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Abstract—According to usage-based approaches to language
acquisition, linguistic knowledge is represented in the form of
constructions as pairings of meaning and form at multiple
levels of abstraction and complexity. The emergence of syntactic
knowledge in infants is assumed to be a result of the gradual
abstraction of lexically specific and item-based knowledge. In
this paper, we present a computational usage-based model ac-
counting for the gradual emergence of a network consisting of
constructions at varying degrees of complexity given ambiguous
input examples of phoneme sequences coupled with a symbolic
representation of the visual context. We provide empirical results
on the RoboCup dataset, showing that the model can acquire a
compact construction grammar which generalizes successfully to
unseen data in an online fashion, with one pass over the data.

I. INTRODUCTION

Children acquire language over a relatively short period
of time, mastering the essential syntax of their language by
the time they enter school. Thereby, it remains rather unclear
which mechanisms facilitate generalization over seen input
to yield productive patterns that can be used to process and
generate sentences never heard before. There is, however,
evidence that language learning proceeds incrementally, from
simpler to more complex structures [1], as well as – according
to usage-based approaches to language acquisition – in an
item-based fashion [2], [3]. In particular, it is assumed that
early on children – unlike adults – maintain an inventory
of lexically-specific and item-based constructions which are
gradually generalized by replacing concrete lexical items by
slots which can be filled by (a restricted group of) words
or short sequences of words [2]. Furthermore, usage-based
approaches assume linguistic knowledge to be represented in
terms of form-meaning pairings – constructions – at varying
degree of complexity and generality, e.g. morphemes, words as
well as fully productive linguistic patterns. These constructions
are captured by an interrelated network – a so-called construct-
i-con – which comprises both item-specific information and
generalizations [4]. In this paper, we explore how the gradual
emergence of an inventory containing verb-specific linguistic
patterns by an item-based induction of slots can be modeled
computationally. Specifically, we introduce a model which
captures linguistic knowledge by an interrelated network of
constructions at varying degree of complexity. Thereby, we
assume that at the modeled stage of learning the child is able to

extract sequences of phonemes from the speech signal as well
as information in some structured form from the visual context.
Like a child, the model learns by observing natural utterances
– sequences of phonemes – in a noisy and ambiguous context
in which several actions take place, and which in our model
is represented through predicate logic formulas. As we model
a stage in learning where linguistic patterns emerge gradually,
we consider two types of constructions: (short sequences of)
words and ‘slot-and-frame patterns’ [5]. The model learns
these in an incremental fashion in the sense that it first
learns the structures of low complexity (words), and then
uses these to learn more complex linguistic patterns. This
seems also cognitively plausible as children first learn the
meaning of (proper) nouns and afterwards of more complex
syntactic constructions [1]. Importantly, our model proposes
uniform mechanisms for the induction of the different types
of constructions. In the language learning process, the model
starts with an empty network. While learning proceeds, the
network is continuously augmented and refined, dynamically
adapting the model to new input. An important aspect of
our model is the fact that learning proceeds online, i.e. each
example directly causes an update of the network. We provide
empirical results on the RoboCup dataset [6], showing that
our model can acquire a domain-specific construction grammar
with one pass over the data.

II. RELATED WORK

Several computational models have been proposed for the
task of word segmentation and/or acquisition of word meaning
as well as for the induction of syntactic constructions. In
contrast, we explore all three tasks in a single network model
where learning at all three levels is interleaved and proceeds
gradually and online. With respect to word segmentation,
research has mainly focused on utilizing statistics concern-
ing syllable and phoneme regularities [7], e.g. by apply-
ing Bayesian methods. Furthermore, several models inferring
word-to-meaning mappings have been proposed (e.g., [8], [9]).
For instance, Fazly et al. [8] introduced a probabilistic model
building on the idea of cross-situational learning and Horst et
al. [9] explored a Hebbian Normalized Recurrence Network.
Additionally, approaches have been proposed which address
both segmenting a speech stream and establishing word-to-



