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Abstract—How can sensory-motor skills developed as a fetus
transfer to postnatal life? We investigate a simulated reaching
task by training controllers under prenatal conditions (i.e.
confined space) and evaluating them based on postnatal con-
ditions (i.e. targets outside of the confined training space). One
possible solution is to identify a sensory representation that is
easy to extrapolate over. We compared two kinds of sensory
representations: world-centered sensory representation based on
Cartesian coordinates and agent-centered sensory representation
based on polar coordinates. Despite similar performance under
prenatal conditions, controllers using agent-centered sensoryrep-
resentation had significantly better performance than controllers
using world-centered sensory representation under postnatal
conditions. It turns out that the success of the agent-centered
sensory representation is (in part) due to being complementary
to the action encodings. Further analysis shows that the action
encodings (i.e. changes in joint angles) were highly predictive of
the change in state when agent-centered sensory representation
was used (but not world-centered). This suggests that a powerful
strategy for transferring sensory-motor skills to postnatal life
involves selecting a sensory representation that complements the
action encodings used by an agent.

I. I NTRODUCTION

In addition to learning throughout life, an interesting (and
yet often overlooked) possibility is that biological organisms
may have evolved to begin development of sensory-motor
skills before birth. Prenatal skill development may provide
a head start when compared with learning systems that do
not develop skillsin utero. In fact, Robinson and Kleven
[1] demonstrate that modifications to prenatal conditions have
lasting effects.

Although there is tactile stimulus, sound, and even light
available to a developing fetus [2], there are significant phys-
iological and environmental differences between lifein utero
and life after birth. For example, movement of the arms and
legs is restricted (see figure 1). Kuniyoshi [3] found evidence
that self-organizing neural models are able to learn sensory and
motor structure of the body during the prenatal period despite
physical restrictions, and furthermore such restrictionsmay
actually be beneficial. This raises an interesting question: How
can sensory-motor skills developed under prenatal conditions
scale to novel situations that will be experienced in postnatal
life?

To investigate how a sensory-motor skill can scale to
postnatal conditions, we consider learning to reach targets

with a two-link arm in confined space (i.e. prenatal condition)
and evaluate learned controllers at reaching for novel targets
(outside of the trained range) when the arm is not confined
(i.e. postnatal condition) (see figure 2). This is similar tothe
problem faced by a fetus learning to reach with its arm. While
in the uteris, the body is restricted so that some movements
cannot be practiced (such as fully extending the arm). Our
objective is to find clues that point to how a fetus might learn
basic reaching behavior during gestation that scales to novel
situations that will be encountered later in life.

This problem seems naturally phrased as an extrapolation
problem, because the postnatal condition completely encom-
passes all prenatal situations. Unfortunately, without prior
knowledge, for the general case of nonlinear surfaces, extrap-
olation is an unsolvable problem.

In artificial intelligence research, selection of an appropriate
representation has long been considered a critical part of
constructing successful intelligent solutions. One possible so-
lution to the extrapolation problem may be to select a sensory
representation that is easy to extrapolate over. Unfortunately, in
sensory-motor tasks, the properties of a sensory representation
that make it easy to extrapolate over are not well understood,
because scalability is affected by the size of the training
set, properties of the action encoding, and function approx-
imation techniques. We compare a world-centered sensory
representation (WC) based on Cartesian coordinates with an
agent-centered sensory representation (AC) based on polar
coordinates (see figure 3). The world-centered sensory rep-
resentations relate the target to hand by explicitly specifying
target and hand coordinates with respect to an arbitrary origin
in the world. The agent-centered sensory representations,on
the other hand, relate the target to hand by explicitly providing
polar coordinates (i.e. angle and distance) for target and hand
with respect to the agent’s shoulder.

We applied a reinforcement learning algorithm, Q-learning
[4] with nonlinear function approximation, to learn controllers
for both world-centered and agent-centered representations.

