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Abstract—Researchers in human language processing and
acquisition are making an increasing use of computational
models. Computer simulations provide a valuable platform to
reproduce hypothesised learning mechanisms that are otherwise
very difficult, if not impossible, to verify on human subjects.
However, computational models come with problems and risks. It
is difficult to (automatically) extract essential information about
the developing internal representations from a set of simulation
runs, and often researchers limit themselves to analysing learning
curves based on empirical recognition accuracy through time.
The associated risk is to erroneously deem a specific learning
behaviour as generalisable to human learners, while it could also
be a mere consequence (artifact) of the implementation of the
artificial learner or of the input coding scheme.

In this paper a set of simulation runs taken from the ACORNS
project is investigated. First a look ‘inside the box’ of the
learner is provided by employing novel quantitative methods
for analysing changing structures in large data sets. Then,
the obtained findings are discussed in the perspective of their
ecological validity in the field of child language acquisition.

Index Terms—5.2 grounding of knowledge and representations,
6.1 language learning, 6.8 statistical learning

I. INTRODUCTION

Language acquisition, arguably a highly complex problem,
is approached and solved seemingly effortlessly by young
children. During their first year alone, as reviewed by New-
man [1], infants learn to pay attention to the distinctive and
characteristic features of the ambient language and to ignore
features that do not contain information relevant to their native
language. It has been shown, as summarised in [1], that infants
of 7.5 months can identify ‘words’ from streams of speech
after a short familiarisation phase with the words. However, the
way infants of that age spot and store those ‘words’ cannot be
compared one-to-one to how adults process language. Among
other things, the identity of the speaker has been found to be
part of the ‘word’ representation. This implies that despite
their ability to reliably recognise ’words’, 7.5 month olds
have not yet discovered all acoustic and linguistic properties
that actually characterise a meaningful segment of speech;
as a consequence they seemingly store an overabundance of
acoustic detail.

Moreover, word learning not only requires segmentation
and storage of acoustic information, but also the generation
of association of acoustic information to objects, attributes
or actions in the real-world context to create meaningful
units. When learning such concept-label associations, visual
information is usually accompanied by a descriptor embedded

in the speech stream, that has to be identified and linked to
the accompanying visual scene [2].

Almost by necessity experimental research on the nature
and acquisition of language skills in infants usually must rely
on overt behaviour, such as head turns or eye movements in
response to speech stimuli. Internal processes and representa-
tions can only be assessed by inference and based on a number
of assumptions that cannot be verified easily. Hence, several
theories exist concerning what actually has to be learned, what
a child brings to the task of language acquisition and how
language learning proceeds (for two opposing views see e.g.
[3], [4]).

To test basic assumptions, derive new hypotheses and
generate predictions, computational modelling is a viable
alternative to experimental studies with infants. As opposed
to infants, where it is not possible to directly observe internal
representations and processes – neither on neural nor on more
abstract levels – computational models allow for insights into
their own inner workings. In the ideal case designers have
detailed control over the structure of the representations as
well as on the computational processes that they build into a
model. In this way it should be possible to verify the cognitive
plausibility of the model based on its construction in addition
to merely analyse the fit between experimental and simulated
data by comparing the output of a model with the results of
behavioural experiments.

However, the main focus of most computational model
lays on simulating a child’s performance, sometimes with
little consideration of available theoretical and factual knowl-
edge concerning processes underlying children’s behaviour.
Because the actual algorithms employed to simulate cognitive
processes are usually – and necessarily – quite complex, their
behaviour may not be entirely predictable (e.g. learning based
on non-convex optimisation does not always reach a global
optimum), they depend on (too) many parameters whose im-
pact is not always well understood, and as a consequence their
output and internal representations might be hard to interpret.
Furthermore, computational models often concentrate on a
specific process and have to approximate factors that are not
at the core of the model.

In infant speech comprehension, the behavioural measure-
ments that lay the basis for most models involve physical re-
sponses such as head turns, which are rarely explicitly included
in computational models. And even if such observable be-
haviour would be simulated, the link between ’comprehension’
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and ensuing action is yet another complication of the model,
requiring additional assumptions that are difficult to verify
experimentally. Rather, abstract measures such as recognition
accuracy serve as a measure of a models’ performance and
are in turn compared to infant data, leading to very indirect
comparisons at best. Finally, although computational models
offer the invaluable possibility to inspect their internal mech-
anisms with virtually no limit on the level of detail, there is
always a threshold beyond which zooming in would reveal
only facts related to the algorithm implementation, with no
possible connection with the human mind and brain [6].