meaning mappings (e.g., [10]). In contrast to approaches ad-
dressing word segmentation and/or word-to-meaning mapping,
we focus on the extension to complete syntactic construc-
tions and on the interplay between their acquisition and the
acquisition of words. Different models have been proposed
concerning the acquisition of constructions (e.g [11], [12]). For
example, Alishahi and Stevenson [11] introduced a Bayesian
model for the acquisition of abstract verb argument structure
constructions, assuming the acquisition of words and verb-
specific constructions as already solved. In contrast, Chang
et al. [12] presented an approach based on Bayesian model
merging, where – as in our model – more complex gram-
matical structures are induced based on previously acquired
lexical mappings. In previous work [13], we proposed an
algorithm for the induction of constructions which yielded
a construction grammar by applying incremental learning
steps. Thereby, learning steps were executed as consecutive
steps of batch learning, yielding complete constructions only
as the result of the last learning step. In contrast, in this
study we focus on the interplay between constructions at
different levels of complexity in a network and their concurrent
acquisition where learning steps are interleaved, yielding an
online algorithm. However, there are some commonalities as
well between the approach presented here and the previous
approach [13]. In particular, in both systems the induction
of more complex constructions requires the acquisition of
more simple constructions. Further, both incorporate the idea
of inducing equivalence classes by searching for sets of
substitutable elements and subsequently inspecting if they
can account for a slot in a predicate. Kwiatkowski et al.
[14] proposed a model for language acquisition which – like
our model – works on ambiguous input. The model acquires
language in an online fashion by training a non-parametric
Bayesian model. However, in contrast to these approaches, our
model is represented as a single network and uses phonemic
transcriptions as input rather than words. Our work is also
similar to the field of semantic parsing. While work in this
area has mainly focused on building systems which are trained
on examples constituting NLs along with their (manually
annotated) corresponding meanings, semantic parsers exist
which can handle ambiguous training data. For example,
Chen et al. [15] extended several semantic parsing systems to
handle ambiguous training data, and Börschinger et al. [16]
accomplished the task by inducing a Probabilistic Context
Free Grammar. However, those parsers work by iterating over
the full training data several times in batch mode which is
cognitively implausible and computationally expensive.

III. MODEL

A. Input and goal

Our model learns analogously to a child by observing
natural utterances (NL, represented as sequences of
phonemes) in a noisy and ambiguous context (MR,
represented by formulas in predicate logic mr). In particular,
the input to our model consists of a list of pairs comprising
NL utterances coupled with a set of meaning representations,

i.e. (NL,MR = {mr1, ...,mrn}). For each example, NL
consists of a sequence of phonemes. Each mri consists
of a predicate ξ and a list of arguments arg1, . . . , argn
(which might be empty). We distinguish between an observed
mr and its corresponding template mrg which is derived
from mr by replacing the values of its argument slots by
ARG1, . . . , ARGk, where k is the number of arguments
in mr. We also say that mr instantiates mrg . Input of the
desired form is for instance provided by the RoboCup Soccer
corpus [6], which consists of the annotated RoboCup finals
from 2001-2004. In this corpus, game events are represented
by mrs. The games were commented by humans, constituting
the NL utterances. Each NL comment is coupled with a set
of meaning representations MR, where NL corresponds to
at most one mri ∈ MR. To model learning from phoneme
sequences, we used a speech synthesis system (i.e. MaryTTS
[17]) to transcribe the NLs phonemically. Subsequently,
we removed all spaces and markers of word boundaries,
yielding unsegmented phoneme sequences. Given a set of
examples {e = (NL, {mr1, ...,mrn})}, our goal is the
induction of a construction grammar, i.e. a set of form-
meaning pairings {(N̂L, m̂r,Φ)}, represented in terms of a
network where linguistic knowledge evolves over the course
of time. In particular, we attempt to segment the streams
of phonemes into meaningful sequences, i.e. phoneme
sequences representing (sequences of) words(s) which map
to semantic referents. In the following, such sequences are
also referred to as (potential) lexical units. Based on this
information, we attempt to induce syntactic patterns such
as “X passesto Y”. Thus, two types of constructions are
learned and represented in our network: (1) constructions at
the word level LW where the form N̂L corresponds to a
lexical unit (note that lexical units are not given a priori but
must be segmented from the continuous stream of phonemes)
and the meaning m̂r to a single semantic referent, and (2)
constructions at the complete construction level LC where
N̂L corresponds to a NL pattern and m̂r is represented
by exactly one template mrg . If N̂L contains equivalence
classes, these are associated to argument slots in m̂r by a
one-to-one mapping Φ: ECs(N̂L)→ args(m̂r) . Taking for
instance the input examples (“purpletenkicks”, {ballstopped,
badPass(pink1, purple10), pass(purple10, purple7),
playmode(play on), kick(purple10)}) and (“pinkgoalie-
kicks”, {pass(pink1, pink5), kick(purple1)}) (note that for
the sake of simplicity, in this paper we represent NLs as
sequences of characters instead of phonemes), at LW we
would like to induce the form-meaning pairings

