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Abstract—How can sensory-motor skills developed as a fetus with a two-link arm in confined space (i.e. prenatal conditio
transfer to postnatal life? We investigate a simulated reaching and evaluate learned controllers at reaching for novektarg
task by training controllers under prenatal conditions (i.e. (outside of the trained range) when the arm is not confined
confined space) and evaluating them based on postnatal con-,. tnatal diti fi 2) This is similartfi
ditions (i.e. targets outside of the confined training space). One (i.e. postnatal condition) (see _|gure )- 'S_ IS _S'm' afhe .
possible solution is to identify a sensory representation that is Problem faced by a fetus learning to reach with its arm. While
easy to extrapolate over. We compared two kinds of sensory in the uteris, the body is restricted so that some movements
representations: world-centered sensory representation basl on  cannot be practiced (such as fully extending the arm). Our
Cartesian coordinates and agent-centered sensory represaibn  ,piective js to find clues that point to how a fetus might learn

based on polar coordinates. Despite similar performance under basi hina behavior duri tation that les tel
prenatal conditions, controllers using agent-centered sensomgp- asic reaching behavior during gestation that scales einov

resentation had significantly better performance than controlles ~ Situations that will be encountered later in life.

using world-centered sensory representation under postnatal  This problem seems naturally phrased as an extrapolation
conditions. It turns out that the success of the agent-centede problem, because the postnatal condition completely encom
sensory representation is (in part) due to being complementary naqqes gl prenatal situations. Unfortunately, withotibrpr

to the action encodings. Further analysis shows that the action K led for th | f i f i
encodings (i.e. changes in joint angles) were highly predictive of nowiedge, for the general case of nonlinear surfacesa@xtr

the change in state when agent-centered sensory represeritat ~olation 'S an _Un30_|Vab|e problem. . .
was used (but not world-centered). This suggests that a poweif In artificial intelligence research, selection of an appiatp

strategy for transferring sensory-motor skills to postnatal life representation has long been considered a critical part of
involves selecting a sensory representation that complements theconstructing successful intelligent solutions. One pbesso-
action encodings used by an agent. . .
lution to the extrapolation problem may be to select a sgnsor

representation that is easy to extrapolate over. Unfotélyan
sensory-motor tasks, the properties of a sensory repedsant

In addition to learning throughout life, an interesting danthat make it easy to extrapolate over are not well understood
yet often overlooked) possibility is that biological orgems because scalability is affected by the size of the training
may have evolved to begin development of sensory-motegt, properties of the action encoding, and function approx
skills before birth. Prenatal skill development may previdimation techniques. We compare a world-centered sensory
a head start when compared with learning systems that @presentation (WC) based on Cartesian coordinates with an
not develop skillsin utero. In fact, Robinson and Kleven agent-centered sensory representation (AC) based on polar
[1] demonstrate that modifications to prenatal conditioageh coordinates (see figure 3). The world-centered sensory rep-
lasting effects. resentations relate the target to hand by explicitly speuif

Although there is tactile stimulus, sound, and even ligharget and hand coordinates with respect to an arbitragjrori
available to a developing fetus [2], there are significantsph in the world. The agent-centered sensory representatams,
iological and environmental differences between lifeutero  the other hand, relate the target to hand by explicitly g
and life after birth. For example, movement of the arms arpblar coordinates (i.e. angle and distance) for target amdi h
legs is restricted (see figure 1). Kuniyoshi [3] found evitken with respect to the agent’s shoulder.
that self-organizing neural models are able to learn sgresut We applied a reinforcement learning algorithm, Q-learning
motor structure of the body during the prenatal period desp[4] with nonlinear function approximation, to learn coriteos
physical restrictions, and furthermore such restrictiomsy for both world-centered and agent-centered representatio
actually be beneficial. This raises an interesting questianv Our experimental results show that, despite similar lowrerr
can sensory-motor skills developed under prenatal camditi levels during training, learning systems using world-eesd
scale to novel situations that will be experienced in pdsinasensory representations had higher error under postratal ¢
life? ditions than systems engaging with agent-centered sensory

To investigate how a sensory-motor skill can scale t@presentations. Interestingly, further analysis shdvesd the
postnatal conditions, we consider learning to reach targeitction encodings used (i.e. changes in shoulder and elbow

I. INTRODUCTION



The solution to the inverse kinematics problem depends on
properties of the arm, such as length of the links, limits on
the joint angles, etc. Differences in arm properties andnat
Shoulder body growth rule out the possibility of a genetically inled,

Target (Mouth) . . . . . . .
static solution for biological learning systems. Biolaglic
learning systems use an adaptive mechanism for arm control

Elbow o that adjusts to changes ([7]).