The goal of this work is to delve into the problems brought
up above, with a main focus on the comparability of computa-
tional models and infants beyond performance measurements.
A state-of-the-art computational model, namely one of the
operational word-learning models developed in the ACORNS
project (www.acorns-project.org) which is briefly described in
Sec. II, will be studied in depth using a set of simulations
of learning word-concept association in infants. Based on the
results, we assess the cognitive plausibility of the model’s
input-output relations and of the dynamics of its internal rep-
resentations. To this end, we devise an array of measurements
that go beyond the analysis of learning curves in Sec. III to
allow investigation of the internal representations and their
effect on the input-output relations. Those measurements are
often indirect and non-trivial, since the internal functioning
of the model is not easily interpretable and inherently model-
specific. Both issues underline the need to take interpretability
in a wider sense than just performance measures into account
when designing computational models. When relating our
findings on the computational model to existing knowledge
about word-learning in infants in Sec. IV, we focus on the
studies reviewed in [1] and shortly introduced above.

Overall, our analysis of an existing model sheds light on
possible similarities and differences when comparing compu-
tational models to infant data. Taking one step back from the
specific model we investigated, our data suggest that there is an
urgent need to focus on processes and internal representations
next to performance when computationally modelling infant
word-learning. This is shown by the need to devise specific
tools for analysing the model we selected, as well as by the
difficulty to distinguish model-specific properties we found
from phenomena that emerged from the modelled process and
can be generalised to infants.

II. THE ACORNS MODEL

The ACORNS project aimed at modelling language acqui-
sition during cross-situational, multi-modal learning, that is
aided by a child’s general ability to detect recurrent patterns.
The learning process is simulated by a computational model
made publicly available by the ACORNS project, where
input is presented to a simulated Learning Agent (LA) by a
simulated Caregiving Agent (CA) in a multi-modal manner.
More precisely, the input consists of an auditory part, a
spoken utterance (e.g. ‘Look at the ball’), accompanied by
a conceptual, pseudo-visual (in the line of [2]) representation

of a referent, or keyword, that occurred in the sentence (the
object ‘ball’). No lexical, phonetic or phonological information
is provided to the LA, nor is information on the number
of different items in the input given beforehand (meaning
that the model does not know a priori how many internal
representations must be learned).

A. The Computational Model

To fully motivate the analysis tools we develop in the
subsequent sections, we provide some background information
about the ACORNS computational model we have used, limit-
ing the detail to the minimum which is necessary to understand
the technical analysis that follows. For more information the
reader is referred to the ACORNS literature and the companion
website at www.acorns-project.org.

The learning algorithm used in this particular ACORNS
model is Non-negative Matrix Factorisation (NMF) [7]. Inputs
are coded as columns v of predefined length n and organised
into an n × m matrix V . The acoustic part of the input Va

holds the first na rows of V , while the lower part Vc contains
the associated conceptual information associated with each
acoustic representation. Learning consists of finding a compact
decomposition of V :

V ≈W ·H (1)

where W is of size n×r and H is r×m, with r being chosen
such that (m + n)r < mn, i.e. information is (substantially)
compressed. Note that due to the product form (1) the organ-
isation of the columns of W is the same as those of V , i.e.
they consist of a concatenation of the acoustic part Wa and
the conceptual part Wc. The optimal decomposition is chosen
by minimising the Kullback-Leibler (KL) divergence between
W ·H and V . The particular version of NMF used here, which
updates the content of W after each input utterance (i.e. each
successive column in V ), has previously been described in [8].
This update procedure simulates incremental causal learning:
The LA can update its internal representations (memory) after
each observation, while being unable to use information that
will only become available in the future.

To assess the input-output performance of a model dur-
ing and after training, only the acoustic part va of a new
utterance containing a previously learned keyword is given
without providing the conceptual part vc. The latter has to be
reconstructed by approximating va by Wa · ĥ, where this time
only ĥ is estimated (again by minimisation of KL-divergence).
The same vector ĥ is then used to reconstruct the conceptual
part by Wc ·ĥ. This reconstruction is then compared against the
original information in order to establish whether the correct
keyword was recognised.

During and after learning, any time a stimulus v is presented
to LA it is internally represented by the vector ĥ, which
contains the (non-negative) proportions of columns of W
necessary to optimally reconstruct v. In this respect, ĥ can
be seen as the analogue of a short term memory, i.e. the
pattern of internal representation activations that is produced
as a stimulus is received. On the other hand, W permanently
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stores conceptual-acoustic patterns that come from and have
the same structure as the training columns in V . This allows
interpreting W as long-term memory (as suggested e.g. in [9]).