(1) N̂L purpleten
m̂r purple10

N̂L pinkgoalie
m̂r pink1

and at LC we would like to induce the form-meaning pairing

(2)
N̂L EC1 kicks
m̂r kick(ARG1)
Φ EC1 → ARG1

where the equivalence class EC1 = [purpleten → purple10,
pinkgoalie → pink1] groups the LW constructions.



B. Representation

Our network model incorporates two basic components: 1)
associative networks, and 2) a directed graph.
1. Associative networks: We use associative networks as
suggested by Rojas [18] to establish correspondences between
form and meaning where connections between neurons which
are active concurrently (i.e. between neurons representing form
and meaning being observed concurrently) are strengthened,
capturing the co-occurrence of frequency between form and
meaning. In particular, an associative network A consists of
two layers of neurons x and y fully connected by a matrix
W of learnable weights. Associations are retrieved from the
network by y = Wx and x = WT y. To train the weights, we
use the adjusted learning rule suggested by Schatten [19]:

∆wij = η(xi − x′i)(yj − y′j) (3)

where x′i and y′j denote the network’s current value of xi
and yj after processing the input y and x, respectively, and η
denotes the learning rate. We refer to the update of all weights
in A by wij = wij + ∆wij as A.update(ax, ay), where ax
and ay denote the sets of neurons currently being active in
x and y, respectively. Their activation is set to 1, while the
activation of all other neurons is set to 0. Further, we say that
a yj ∈ y is associated to a xi ∈ x if it maximizes the value
of the weights between xi and all yj ∈ y.
2. Directed graph: We use a directed graph to capture the
segment order of NLs in a similar way as the ADIOS algo-
rithm [20]. Specifically, we represent the NLs of constructions
at LC as indexed paths, where each node corresponds either
to a sequence of phonemes, an equivalence class, or marks
the start or end of a sequence. Note however that we propose
a different strategy than ADIOS for the induction of (gen-
eralized) patterns. Specifically, in contrast to ADIOS, which
induces linguistic patterns from raw text, we additionally
utilize information derived from the visual context, and only
merge NLs if a coherent meaning can be established for
the resulting generalized pattern. Details on the generalization
procedure will be provided in section III-D. Merging a set
of mergeable (see section III-D for a definition) paths P of
length pL represented on a directed graph W is referred to as
W.merge(P ), and yields a single path pcom representing the
merge of paths in P . The combined path pcom is computed by
iterating over the nodes for all paths in P concurrently. If all
paths are alike at a position pos, the node at position pos in
pcom is set to that node. Otherwise, it is set to a new node nse
representing an equivalence class. Furthermore, for each path
in P , the node at position pos is added to the equivalence class
and subsequently replaced by nse for each path in W . Finally,
all paths in P are deleted from the graph. During the merging
procedure new equivalence classes are induced. If a newly
induced equivalence class has an element (vnl and/or a vmr) in
common with at least one of the already existing equivalence
classes, the corresponding equivalence classes are merged into
a single equivalence class ec. The nodes corresponding to
subsumed equivalence classes are then replaced by the node

corresponding to ec. In the model, associations between paths
and mr templates are modeled by an associative network
AC . The weights for pcom are initialized by summing up
the weights contained in AC of the rows for the subsumed
paths1. If pcom contains equivalence classes, an associative
network representing the mapping Apcom,mrg is included for
each mrg in LC which contains slots. Each Apcom,mrg is
then initialized by adding up weights contained in subsumed
associative networks.
The proposed network architecture is illustrated in Fig. 1. As

