𝑦 can be represented 

as: 

𝑇𝑓𝑢𝑦 = 𝑓(𝑝,𝑲𝑓𝑐) = (𝑝11 + 𝑝12𝑲𝑓𝑐(𝐼 − 𝑲𝑓𝑐𝑝22)
−1

𝑝21) (20) 

 

A standard 𝐻∞ control law can be established from the (20) 

which will ensure the closed loop system to be stable over a 

region and minimize the performance demand the norm of 

the transfer function matrix, can be represented as: 

𝐽 = 𝑚𝑖𝑛‖𝑇𝑓𝑢𝑦‖∞

⇒ 𝑚𝑖𝑛 ‖(𝑝11 + 𝑝12𝑲𝑓𝑐(𝐼 − 𝑲𝑓𝑐𝑝22)
−1

𝑝21)‖
∞

= 𝛾0

}(21) 

where, 𝛾0 is the minimum which is quite difficult to achieve. 

Thus, a suboptimal 𝐻∞control has been chosen which gives 

a finite solution for the plant. In this case, the 𝐻∞norm of the 

plant considered to be greater than 𝛾0and can be represented 

as: 

𝐽 = ‖𝑇𝑓𝑢𝑦‖∞

⇒ ‖(𝑝11 + 𝑝12𝑲𝑓𝑐(𝐼 − 𝑲𝑓𝑐𝑝22)
−1

𝑝21)‖
∞

< 𝛾
} (22) 

where,𝛾 ≥ 𝛾0 , and this is also considered as the standard 

𝐻∞control problem. 

A. Controller Synthesis: 

Recently, many researchers have established 𝐻∞ control 

problem from the Riccati equation which can be easily solved 

by the LMI approach [18]. The main advantage of the LMI 

approach is that it can use the matrix operation to produce a 

direct controller gain for the system. If there is a positive 

definite matrix 𝑷 = 𝑷𝑇 > 0  and a matrix 𝑾  exists, a 

standard LMI equation for Riccati equation can be written as: 

 

[

𝑨𝑷 + 𝑩2𝑾 + (𝑨𝑷 + 𝑩2𝑾)𝑇 𝑩1 (𝑪1𝑷 + 𝑫12𝑾)𝑇

𝑩1
𝑇 −𝑰 𝑫11

𝑇

𝑪1𝑷 + 𝑫12𝑾 𝑫11 −𝑰

] < 0     (23) 

 

From (23), the state feedback gain for system (14) can be 

expressed as: 

𝑲𝑓𝑐
= 𝑾(𝑷)−1    (24) 

Next, the suboptimal control performance for 𝐻∞ robust 

controller can be expressed as: 

‖𝑇𝑓𝑢𝑦‖
∞

< 𝛾

⇒ ‖𝛾−1𝑇𝑓𝑢𝑦‖∞
< 1

} (25) 

 

The output matrix and output disturbance matrices can be 

represented as 𝑪1𝛾
−1  , 𝑫11𝛾

−1 and 𝑫12𝛾
−1 , respectively, 

which are used in (23) to create a new LMI as: 

[

𝑨𝑷 + 𝑩2𝑾 + (𝑨𝑷 + 𝑩2𝑾)𝑇 𝑩1 𝛾−1(𝑪1𝑷 + 𝑫12𝑾)𝑇

𝑩1
𝑇 −𝑰 𝑫11

𝑇

𝛾−1(𝑪1𝑷 + 𝑫12𝑾) 𝛾−1𝑫11 −𝑰

] < 0 (26) 

 

Now, if 𝑨 and 𝑩1 are the interval matrices and if a single 𝑷 

exists over the interval then only the 𝑲𝑓𝑐  can handle the 

interval plant for the specified disturbance. 

B. Criteria for stability: 

If 𝑨 is an interval matrix and 𝑨 ∈ [𝑨, 𝑨] then the Lyapunov 

stability function can be written as: 

 

𝑨𝑇𝑷 + 𝑷𝑨 < 0               (27) 

 

Considering𝑷𝑨 = 𝝍, i.e. point matrix is multiplied by an 

interval matrix and generated a new interval matrix, 𝝍 ∈

[𝝍̱, 𝝍̄], [19] (interval matrix with point matrix multiplication) 

 
𝝍̱ = 𝑷𝑨𝑐 − |𝑷|. 𝑨𝑟

𝝍̄ = 𝑷𝑨𝑐 + |𝑷|. 𝑨𝑟

}       (28) 

 

Where, 𝑨𝑐and 𝑨𝑟 are the nominal matrix and the uncertainty 

matrix  of 𝑨 which can be defined as: 

 

𝑨𝑐 =
1

2
(𝑨 + 𝑨)

𝑨𝑟 = 𝑨𝑐 − 𝑨
}             (29) 

 

𝑨𝑇

 
is now the interval matrix and 𝑷  is the point matrix, 

(interval matrix with point matrix multiplication) [19]. 