In all ACORNS computational models conceptual, pseudo-
visual information is symbolic. In our simulations, a pseudo-
visual vector vc has length Nkey and encodes a specific
referent by placing a one in the assigned keyword position
and zeros elsewhere. The content of the sub-matrix Wc can
be interpreted in the same way, up to a multiplicative factor.

The encoded acoustic information, on the other hand, comes
from real speech. Each acoustic vector va has length na =
110, 002 and it is based on a Vector Quantisation coding
of the MFCC vectors derived from an input utterance. This
high dimensionality is a consequence of the coding scheme
that captures co-occurrences of acoustic events at specified
time lags [12]. Note that it is not possible to resynthesise the
original speech signal from a vector va.

B. The Simulations

The simulations described here, which were closely matched
to previous ACORNS experiments (as described e.g. in [9],
[10]), form the basis of our investigation into the model.

Two word acquisition simulations were conducted, whose
motivations and outcomes were previously discussed in [10].
In short, the experiments were designed to test the hypothesis
that the LA creates more general internal representations when
learning from several speakers than when learning from a
single speaker. Both experiments used the same training set
selected from the English part of the ACORNS database,
namely a collection of m = 480 sentences, each one con-
taining one out of Nkey = 10 keywords. The number of
columns of W was r = 70, which allows room for possible
internal organisation beyond a one-to-one mapping with the
10 keywords.

Sentences are short and have a simple structure, which is
in accordance with findings concerning child-directed speech
[11]. Four speakers, two female and two male, assume the
role of caregiver. To investigate whether speaker specific
representations will emerge if the learner interacts with each
speaker in sequence, we ran two simulations. In the speaker-
mixed simulation the occurrence of each speaker and keyword
was randomised, yet balanced for repetition. In the speaker-
blocked simulation, the learner was first taught by the first
speaker, then by the second one, and so on, while the sentence
order was randomised within each block.

A held out test set containing all keywords spoken three
times by each speaker was used to measure recognition
accuracy. The same test set was used repeatedly, after each
set of 10 training utterances. During testing, the incremental
learning was switched off. Thus, the LA does not remember
anything about the test set. This means that the same test set
can be used repeatedly, making it possible to create learning
curves, which show the percentage of correctly recognised
stimuli as a function of the number of training utterances.
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Fig. 1: Accuracy in both the speaker-mixed and the speaker-
blocked conditions with either complete Wa (solid line for
speaker-mixed and dashed line for speaker-blocked) or a
limited set of only keyword-encoding columns (dotted-dashed
line for speaker-mixed and dotted line for speaker-blocked).
The horizontal lines indicate the onset of a new speaker in the
speaker-blocked condition.

III. ANALYSIS OF THE SIMULATIONS

In this section we analyse the simulations described in
Sec. II-B in depth. In doing so, we will not limit ourselves to
inspect learning curves. Instead, we try to look ‘inside the box’
of the learning algorithm in order to get the necessary insight
that will be related to experimental findings on infants in the
next section. To this end, a number of additional measurements
beyond accuracy will have to be chosen, as the inner workings
of a model are not completely transparent.

A. Learning Curves

The learning curves for the simulations described in
Sec. II-B can be inspected in Fig. 1 (solid and dashed line
respectively). It can be seen that learning proceeds gradually,
and that the two conditions (speaker-mixed and speaker-
blocked) perform on a similar level of accuracy after about half
the training set has been observed. From the similarity between
the learning curves for the two conditions it can be inferred
that the system is able to ’understand’ all four speakers, even
if it has not yet been trained with speakers 2, 3 and 4 in the
speaker-blocked condition.

B. Learning in the Conceptual Memory Wc

In Fig. 2 the content of the pseudo-visual memory Wc

in the speaker-blocked simulation at the end of the training
phase is shown. At most one keyword is encoded in a column
and most keywords are represented by a unique column. This
result suggests that there is no tendency to produce episodic
representations, since, for example, there is no evidence of
speaker dependent representations.
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Fig. 2: Internal representation of the conceptual information
stored in Wc for the speaker-blocked condition at the end of
training.

By playing the sequence of all Wc(t) snapshots, t =
1, . . . ,m to study the emergence of associations between au-
ditory and conceptual representations, clear activations in spe-
cific columns appear after all keywords have been presented
only a few times. Columns associated with keywords tend
to sharpen their peaks and no oscillations between columns
or instabilities are visible. Similar results were found in the
speaker-mixed condition.