Fig. 1. Network modeling three levels of association

our aim is to include both constructions at the word level LW

as well as constructions at the complete construction level LC

into our network, it is divided into two subnets representing
constructions at LW and constructions at LC , where LC builds
on LW . Both subnets consist of a layer representing the
form (LW (NL), LC(NL)) and a layer representing the mean-
ing (LW (MR), LC(MR)). Correspondences between form and
meaning are modeled by associative networks AW and AC .
During training, all observed linguistic input is incorporated
into the form layers, while the action input is incorporated
into the meaning layers. In LW , each observed lexical unit
is modeled as a single node nnl, and semantic referents are
modeled as single nodes nmr. Constructions in LC are mod-
eled as paths through a directed graph (LC(NL)). The directed
graph incorporates nodes from LW (NL), nodes representing
the start nSTART and the end nEND of a sequence, as well
as a node nse for each induced equivalence class (these nodes
group in turn sets of nodes from LW (NL)). LC(MR) contains
a node nmrg for each template derived from mrs observed in
the input. In LC , constructions may include a mapping which
maps equivalence classes to argument slots for a specific path p
and template mrg . These mappings are each modeled by an as-
sociative network Ap,mrg . As our dataset contains several NL
expressions which have no semantic correspondence according

1In our current implementation, weights are restricted to values between 0
and 1. Greater values are set to 1, smaller values to 0.



to the underlying PL representation, we include a special node
n⊥ in each associative network that allows to capture the fact
that a certain linguistic construction has no correspondence at
the meaning layer. An example for a concrete LC construction

Fig. 2. Example of a construction in the network

is depicted in Fig. 2. It consists of the generalized path
p = (START,EC1, passesto, EC2, END) associated via
AC to the template pass(ARG1, ARG2). Its equivalence class
nodes EC1 and EC2 are associated via Apath,pass to the slots
ARG1 and ARG2, respectively, modeling the construction
N̂L: ”EC1 passesto EC2”, m̂r: pass(ARG1, ARG2), Φ: EC1
→ ARG1, EC2 → ARG2.

C. Rating and retrieval of constructions

Given nl ∈ x (lexical unit or NL) without equivalence
classes, the rating for each mr ∈ y is computed as

rating(nl,mr) = A.wnl,mr. (4)

In case of a pattern nl ∈ LC(NL) containing equivalence
classes the rating for each mr ∈ y is computed by augmenting
the weight Ac.wnl,mr with the association scores between each
se ∈ ses(nl) and its associated slot associated(se) in mr as

rating(nl,mr) = AC .wnl,mr+∑
se∈Anl,mr.x

Anl,mr.wse,associated(se)
(5)

if a one-to-one mapping between the equivalence classes
ECs(nl) and the argument slots args(mr) exists. Otherwise,
the rating is set to 0. If a single mr′ ∈ y maximizes
rating(nl,mr′) as defined by equations 4 or 5 for a given
form nl ∈ x it is said to be the meaning of nl. If it is
additionally the case that rating(nl,mr′) > θR, then nl is
regarded as learned.
Given nl ∈ LW (NL), we can determine whether a (learned)
meaning exists and if so retrieve the meaning as described
above. In order to retrieve the meaning of a complete NL, we
first replace subsequences contained in an equivalence class
by the equivalence class, and subsequently NL is segmented
at boundaries of equivalence classes. If the resulting sequence
of segments is contained in LC(NL), we can again determine
whether a meaning exists and if so retrieve it. If no meaning
with a rating score greater then zero exists, the meaning is set
to ⊥. If the meaning is ⊥ or if no corresponding pattern can

be found, NL cannot be understood (parsed) by the model.
Otherwise the meaning of each sequence at a position corre-
sponding to an equivalence class is retrieved from LW and
inserted into the slot associated to the equivalence class (via
the associative network forming the corresponding mapping)
in the retrieved template.

D. Generalization

Generalization is performed in essence by i) inducing
equivalence classes and ii) merging paths to more general
and productive ones. As equivalence classes group elements
whose exchange in a NL pattern causes a change in the
corresponding meaning with respect to an argument slot, they
are identified by searching for differences in patterns which
also account for a distinction in the corresponding meaning. In
particular, we explore an idea from previous work [13] stating
that sets of substitutable elements in a group of NLs represent
an equivalence class if they can account for the difference in
the argument of a given slot. Given for instance the form-
meaning pairings depicted on the left side of the arrow in the
following example, one can easily infer the correspondences
shown on the right side.