Our experimental results show that, despite similar low error
levels during training, learning systems using world-centered
sensory representations had higher error under postnatal con-
ditions than systems engaging with agent-centered sensory
representations. Interestingly, further analysis shows that the
action encodings used (i.e. changes in shoulder and elbow



Fig. 1. Depiction of a human fetus under prenatal conditions.Under prenatal
conditions movement of the arm is restricted by its own body andthe
uterine wall, while under postnatal conditions the arm has greater freedom
of movement.

angles) are highly predictive of the sensory change when cou-
pled with agent-centered sensory representations, but notwith
world-centered sensory representations. This suggests that
the advantage of agent-centered sensory representations over
world-centered is not so much a property of the representation
as it is an emergent property achieved when complementary
sensory representation and action encodings are used together.

The main contribution of this work is that it demonstrates
the importance of complementary sensory representation and
action encoding in the development of sensory-motor skills
during gestation that scale well to postnatal life without
additional training.

This paper is organized as follows. Section 2 provides
background and related work about target reaching tasks.
Section 3 describes reinforcement learning and the methods
used for experimentation. Section 4 introduces experimental
results. Section 5 analyzes results using a second experiment.
Section 6 discusses the implications of the results and ad-
dresses several criticisms of this study. Section 7 provides
concluding remarks.

II. BACKGROUND

Controlling a physical arm is a difficult task. In addition to
learning the joint angles that position the hand at the desired
target point, correct muscle activation is required to maintain
the arm at the desired location and account for gravitational
force. However, empirical evidence from studies with human
subjects suggests that the brain solves this problem by dividing
it into an inverse kinematics problem (i.e. positioning the
arm) and a dynamics problem (e.g. dealing with gravitational
forces) [5], [6]. For the purposes of this paper, we will focus
only on the inverse kinematics problem.

From the context of a developing fetus, the inverse kine-
matics problem is achieving joint angles for the shoulder
and elbow (i.e. a pose) that place the hand at (or as close
as possible to) a target point specified in a more flexible
coordinate system capable of describing positions that may
not be reachable by the hand.

The solution to the inverse kinematics problem depends on
properties of the arm, such as length of the links, limits on
the joint angles, etc. Differences in arm properties and natural
body growth rule out the possibility of a genetically inherited,
static solution for biological learning systems. Biological
learning systems use an adaptive mechanism for arm control
that adjusts to changes ([7]).

Previous work on learning inverse kinematic control has
developed many solutions for reaching multiple targets (e.g.
[5], [8], [9], [7], [10], [11]). Several researchers have solved
the problem using value-based reinforcement learning methods
[10], [11]. There are many different approaches, however, we
identify some common themes in the literature. Three common
themes are that solutions

1) have almost identical training and testing conditions,
2) use joint angles as input describing the pose of the arm,

and
3) use nonlinear function approximators with large num-

bers of parameters.
Our investigation differs from previous solutions to learning
inverse kinematics because (1) our emphasis is on how well
a solution scales from prenatal to postnatal conditions (i.e.
different training and testing conditions), (2) we consider rep-
resentations for learning that do not explicitly use joint angles
to represent the arm’s pose, and (3) we use a constrained
nonlinear function approximator with few parameters.

Because our experiments consider two link arms, we found,
through experimentation, that explicit representation ofjoint
angles were unnecessary to achieve reasonable performance
so all compared representations omit explicit joint angle in-
formation.

Although there are other studies that use polar coordinatesto
represent the position of the target (e.g. [12]) we are unaware
of any other work that also uses polar coordinates to represent
the position of the hand.

Finally, many works have considered generalization to novel
target points while controlling an arm (e.g. [7], [10], [13]).
However, we believe this is the first work to directly consider
extrapolation to target points outside of the original training
set (i.e. where interpolation is not possible).

III. M ETHODS

We describe the reaching task within a reinforcement
learning framework. The learning algorithm applied is Q-
learning [4] with a neural network function approximator that
estimates the long term cost of taking a particular action
given the current state. The agent receives information about
the environment and then selects an action. Whenever the
agent acts it receives updated information about the state of
the environment and the critic assigns a cost to the agent’s
previous action.

The function approximator used was linear in its pa-
rameters but accounted for interactions between the input
variables. For example, a two variable input vector~x =
[x1, x2]

T would first be transformed to the vector~x′ =
[

x1, x2, (x1)
2, x1x2, (x2)

2
]T

, then ~x′ is used as input to a
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Fig. 2. Valid prenatal condition targets (red) and postnatal condition targets
(blue).

standard linear perceptron. This style of approximator has
few tunable parameters and was found to have low training
complexity (i.e. the number of training samples required to
learn a task) when compared with multi-layer perceptrons and
radial basis function networks.