C. Learning in the Auditory Memory Wa

Inspired by the findings described above, we wanted to
investigate whether the organisation of the pseudo-visual mem-
ory Wc is replicated in the auditory memory Wa, i.e., whether
there is a small subset of columns that encodes the keywords,
while the rest of the space is (apparently) not used to represent
associations between speech and meaning. Just like for Wc, the
Wa columns have the same form as the audio input vectors va.
Therefore, we expect to contain keyword-encoding columns in
the visual part Wc to contain a corresponding, keyword-related
acoustic association in Wa. However, since it is not possible
to resynthesise the original speech signal from a vector va we
need to develop a more indirect approach for investigating the
structure of the internal representations of the acoustic part of
the ‘speech-meaning’ associations.

If some columns in Wa encode keywords, we expect them to
exhibit sharp peaks denoting the presence of the sound patterns
characteristic for those words, with different words creating
peaks in different positions of a vector. Columns with no
specific sound-keyword association are likely to have a more
uniform noise-like appearance. In order to investigate this
hypothesis, we adopted the following measure of dissimilarity
between two acoustic columns p and q:

d(p, q) =

na∑

i=1

pi log
pi
qi

+ qi log
qi
pi

(2)

i.e. a symmetric version of the KL-divergence between vectors,
where xi =

xi∑na
i=1 xi

. If p and q exhibit peaks in coinciding
positions, d(p, q) tends to be less than one; peaks in different
positions lead to d(p, q) > 1; if p and q contain uniformly
distributed and uncorrelated noise, then it can be shown that
d(p, q) tends to one as na tends to infinity.

Using (2) we built a dissimilarity matrix D over all the(
r
2

)
column pairs of Wa. We used a hierarchical clustering

algorithm based on the dissimilarities in D to infer the under-
lying structure of Wa. We expected to uncover the presence
of ten singleton or two-member-clusters containing keyword-
encoding columns and a big cluster containing the remaining
columns of Wa.

To leave it to the data to determine the number of clusters
K with the best fit, we calculated the average silhouette value
s for 1 ≤ K ≤ r = 70 (the maximum value of K corresponds
to the situation that each column is a cluster in its own right)
[13]. The silhouette value of a cluster element is an empirical
index in [−1, 1] denoting how well that element is contained
in its own cluster. The average s over all 70 elements provides
a global ‘fitness’ value for the clustering. We computed s for
each possible value of K as well as for each learning step
t = 1, . . . ,m. Fig. 3 shows a grey scale map s(t,K) for the
speaker-mixed condition. Values of s around 0.5 and higher are
considered to be trustworthy and are found from K = 2 (by
definition s = 0 for K = 1) up to around Nkey +1 from very
early in training process onwards. We also verified manually
(i.e. by imposing K = Nkey + 1 at several points in time) that
Nkey clusters indeed contained the same columns that exhibit
peaks in the Wc part, in addition to a big and diffuse cluster
collecting the remaining columns (Fig. 2).

The lack of a clear preference for K = Nkey + 1 in com-
parison to lower K may be attributed to the nature of the dis-
similarity (2), which does not satisfy the triangular inequality.
As a consequence, the overall s does not change substantially
if a singleton cluster representing a keyword is merged with
the diffuse cluster formed by the non-keyword columns. A
similar pattern for s was found for the speaker-blocked case,
which confirms the absence of systematic speaker-dependent
internal representations.

D. Evolution of Keyword Representations

The cluster analysis gave an initial impression of the content
of Wa and the effect of training in terms of the number of
elementary units related to keywords. Because of the relatively
stable accuracy scores and number of clusters, a reasonable
expectation would be that the keyword-encoding columns of
W reach a stable state very early and get updated mostly
upon presentations of utterances containing their keyword. No
hypothesis could be elaborated on the behaviour of the other
columns.