(6) pinktwo kicks
kick(pink2)

pinkone kicks
kick(pink1)

→
X kicks
kick(ARG1)
X → ARG1

The inference that “pinktwo” and “pinkone” are substi-
tutable and that the grouping accounts for the slot in the
corresponding predicate kick can be performed based on two
observations: 1) the NLs differ in one position/slot pos and the
corresponding mrs differ in one argument position/slot ARG,
and 2) the meanings of the observed segment at position pos
occur in argument slot ARG for both examples. Note that the
second condition is crucial as our goal is to develop a model
which handles noisy input. However, in our model we need to
compare an example e = (NL, {mr1, ...,mrn}) with a path p
in the network and therefore the previous observations cannot
be implemented directly. Instead, we adapted the described
conditions as follows. Given an example e and a path p we
retrieve an mrg associated to p from AC as the corresponding
meaning; p is then mergeable with a segmented NL s if s
and p differ in at most k positions and 1) the element at each
differing position pos in s corresponds to a lexical unit whose
learned meaning is also observed in a slot of one observed
mri ∈ {mr1, ...,mrn} and mri instantiates mrg , and 2) the
element at each such position pos in p corresponds to either a
lexical unit holding a learned meaning or an equivalence class.

E. Language learning algorithm

Language learning starts with an empty network and
then proceeds online, i.e. each observed example e =
(NL, {mr1, ...,mrn}) directly causes an update of the net-
work. The algorithm is roughly divided into two learning steps:
1) acquisition of words, and 2) acquisition of constructions.
1. Acquisition of words: While infants may use several cues
in order to segment words out of the speech stream, in this
work we explore how meaningful sequences of phonemes can
be segmented out of a continuous stream based solely on



context information, and thus word segmentation and word
to meaning mapping are to a great extent interleaved. In
particular, given an example e = (NL, {mr1, ...,mrn}) the
algorithm starts by extracting all lexical units, i.e. sequences
potentially mapping to a semantic referent, from NL. In
this work, we simply regard all subsequences of length lmin

to lmax as lexical units. Particularly, we are interested in
subsequences mapping to arguments as in the subsequent
generalization steps these sequences might be grouped into
equivalence classes, thus yielding a valuable basis for gen-
eralization. Therefore, in addition to the subsequences all
arguments args are extracted from e, and the co-occurrence
between all extracted sequences and arguments is captured
by training the weights in AW by AW .update(units, args).
During several observations of a sequence together with its
referent and execution of corresponding updates in AW , a
(learned) meaning may be established between both.
2. Acquisition of constructions: While in step 1 several
subsequences are extracted, in step 2 our first goal is to
segment NL at boundaries of sequences mapping to argu-
ments. This is essential in order to induce correct slots in
NLs/patterns and thus to avoid subsequent generalization
errors. For example, given the two NLs “pinktwokicks” and
“pinkfourkicks” and a corresponding incorrect segmentation
“pinktw okicks” and “pinkfou rkicks” it is not possible to
induce a pattern “X kicks”. The basic idea for segment-
ing an utterance NL is to identify sequences of phonemes
mapping to arguments observed concurrently. Thereby, we
regard a lexical unit (subsequence of NL) as mapping to an
argument if its learned meaning is observed concurrently in
an argument slot in e. For any observed argument, several
sequences statisfying the criterion may exist. For example,
if a sequence “pinkeleven” maps to an argument pink11,
so may subsequences of “pinkeleven” such as “inkeleven”,
“nkeleve”, etc. We therefore take the length of sequences
into account in case of several sequences mapping to the
same argument with an equal weight by taking the longest
sequences in that case. Altogether, given an example e, we
search for the subsequence in its NL fulfilling these criteria
for every observed argument in {mr1, ...,mrn}. If sequences
are contained in equivalence classes, these are replaced before-
hand by the equivalence class. NL is then segmented at the
boundaries of the identified sequences, yielding a sequence
s of segments. Subsequently, the model searches for paths
contained in the network which are mergeable with s, and
if mergeable paths pmergeable exist, s is merged with them
by LC(NL).merge({s, pmergeable}) into a new path. If no
such paths exist, s is incorporated as a new path. Whichever
applies, a new path path is incorporated into the network, and
all templates mrs observed concurrently in e are extracted
from e and if not yet present included into the network
as new nodes. Subsequently, the co-occurence between mrs
and path is captured by AC .update(path,mrs). If path
contains equivalence classes, an associative network modeling
a mapping is incorporated for each template containing slots.
Subsequently, our algorithm updates mappings between path