Arm End Point (Fingers) . . . . .

Previous work on learning inverse kinematic control has
developed many solutions for reaching multiple targetsg. (e.
[51, [8], [9], [71, [10], [11]). Several researchers havelvaml
the problem using value-based reinforcement learning oasth
[10], [11]. There are many different approaches, however, w
Fig. 1. Depiction of a human fetus under prenatal conditibhsler prenatal identify some Commor.] themes in the literature. Three common
conditions movement of the arm is restricted by its own body #mel themes are that solutions
uterine wall, while under postnatal conditions the arm heeatgr freedom 1) have almost identical training and testing conditions,
of movement. 2) use joint angles as input describing the pose of the arm,

and

angles) are highly predictive of the sensory change when cou®) gse n?nllnear ftunct|on approximators with large num-

pled with agent-centered sensory representations, buwitiot i ers .o paramg ers. ) ) .

world-centered sensory representations. This suggests AU investigation differs from previous solutions to leam

the advantage of agent-centered sensory representatiens §1Verse kinematics because (1) our emphasis is on how well

world-centered is not so much a property of the represemtati® Solution scales from prenatal to postnatal conditiors (i.

as it is an emergent property achieved when complement&f{férent training and testing conditions), (2) we consicip-

sensory representation and action encodings are usednéogef€Sentations for learning that do not explicitly use joingkes
The main contribution of this work is that it demonstratel® represent the arm's pose, and (3) we use a constrained

the importance of complementary sensory representatidn 4ipnlinear function approximator with few parameters.

action encoding in the development of sensory-motor skills BECause our experiments consider two link arms, we found,

during gestation that scale well to postnatal life withodfirough experimentation, that explicit representatiorjoat
additional training. angles were unnecessary to achieve reasonable performance

&0 all compared representations omit explicit joint angle i

Prenatal Reachable Points

Postnatal Reachable Points

This paper is organized as follows. Section 2 provid )
background and related work about target reaching tas@mat'on'

Section 3 describes reinforcement learning and the methodéb‘lthoughhthere are othferhstudles that useigolar coordinates
used for experimentation. Section 4 introduces experit:‘t’nen'EeF’resentt € position of the target (e.g. [12]) we are unawa

results. Section 5 analyzes results using a second expstim fany qther work that also uses polar coordinates to reptese
Section 6 discusses the implications of the results and 4 (_a.posmon of the hand. . o
dresses several criticisms of this study. Section 7 pravide Finally, many works have considered generalization to hove

concluding remarks. target points Wh?le con_tro_lling an arm (e.0. [_7], [10], [3_3]
However, we believe this is the first work to directly conside

Il. BACKGROUND extrapolation to target points outside of the original rinag

_ _ _ o N set (i.e. where interpolation is not possible).
Controlling a physical arm is a difficult task. In addition to

learning the joint angles that position the hand at the ddsir IIl. METHODS
target point, correct muscle activation is required to trsam ~ We describe the reaching task within a reinforcement
the arm at the desired location and account for gravitaktio@arning framework. The learning algorithm applied is Q-
force. However, empirical evidence from studies with humdaarning [4] with a neural network function approximatoath
subjects suggests that the brain solves this problem bglidiyi estimates the long term cost of taking a particular action
it into an inverse kinematics problem (i.e. positioning thgiven the current state. The agent receives informatiomutabo
arm) and a dynamics problem (e.g. dealing with gravitalionthe environment and then selects an action. Whenever the
forces) [5], [6]. For the purposes of this paper, we will fecuagent acts it receives updated information about the state o
only on the inverse kinematics problem. the environment and the critic assigns a cost to the agent's
From the context of a developing fetus, the inverse kingrevious action.
matics problem is achieving joint angles for the shoulder The function approximator used was linear in its pa-
and elbow (i.e. a pose) that place the hand at (or as cldeeneters but accounted for interactions between the input
as possible to) a target point specified in a more flexibkariables. For example, a two variable input vector=
coordinate system capable of describing positions that my, z2]” would first be transformed to the vectar =
not be reachable by the hand. [x1,9527(x1)2,x1x2,(:v2)2]T, then 2/ is used as input to a



resulting angles fall outside of the arm’s limits, the asgee
End-effector clipped to the closest valid angle.