The simulated arm is constructed from two links of equal
length (figure 2). The total length of the simulated arm (i.e.
sum of the two links) was chosen to be 10cm because that is
about the average length of a newborn infant arm (10.5cm for
females and 10.7cm for males [14]). The first link connects to
the origin of the environment by a hinge joint representing the
shoulder, while the second link connects to the end of the first
link by a hinge joint representing the elbow (see figure 2). In
the underlying simulation an arm pose is represented by two
joint anglesθ = (θS , θE)T whereθS andθE correspond to the
angle of the shoulder and elbow, respectively. The Cartesian
coordinate for the hand was computed by

(

xH

yH

)

=

(

l1 cos(θS) + l2 cos(θS + θE)
l1 sin(θS) + l2 sin(θS + θE)

)

(1)

wherel1(= 5cm) andl2(= 5cm) are the length from the shoul-
der to the elbow and the elbow to the hand, respectively. The
scalar valuesxH andyH are the first and second components
of a Cartesian coordinate.

Actions, representing the change in joint angles, are repre-
sented by a vectoṙθ = (θ̇S , ˙θE)T ∈ {−2.86◦, 0◦, 2.86◦} ×
{−2.86◦, 0◦, 2.86◦} (a total of nine actions). When an action
is applied to the arm, for each jointi ∈ {S,E}

θi =







λi λi > θi + θ̇i

θi + θ̇i λi ≤ θi + θ̇i ≤ Λi

Λi θi + θ̇i > Λi

(2)

where λi and Λi are the lower and upper joint limits (re-
spectively) andθ̇i is the desired change in joint angle. The
arm’s joint angles are adjusted by the angles specified in the
action vector unless the sum of the action vector and previous
joint angles is outside of the arm’s joint limits. If any of the

resulting angles fall outside of the arm’s limits, the angles are
clipped to the closest valid angle.

Under postnatal conditions, joint angle limits were set to
reflect the limits of an adult human arm. Shoulder limits were
set from−140◦ to 90◦ and elbow limits were set from0◦

to 145◦ [15]. This provides the arm with a large amount of
freedom (see the blue region in figure 2).

Prenatal conditions were simulated by restricting the joint
angle limits of the simulated arm. Shoulder limits were set
from −50◦ to 25◦ and elbow limits were set from90◦ to
145◦. This restricted the region of valid targets. See figure 2
to see the region of valid targets for both the prenatal and
postnatal conditions.

The previous few paragraphs describe the model underlying
the simulation. Sensory representations, on the other hand,
can take many different forms. In this study, a world-centered
sensory representation (WC), relative world-centered sensory
representation (RWC), agent-centered sensory representation
(AC) and relative agent-centered sensory representation (RAC)
were compared (see figure 3).

WC describes the state of the environment by a 4-
dimensional vector(xT , yT , xH , yH) composed of two Carte-
sian coordinates: target point(xT , yT ) and hand position
(xH , yH). Notice that the origin of the coordinate system
can be arbitrarily assigned to any point in the world. The
reinforcement signal (i.e. immediate cost) used during training
was

R(st, a, st+1) = (x
st+1

T
− x

st+1

H
)2 + (y

st+1

T
− y

st+1

H
)2 (3)

wherest+1 = (x
st+1

T
, y

st+1

T
, x

st+1

H
, y

st+1

H
) was the state transi-

tioned to from statest after selecting actiona.
RWC is similar to WC except that the state description is a

2-dimensional vector(x(T−H), y(T−H)) = (xT−xH , yT−yH)
describing only the difference between the target and hand
represented as Cartesian coordinates.

AC (like WC) describes the state of the environment by
a 4-dimensional vector(ϕT , dT , ϕH , dH). However, unlike
WC, it is composed of two polar coordinates: target position
with angleϕT and distancedT and hand position with angle
ϕH and distancedH . Notice that unlike WC or RWC, the
origin must be placed at the shoulder. In other words, the
world is represented from an agent-centered perspective. The
reinforcement signal (i.e. immediate cost) used during training
was

R(st, a, st+1) = (ϕ
st+1

T
− ϕ

st+1

H
)2 + (d

st+1

T
− d

st+1

H
)2 (4)

wherest+1 = (ϕ
st+1

T
, d

st+1

T
, ϕ

st+1

H
, d

st+1

H
) was the state tran-

sitioned from statest after selecting actiona.
RAC is similar to AC except that the state description is a 2-

dimensional vector(ϕ(T−H), d(T−H)) = (ϕT −ϕH , dT −dH)
describing only the difference between the target and hand
represented in polar coordinates.