To inspect the changes that each column undergoes through-
out learning, eq. (2) was applied to each pair of points in
time (t1, t2) for each column separately, i.e., computing how
column p at time t2 differs from itself at previous time t1.
Representative results for a word-encoding column are shown
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Fig. 3: Average silhouette value s for each learning step t (x-
axis) and each number of clusters K (y-axis) for the speaker-
mixed condition.

in the grey scale maps d(p(t1), p(t2)) in Fig. 4a and 4b for
the speaker-mixed and the speaker-blocked case, respectively.
Visual inspection of the two figures reveals two phenomena.
First, columns do not go back to previous configurations;
rather, they continue to evolve (all horizontal or vertical
cuts in d(p(t1), p(t2)) are V-shaped, with the minimum at
t1 = t2 and an increase of d when moving away from
the minimum). Second, the pixel-like appearance that can
be seen in Fig. 4a coincides with the presentations of the
corresponding keyword, meaning that columns react only to
their own keyword. Moreover, a macro-blocked structure is
visible in Fig. 4b, which coincides with the speaker changes
during training. It seems that an incoming new speaker induces
a strong reaction in the system, which leads to adjustment of
each existing internal representation by the learning engine
without the need to create a new one.

Two d(p(t1), p(t2)) maps of non-keyword columns are
shown in Fig. 4c and 4d for speaker-mixed and speaker-
blocked case, respectively. While the continued evolution is
found here as well, no particular structure is visible in those
maps, with the exception of a clear reaction to the incoming
third speaker in Fig. 4d. Therefore, we are still not able to
formulate hypotheses about the function of the non-keyword
columns during and after learning.

The first result of this investigation is that there is seemingly
no stable state both for keyword or non-keyword columns
within the observed training time, because columns do not
return to the same configuration. Second, the keyword columns
update upon encountering examples of the encoded keyword,
which leads to step-wise shifts through the space as opposed
to the smooth transitions visible in the non-keyword columns.
Furthermore, the speaker-change leads to grater changes than
presentations of the same keyword by the same speaker in
different carrier sentences. Hence, some information about the
speaker must have been part of the acoustic representation.

E. Reconstructing Auditory Input – The Role of Non-Keyword
Columns

Are non-keyword columns used at all in reconstructing
utterances? We tried to answer this question by applying the
accuracy measurement described in section Sec. II-A using
only keyword columns of Wa for recognising test stimuli. The
results are depicted in Fig. 1 as the dash-dot and dotted lines,
together with the original accuracy scores. The results show
that recognition accuracy suffers substantially when a given
sentence has to be approximated by only the keyword columns
in Wa. This holds for both the speaker-mixed and the speaker-
blocked condition. This finding rules out the hypothesis that
non-keyword columns are simply not used or not useful.
Therefore, we must assume that they encode acoustic elements
related to the carrier sentences, possibly associated to frequent
words or word groups, or perhaps associated to characteristic
voice qualities of the speakers.

We attempted to discover the function of the non-keyword
column by creating a linear regression model whose inputs
are binary (dummy) predictors describing an input utterance
by the presence or absence of keywords, frequent words or
sentence fragments, and gender and identity of the speaker.
The output is the value of the coefficient in ĥ corresponding
to a specific column in Wa when an utterance is reconstructed
by the learning algorithm.

Keyword column outputs were very well explained just by
their keyword predictor (R2 ≈ 0.8). Non-keyword column
models were hard (if at all) to interpret, and the explained
variance was seldom above R2 ≈ 0.2. Manual inspection of
the linear models only brought out effects that were due to
idiosyncrasies in the training set, e.g. non-keyword columns
showing moderate effects of a word and one particular speaker,
when the word was pronounced by this one speaker alone in
the training set. We believe that the failure to find interpretable
structure in the non-keyword columns is not due to the specific
choice of the inspection tool (classic linear model) but that it
is related to the choice of the predictors. The coding scheme
implemented in Wa is very close to the acoustic signal, while
our predictors are at a high level of (linguistic) abstraction.
The limited size of the training set probably does not allow for
high level representations like words or phones to emerge in an
unsupervised setting. The exception of keywords is explained
by the fact that they are learned with supervision.

F. Discussion

To summarise the main findings of the previous section in
the order they were presented above, we first can note that
the learner is able to correctly associate sounds to keywords
early in the process and with good generalisation capacities,
as shown in the learning curves in Fig. 1. Investigating the
internal organisation of the learner’s memory we could reveal
the presence of memory locations (columns) dedicated to the
association of one single keyword to an acoustic pattern. A
cluster analysis showed that those acoustic patterns associated
to a particular keyword differ very much from those associated
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Fig. 4: Dissimilarity measure (2) between an acoustic column of Wa at time t1 and the same column at t2. A keyword column
in (a) speaker-mixed and (b) speaker-blocked condition. A non-keyword column in (c) speaker-mixed and (d) speaker-blocked
condition.

with other keywords and it plays a dominant role in the
recognition (reconstruction) of input containing that keyword.