Under postnatal conditions, joint angle limits were set to
reflect the limits of an adult human arm. Shoulder limits were
set from —140° to 90° and elbow limits were set from°
to 145° [15]. This provides the arm with a large amount of
freedom (see the blue region in figure 2).

Prenatal conditions were simulated by restricting thetjoin
angle limits of the simulated arm. Shoulder limits were set
from —50° to 25° and elbow limits were set frond0° to
145°. This restricted the region of valid targets. See figure 2
to see the region of valid targets for both the prenatal and
postnatal conditions.

Fig. 2. Valid prenatal condition targets (red) and postnedadition targets The_ prewpus few paragraphs descrlbe the model underlying
(blue). the simulation. Sensory representations, on the other,hand
can take many different forms. In this study, a world-cesder
sensory representation (WC), relative world-centered@gns
standard linear perceptron. This style of approximator haspresentation (RWC), agent-centered sensory repreigentat
few tunable parameters and was found to have low trainif§C) and relative agent-centered sensory representsRiaC)
complexity (i.e. the number of training samples required twere compared (see figure 3).
learn a task) when compared with multi-layer perceptrors an WC describes the state of the environment by a 4-
radial basis function networks. dimensional vectofxzr, yr, x g, yy) composed of two Carte-

The simulated arm is constructed from two links of equaian coordinates: target poir{ter, y7) and hand position
length (figure 2). The total length of the simulated arm (i.dxx,yx). Notice that the origin of the coordinate system
sum of the two links) was chosen to be 10cm because thac&n be arbitrarily assigned to any point in the world. The
about the average length of a newborn infant arm (10.5cm f@inforcement signal (i.e. immediate cost) used durinipitng
females and 10.7cm for males [14]). The first link connects wwas
the origin of the environment by a hinge joint representimg t o se Se4112 Seq1 Se4112
shoulder, while the second link connects to the end of the firs Rist,a si00) = (o™ =g )"+ r™ =y )" )
link by a hinge joint representing the elbow (see figure 2). Wheres; 1 = (z3*', y7 ™, 23" y7 ™) was the state transi-
the underlying simulation an arm pose is represented by t#oned to from states; after selecting actiow.
joint anglest) = (0s,0x)" wherefls andd correspond tothe  RWC is similar to WC except that the state description is a
angle of the shoulder and elbow, respectively. The Carnesia-dimensional vectofr r— gy, y(r—m)) = (*r—2H, Y7 —YH)
coordinate for the hand was computed by describing only the difference between the target and hand

represented as Cartesian coordinates.
AC (like WC) describes the state of the environment by

< TH ) - ( Ly cos(fs) + 1z cos(0s + Op) ) (1) a 4-dimensional vectofpr,dr, ¢, dy). However, unlike

Yu L1 8in(fs) + Iz sin(9s + 0r) WC, it is composed of two polar coordinates: target position
wherel, (= 5cm) andls (= 5cm) are the length from the shoul-With angler and distancelr and hand position with angle
der to the elbow and the elbow to the hand, respectively. THa and distancely;. Notice that unlike WC or RWC, the
scalar values:;; andyy are the first and second component@/din must be placed at the shoulder. In other words, the
of a Cartesian coordinate. world is represented from an agent-centered perspective. T

Actions, representing the change in joint angles, are Fengmforcement signal (i.e. immediate cost) used durintimg
sented by a vectof = (0s,05)7 € {—2.86°,0°,2.86°} x Was
.{—2.86.",00,2.86"} (a total of nipg actions). When an action R(s,, a,s,,1) = (ot — wj;ﬂ)? + (d* — dj}ﬂ)? (4)
is applied to the arm, for each jointe {S, E'}

wheres; 1 = (o5, dy ™ oy, dy ) was the state tran-

i N\ > 0; + 6; sitioned from states; after selecting actiom.
0, =4 0,+6; X\ <0;+6; <A, (2) RAC is similar to AC except that the state description is a 2-
A, 0 +6; > A, dimensional vectoty (r_ gy, dir—my) = (o1 —0H,dr —dg)

describing only the difference between the target and hand
where \; and A; are the lower and upper joint limits (re-represented in polar coordinates.
spectively) andd; is the desired change in joint angle. The Learned controllers were evaluated based on the distance of
arm’s joint angles are adjusted by the angles specified in e arm’s hand from the target after the last step of an episod
action vector unless the sum of the action vector and previcaveraged over 100 episodes. A low value (e.g. 1cm) indicates
joint angles is outside of the arm’s joint limits. If any ofeth that the controller is able to solve the inverse kinematics