Learned controllers were evaluated based on the distance of
the arm’s hand from the target after the last step of an episode
averaged over 100 episodes. A low value (e.g. 1cm) indicates
that the controller is able to solve the inverse kinematics
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Fig. 3. Two possible sensory representations for the targetreaching task. For
the world-centered sensory representation (WC) (a) the relationship between
the hand and target is expressed by the difference between two Cartesian
points: one for the hand and one for the target. The agent-centered sensory
representation (AC) (b) relates the hand and target by the difference between
two polar coordinates: one for the hand and one for the target.

problem, while high values indicate that the controller is
unable to either reach the target or maintain the hand at the
target once it has been reached. Due to the granularity of
the actions andǫ-probability of selecting a random action all
controllers have at least small error.

Each controller was trained for 5,000 episodes and each
episode gave the learning system 100 chances to act with a
small probability (ǫ = 0.1) of selecting an action at random.
The learning rate used for training the function approximator
was set toα = 0.1, and the discount factor, a scalar value in
the interval[0, 1), required by the Q-learning algorithm, which
signifies the amount of emphasis placed on future costs, was
set toγ = 0.9.

IV. EXPERIMENTAL RESULTS

The experimental results presented are for 30 controllers
under world-centered sensory representation (WC), relative
world-centered sensory representation (RWC), agent-centered
sensory representation (AC), and relative agent-centeredsen-
sory representation (RAC) (120 controllers total)trained under
the prenatal condition only.

The error achieved by controllers engaging with the four
different representations (i.e. WC, RWC, AC, RAC) appears
comparable in the prenatal condition after training (see fig-
ure 4a). All controllers, regardless of sensory representation,
achieve lower than 1cm average final distance error. This
implies that all treatments are able to learn the task. However,

TABLE I
SUMMARY OF RESULTS FROM TWO-SAMPLE T-TESTS ON ERROR

(SMALLER IS BETTER)

Prenatal Condition Postnatal Condition
Alt. Hypothesis P-Val Alt. Hypothesis P-Val

WC > AC 0.0034832 WC > AC 1.1073e-39≈ 0

RWC < AC 2.2275e-08≈ 0 RWC > AC 6.2491e-34≈ 0

RAC < AC 2.7034e-20≈ 0 RAC < AC 4.6438e-33≈ 0

table I shows that there are statistically significant differences
between the treatments under the prenatal condition. For
example, treatment AC performs better than treatment WC
(i.e. lower error) but not better than RWC, and RAC has the
lowest prenatal error.

However, under the postnatal condition, controllers using
WC or RWC had significantly higher error than either AC
or RAC (see figure 4b). Table I confirms that the results
are statistically significant. Again, under postnatal conditions
treatment RAC had the lowest error.

The fact that treatment AC has higher error than RWC in the
prenatal condition but lower error in the postnatal condition
rules out the possibility that there exists an error threshold in
the prenatal condition that guarantees low error in the postnatal
condition. Thus AC does not have lower error than WC in the
postnatal condition just because it had lower error than WC
in the prenatal condition.

Figure 5 shows two episodes for controllers trained using
all four representations. Hand trajectories, for all treatments,
are similar when reaching for prenatal valid targets. However,
agents using world-centered representations are unable to
reach some postnatal valid targets and their trajectories are
more complex than the trajectories generated by agents using
agent-centered representations.

V. A NALYSIS

To determine why controllers using agent-centered repre-
sentations achieve lower error than the world-centered rep-
resentations we performed a second experiment. The change
in joint angles θ̇, change in RAC state variables,ϕ(T−H),
d(T−H), and change in RWC state variables,x(T−H), y(T−H)

were recorded for 100 steps while actionsθ̇ were selected
according to a uniform random distribution from the action
set described above.