Let, 
T | , =   A ψ χ χ χ χ  

 
𝝌̱ = 𝝌𝑐 − 𝝌𝑟

𝝌̄ = 𝝌𝑐 + 𝝌𝑟
}                  (30) 

 

𝝌𝑐 = 𝑨𝑐
𝑇𝑷

𝝌𝑟 = 𝑨𝑟
𝑇|𝑷|

}                    (31) 

 

Now, let 𝜴 = 𝝌 + 𝝍,  

where, 

𝜴𝑐 = 𝑨𝑐
𝑇𝑷 + 𝑷𝑨𝑐

𝜴𝑟 = 𝑨𝑟
𝑇|𝑷| + |𝑷|. 𝑨𝑟

}    (32) 

 

Since, 𝑨𝑇𝑷 + 𝑷𝑨 is always a symmetric matrix and (𝑨𝑇𝑷 +
𝑷𝑨) = 𝜴 ∈ [𝜴𝑐 − 𝜴𝑟 , 𝜴𝑐 + 𝜴𝑟] 
 

The condition is 𝑨𝑇𝑷 + 𝑷𝑨 < 0, so the  𝜴 < 0 

𝜆𝑚𝑎𝑥(𝜴) ∈ [𝜆𝑚𝑎𝑥(𝜴𝑐) − 𝜌(𝜴𝑟), 𝜆𝑚𝑎𝑥(𝜴𝑐) + 𝜌(𝜴𝑟)]  
(33) 

𝜆𝑚𝑎𝑥(𝜴𝑐) + 𝜌(𝜴𝑟) < 0 

or,  

 

𝜆𝑚𝑎𝑥(𝜴𝑐) < −𝜌(𝜴𝑟)      (34) 

 

which implies 

𝜆𝑚𝑎𝑥(𝑨𝑐
𝑇𝑷 + 𝑷𝑨𝑐) < −𝜌(𝑨𝑟

𝑇|𝑷| + |𝑷|. 𝑨𝑟)  (35) 

where, 𝜆𝑚𝑎𝑥 denotes the maximum Eigen value of the 

corresponding matrix and 𝜌 is defined as the spectral radius 

of the corresponding matrix.  



 

IV. SIMULATION AND RESULTS 

In this section, the proposed 𝐻∞ based FSFC has been 

simulated for a PWR for different scenarios. It can be noted 

that in this case the SFC is designed as a FSFC type 𝐻∞ 

controller. Practically, the measurement of all the system 

states of a PWR is not feasible due to limitations on sensors.  

Here, a Kalman filter is used to estimate all the states and it 

is demonstrated by a schematic diagram shown in Fig.2.  

 
Fig. 2. Schematic diagram of controller with plant. 

 

First, an interval system matrix for a PWR representing the 

60% Full Power (FP)-100% FP has been formulated as (12) 

with the help of the point kinetics and thermal hydraulic data 

[17]. Then, a 10% bounded parametric uncertainty has been 

considered on thermal hydraulic data to generate wide 

interval system matrix plant as (13).  Next, a LMI of (26) as 

an interval plant has been solved by the YALMIP [20] and 

INTLAB [21] toolbox of MATLAB. Further, using INTLAB 

toolbox the stability criteria has been checked for the 

specified disturbance. If the stability is not guaranteed for the 

specified disturbance, then a reduction of the variance of 

disturbances might need to be considered.  

It has been established by many researchers that the SFCs are 

not the tracking controller; SFCs are more acting as stabilizer 

rather than the tracking controller [21-22]. For this reason, it 

has been considered that the PWR is running on a 100%FP 

and then at 20 second, an instantaneous change in the speed 

of control rod movement is considered which leads to a step 

disturbance in the reactivity. The control rod speed variation 

is shown in Fig. 3. 

This disturbance directly affects the reactivity. Fig. 4 infers 

the change of the actuator output with and without controller 

in presence of disturbance.  From Fig. 4, it is clear that 

without controller, a step disturbance in reactivity is shown 

while with the controller this step disturbance is rejected 

successfully. 

Fig. 5 compares the actual power output with and without 

controller. As stated earlier that the PWR is an inherent stable 

system, with presence of disturbance it is still a stable system 

with a high offset error. The controller is performing well for 

rejecting the disturbances and for minimizing the offset error 

as well. 

 

 
Fig. 3. Applied disturbance in actuator. 

 

 
Fig. 4. Actuator output with and without controller. 

 
As discussed earlier that FSFC are generally used as a 

stabilizing controller rather than a tracking controller; for 

tracking purpose a scaling factor 𝑵𝑠 has been calculated to 

eliminate the steady state error described as in [23]. 

 

 
Fig. 5. Power output in presence of disturbance with and without 

controller. 

 
 



 

 
Fig. 6. Variation of normalized demand power and actual reactor power. 

 
Initially it is assumed that the reactor is running at 100%FP. 
After 20 seconds, the demand power is reduced at a rate of 
5% FP/min followed by a steady state power of 80%FP for 
140 seconds. Then, again the demand power is increased by 
20%FP at same rate. To check the robustness of the 
proposed controller 40dB measurement noise in power is 
injected to the system. Fig. 6 depicts that the proposed 
controller can track the demand power in presence of 
measurement noise as well. 

 

V. CONCLUSION  

In this paper, a stability criterion is proposed to study the 

uncertainty handling capability of a FSFC approach. To 

establish an effectiveness of a robust FSFC, nonlinear PWR 

plant model has been used for simulation. The time domain 

performance of the proposed robust controller is found to be 

satisfactory for the disturbance. However, this robust 

controller is a suboptimal controller and could not guarantee 

the position of the closed loop poles.  
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