T’dl’gCt TABLE |
SUMMARY OF RESULTS FROM TWOSAMPLE T-TESTS ON ERROR

X7 Py
(SMALLER IS BETTER)

Prenatal Condition Postnatal Condition
Xy Alt. Hypothesis | P-Val Alt. Hypothesis | P-Val
WC > AC 0.0034832 WC > AC 1.1073e-39%< 0
Yu RWC < AC 2.2275e-08~ 0 RWC > AC 6.2491e-34~ 0
RAC < AC 2.7034e-20~ 0 RAC < AC 4.6438e-33~ 0

Shoulder

Elbow Hand

table | shows that there are statistically significant défees
(a) world-centered between the treatments under the prenatal condition. For
Target example, treatment AC performs better than treatment WC

/{/dTK. (i.e. lower error) but not better than RWC, and RAC has the
Shoulde Pr lowest prenatal error.

0 However, under the postnatal condition, controllers using
H WC or RWC had significantly higher error than either AC
dy or RAC (see figure 4b). Table | confirms that the results

are statistically significant. Again, under postnatal dbods
treatment RAC had the lowest error.

Elbow Hand The fact that treatment AC has higher error than RWC in the
prenatal condition but lower error in the postnatal cooditi

(b) agent-centered rules out the possibility that there exists an error thrésho
Fig. 3. Two possible sensory representations for the taegething task. For the p_r?natal condition that guarantees low error in therrm_at
the world-centered sensory representation (Wi)tige relationship between condition. Thus AC does not have lower error than WC in the

the hand af}d b iSdeXP:jeSSEdf by rt]he diﬁefe”ﬁe betweerCantesian postnatal condition just because it had lower error than WC
points: one for the hand and one for the target. The agenewhsensory - o,
dp the prenatal condition.

representation (AC)bj relates the hand and target by the difference betwe . . . .
two polar coordinates: one for the hand and one for the target Figure 5 shows two episodes for controllers trained using

all four representations. Hand trajectories, for all tneents,

are similar when reaching for prenatal valid targets. Hauev
problem, while high values indicate that the controller iagents using world-centered representations are unable to
unable to either reach the target or maintain the hand at tle&ach some postnatal valid targets and their trajectories a
target once it has been reached. Due to the granularity mbre complex than the trajectories generated by agentg usin
the actions and-probability of selecting a random action allagent-centered representations.
controllers have at least small error.

Each controller was trained for 5,000 episodes and each
episode gave the learning system 100 chances to act with o determine why controllers using agent-centered repre-
small probability ¢ = 0.1) of selecting an action at random.sentations achieve lower error than the world-centered rep
The learning rate used for training the function approxonatresentations we performed a second experiment. The change
was set too = 0.1, and the discount factor, a scalar value i joint anglesd, change in RAC state variableg, r_ g,
the intervall0, 1), required by the Q-learning algorithm, whichdr_ ), and change in RWC state variables; _ gy, y(r— )
signifies the amount of emphasis placed on future costs, waere recorded for 100 steps while actiofiswere selected
set toy = 0.9. according to a uniform random distribution from the action
set described above.

The sample linear correlation between two random variables

The experimental results presented are for 30 controlleran be used to determine how well one variable can be
under world-centered sensory representation (WC), relatipredicted by the other. We looked at the absolute value of the
world-centered sensory representation (RWC), agentHahtelinear correlation between the change in shoulder and elbow
sensory representation (AC), and relative agent-centseed joint angles and the change in sensory description vasable
sory representation (RAC) (120 controllers totadined under  used by relative world-centered and relative agent-cedter
the prenatal condition only. sensory representations (see figure 6).