The sample linear correlation between two random variables
can be used to determine how well one variable can be
predicted by the other. We looked at the absolute value of the
linear correlation between the change in shoulder and elbow
joint angles and the change in sensory description variables
used by relative world-centered and relative agent-centered
sensory representations (see figure 6).

The results show that for agent-centered representations,
change in shoulder angle is highly predictive of change in the
difference between the target and hand polar coordinate angles.
Change in elbow is highly predictive of change in the differ-
ence between the target and hand polar coordinate distancesin
agent-centered representations. Changes in shoulder angle and
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Fig. 4. Error (final distance between hand and target in centimeters) of controllers using world-centered sensory representation (WC), relative world-centered
sensory representation (RWC), agent-centered sensory representation (AC), and relative agent-centered sensory representation (RAC) under prenatal (a) and
postnatal (b) conditions. The agent-centered representations show better performance than the world-centered representations under postnatal performance,
while prenatal performance is similar for all representations.
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Fig. 6. Absolute value of the correlation between the changein shoulder
angle ( ˙θS ) and change in elbow angle (˙θE ) with change in sensory variables
that measure difference between hand and target. (a) Notice that ˙θS is highly
predictive of∆ϕ(T−H), and ˙θE is highly predictive of∆d(T−H), variables
used in agent-centered sensory representation, (b) while variables used in
world-centered sensory representation (last two) are more difficult to predict.

elbow angle, however, are not highly predictive of the changes
in sensory variables used by world-centered representations.

VI. D ISCUSSION

Figure 6 suggests that the action encodings simplify predict-
ing the change in state caused by an action when the agent is
using agent-centered representations, but the action encodings
are not helpful for predicting change in state when the agent
is using world-centered representations. This shows that both
sensory representation and action encoding are important
choices for learning systems that need to learn sensory-motor
skills that scale to novel situations.

Learning sensory-motor skills under one set of conditions
and applying them to another is an attractive idea (in addition
to providing a head start on learning sensory-motor skills)as
it can potentially be leveraged to reduce risk in dangerous sit-
uations. An agent can learn to behave in dangerous situations
without practicing in a dangerous environment.

A. Potential Objections

One possible objection to this work is that infants learn
to reach after they are born. However, fetuses in the womb
have been observed making reaching-like movements such
as moving fingers to the lips [2]. Once a baby is born, the
neonate must contend with greater force of gravity for which
its muscles are too weak and it must learn a dynamics model
of the arm. Learning to reach while in the womb may alleviate
some of the difficulty of learning an accurate dynamics model.

Another potential issue is that it is unknown how con-
strained the movements of a developing fetus are. The values
chosen for the experiment were selected to place a great
deal of restriction on prenatal movement. If there is less
restriction during development the extrapolation problemis
easier because the training set (i.e. prenatal condition) is more
representative of the postnatal condition. Thus the results of
this study should still be valid.

B. Future Work

Figure 4b shows that RAC scales significantly better than
AC (see table I). Gradient-descent does not find the global
optimum. Dimension reduction might be useful for successful
transfer of prenatal sensory-motor skills to postnatal life. Fu-
ture work will investigate what kinds of dimension reduction
techniques improve performance under postnatal conditions
after training only under prenatal conditions. Preliminary
results (unpublished data) show that Principal Component
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Fig. 5. Examples of reaching for a target (red disc) under identical initial conditions with controllers trained using (a) WC, (b) RWC, (c) AC, and (d) RAC.
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Paths generated by WC and RWC are complex, while agent-centeredcontrollers produce smooth paths. RAC is able to reach accurately even when the other
controllers fail.

Analysis (PCA) and other common unsupervised dimension
reduction techniques are ineffective at transforming AC into
RAC because they preserve irrelevant structure (with respect to
the task). We will investigate supervised dimension reduction
techniques such as Partial Least Squares (suggested by [9]).

VII. C ONCLUSION

The main contribution of this work is demonstrating how
sensory-motor skills learned before birth can transfer to post-
natal life, despite the fact that the prenatal training conditions
are quite different from the postnatal testing conditions.The
difficulty of extrapolation can be avoided by selecting a
representation that is complementary to the action encodings
simplifying prediction of the sensory consequences of actions.

The results presented in this paper suggest that sensory
representation that complements the agent’s action encodings
may play a key role in transferring sensory-motor skills
learned during gestation to postnatal life.
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