The concept-sound association appears in the memory af-
ter only a few presentations of the relevant paired stimuli.
After the emergence of these columns, no major memory
reorganisation was encountered. Still, the system continued
to adapt its representations to the incoming new learning
stimuli. Even well after recognition accuracy reaches ceiling, a
column dedicated to a specific keyword keeps being modified
by incoming input containing the same keyword (Fig. 4). No
evidence of emerging speaker-dependent representations was
found but the adaptation that a keyword-column undergoes
when a new speaker is introduced was stronger than other
updates in the same simulation or general changes in the
speaker-mixed condition.

Our attempts to understand the role of the memory locations
not bounded to keywords did not bring any clear interpretation.

They are useful in the recognition of audio but they don’t seem
to code anything that we can interpret. Hence, we will exclude
them from the subsequent discussion and leave this topic open
for further investigation.

IV. RELATING THE SIMULATION RESULTS TO INFANT

DATA

The findings of the technical analysis of the simulations
above have to be related to findings from experiments on
language acquisition in infants. First, it should be noted that
ACORNS only aims at modelling a simplified and highly
constrained word-learning task, which constitutes a subset of
the tasks a child is confronted in his or her first year. Moreover,
the amount of input given to the model is comparable to
the number of sentences a child hears within a few days of
his or her life in infant-directed speech, as found by [11].
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Having this in mind, the main finding from the technical
analysis is the fast and stable one-to-one binding of acoustic
internal representations to the pseudo-visual counterpart when
encoding a keyword. On one hand, this fact resonates well
with experimental evidence in child language acquisition in
that this fast recognition of familiar keywords can be found
in infants too [1]. However, testing the fast formation of
such internal representations in the lab can be disturbed by
a number of experimental factors, and is consequently not as
robust as the present findings might suggest [14]. Additionally,
unlike in our simulations, children rapidly forget such word-
object mappings when they were only encountered a few
times or in an experimental setting with high cognitive load.
This property of the child’s memory plays a crucial role in
both experimental findings and during day-to-day language
learning and cannot easily be captured by the present model.
Forgetting can be implemented in the present model. However,
such an implementation is all but trivial, if only because
several different technical options are available, each implying
a different hypothesis about how ’forgetting’ works in the
infant brain.

If we then look back to the ACORNS model mechanics,
we can see that even though the one-to-one associations
were emergent and not imposed, the pseudo-visual coding
is so powerful due to its orthogonality that the system is
strongly biased to this kind of organisation, and other more
sophisticated ones are unlikely to appear. Any remedy for
this seems to depend on the choice of conceptual or pseudo-
visual coding. As there was for example no speaker-dependent
encoding given to the system, no specific memory locations
for each speaker could emerge. Still, a strong reaction to
changing the speaker was observable, which is indicative for
a detection of inherent differences. Again, this can be seen as
an artifact of the coding, with the speaker change reactions are
the only possible emergent behaviour that is allowed. Hence,
we can assume that indeed also speaker-dependent behaviour
was found, but in a way that was be masked by the way this
particular model encodes accompanying information in non-
acoustic modalities.

V. CONCLUSIONS

Our results demonstrate that it is difficult to examine a
specific computational model in detail, as well as how difficult
it can be to relate the results of computer simulations to
what is being modelled, namely infant word-learning. Specific
additional tools to closely examine the inner workings of the
ACORNS model had to be developed, as they were not part
of either the model or the ACORNS project.

Furthermore, it was difficult to tease apart effects which
hold in general from effects that derive from specific choices
in the technical implementation of the model. This was partly
due to properties of the learning algorithm, which is based on
matrix decomposition and might lead to observations such as

those mentioned in Sec. III-E. A further source of possible
idiosyncratic effects was in the encoding of the input, which
consisted of continuous audio input and an abstract, symbolic
labelling of keyword-related information. We hypothesised in
the section IV that changes in the conceptual coding scheme
will lead to different observations within the model’s memory
structures. Additionally, the strong binding of acoustic and
conceptual information found from very early on in the train-
ing in Sec. III seems to mainly stem from the orthogonality
of the encoding. Hence, there is a direct effect of the form
of representation of the non-acoustic input. However, the full
extent of that impact cannot be fully understood from the
limited amount of experiments conducted within this paper
and would require further investigation.

Overall, we can emphasise the need for a detailed inspection
of a computational model, which includes an examination of
its inner workings. To this end, it would be necessary to
either chose a transparent model or provide tools to enable
this inspection. With such tools, the assessment of a model,
both in terms of functionality and with respect to its ecological
validity, would be simplified.
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