The error achieved by controllers engaging with the four The results show that for agent-centered representations,
different representations (i.e. WC, RWC, AC, RAC) appearhange in shoulder angle is highly predictive of change @& th
comparable in the prenatal condition after training (see fidifference between the target and hand polar coordinatesing
ure 4a). All controllers, regardless of sensory represiema Change in elbow is highly predictive of change in the differ-
achieve lower than 1lcm average final distance error. Theéace between the target and hand polar coordinate distances
implies that all treatments are able to learn the task. Hewevagent-centered representations. Changes in shoulder and|

V. ANALYSIS

IV. EXPERIMENTAL RESULTS
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Fig. 4. Error (final distance between hand and target in oetérs) of controllers using world-centered sensory regmtasion (WC), relative world-centered
sensory representation (RWC), agent-centered sensorgseqiation (AC), and relative agent-centered sensongseptation (RAC) under prenatal)(and
postnatal §) conditions. The agent-centered representations shoterbgtrformance than the world-centered representatioderymostnatal performance,
while prenatal performance is similar for all representation

Agent-Centered World-Centered Learning sensory-motor skills under one set of conditions
[ 7 and applying them to another is an attractive idea (in aoiuii
] to providing a head start on learning sensory-motor skiks)
it can potentially be leveraged to reduce risk in dangerdtus s
o7t ] uations. An agent can learn to behave in dangerous sitsation
os} ] without practicing in a dangerous environment.

0.8

A. Potential Objections

One possible objection to this work is that infants learn
to reach after they are born. However, fetuses in the womb
have been observed making reaching-like movements such
as moving fingers to the lips [2]. Once a baby is born, the
‘ ‘ neonate must contend with greater force of gravity for which
A Adera Azra) Ay its muscles are too weak and it must learn a dynamics model

(a) (b) of the arm. Learning to reach while in the womb may alleviate
Fig. 6. Absolute value of the correlation between the changghoulder some of the dlmcu.lty .Of Iearrpng an .aCF:urate dynamics model
angle ¢s) and change in elbow anglé) with change in sensory variables A!"Other potential issue is that it IS unknown how con-
that measure difference between hand and targgtétice thatds is highly ~ strained the movements of a developing fetus are. The values
predictive of Ap(7_ pr), and is highly predictive ofAd(r_ ), variables - chogen for the experiment were selected to place a great
used in agent-centered sensory representatignlile variables used in . .
world-centered sensory representation (last two) are midfieutt to predict. d€al Of restriction on prenatal movement. If there is less
restriction during development the extrapolation problesm
easier because the training set (i.e. prenatal condit®omare
elbow angle, however, are not highly predictive of the clesngrepresentative of the postnatal condition. Thus the resfit
in sensory variables used by world-centered represengatio this study should still be valid.

Absolute Value of Correlation
°
&

V1. DISCUSSION B. Future Work

Figure 6 suggests that the action encodings simplify ptedic Figure 4b shows that RAC scales significantly better than
ing the change in state caused by an action when the agem\& (see table 1). Gradient-descent does not find the global
using agent-centered representations, but the actiordamy= optimum. Dimension reduction might be useful for succdssfu
are not helpful for predicting change in state when the agamnsfer of prenatal sensory-motor skills to postnatal. IFu-
is using world-centered representations. This shows tb#it bture work will investigate what kinds of dimension reduatio
sensory representation and action encoding are importggthniques improve performance under postnatal condition
choices for learning systems that need to learn sensorgrmafter training only under prenatal conditions. Preliminar
skills that scale to novel situations. results (unpublished data) show that Principal Component



Prenatal

Postnatal

(a) world-centered

(b) reduced world-centered

(c) agentawed (d) reduced agent-centered

Fig. 5. Examples of reaching for a target (red disc) undertidehinitial conditions with controllers trained using)(WC, (b) RWC, () AC, and ¢) RAC.
(Top) All controllers are able to accurately reach for target tivould be reachable under prenatal conditions and therggedepaths are similarBéttom)
Paths generated by WC and RWC are complex, while agent-certentllers produce smooth paths. RAC is able to reach atdyreven when the other

controllers fail.

Analysis (PCA) and other common unsupervised dimensiofs]
reduction techniques are ineffective at transforming A@® in

RAC because they preserve irrelevant structure (with gpe
the task). We will investigate supervised dimension reidact

techniques such as Partial Least Squares (suggested by [9][)7]

VII. CONCLUSION

The main contribution of this work is demonstrating how(8]

sensory-motor skills learned before birth can transferdstp
natal life, despite the fact that the prenatal training dtornks
are quite different from the postnatal testing conditiofise
difficulty of extrapolation can be avoided by selecting

representation that is complementary to the action engsdi

simplifying prediction of the sensory consequences obacti

o
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