and mr templates observed in e by iterating over all nodes in
path. For each node corresponding to an equivalence class, the
phoneme sequence at the corresponding position posse in the
example’s segmented NL is inspected. Specifically, for each
template mre derived from the input sequence, it is determined
if the lexical unit’s meaning is observed in a slot ARG of mre.
If so, the correspondence between posse and ARG is captured
by an update of the corresponding associative network by
executing Apath,mre .update(posse, ARG). Otherwise the fact
that the lexical unit’s meaning is not observed in an argument
slot is captured by Apath,mre .update(posse,⊥). Due to the
fact that through merging paths may become identical by
replacing nodes with newly induced equivalence class names,
as a final step our algorithm merges all identical paths.

IV. EVALUATION

The main goals in generalizing observed examples are 1) to
enable the model to use constructions in a compositional man-
ner, thus allowing understanding/generation of novel phoneme
sequences, and 2) to keep the network size – and therefore the
corresponding grammar – small. We evaluated the system’s
abilities concerning both goals on the RoboCup corpus. In
particular, we evaluated our model on a semantic parsing task;
semantic parsing is the task of mapping NL sentences to m̂rs.
The corpus contains 4 Robocup games. While the training
data is ambiguous, the reference corpus (gold standard) is
disambiguated and contains one meaning representation for
each utterance. Recently, Chen et al. [15] evaluated several
semantic parsers on the corpus by using 4-fold cross validation
on the 4 games, where training was done on the ambiguous
training data, while the gold standard was used for testing.
They computed precision (the percentage of m̂rs produced
by the system that were correct) and recall (the percentage
of m̂rs that the system produced correctly), and presented
results by means of the F1 score (the harmonic mean of
precision and recall) [15]. We applied the same evaluation
scheme, albeit using the phonemically transcribed sequences
(k = 2, lmin = 6, lmax = 15). Our algorithm incorporates a
threshold θR which was utilized in case of AW . We optimized
this parameter for each fold by training the model with varying
parameters on the ambiguous training data and subsequently
measuring its performance on the gold standard corresponding
to the training data (note that test data was not used during
parameter optimization). Both for parameter optimization as
well as for testing, each example was only presented once
to the system. Without performing generalization a learner
may at most understand NLs which were presented during
training. We therefore compared our model’s F1 score to the
F1 score that would be achieved if the model would have rote
learned the meaning for each observed example to estimate its
generalization abilities (note that rote learning is not possible
in case of most NLs as the data is ambiguous). While an
F1 score of 40.2% was obtained with a naive rote learning
baseline, our model achieved an F1 score of 81.1% (precision:
95.8, recall: 72.2), thus performing very well on unseen data.
Our learning and generalization mechanisms are thus effective



as the learning proceeds online with only one pass over the
data, especially given the fact that NLs observed early on
cannot be generalized as segmentation is not yet possible
due to the unavailability of lexical units holding a learned
meaning. Averaged over all folds, 730.25 individual phoneme
sequences (types) are contained in the RoboCup data set while
our model extracted 395.25 NL patterns averaged over all
folds. Generalization thus produces a compact grammar; the
number of derived patterns is much smaller than the number of
examples observed. Table I indicates the number of average
patterns derived for each predicate in the RoboCub dataset
and gives examples of particular patterns which have been
induced. As indicated by the high precision of 95.8%, the es-
tablished associations between NL patterns and predicates and
equivalence classes and argument slots were mostly correct.
Averaged over all folds, 182.5 patterns were extracted which

TABLE I
EXAMPLES AND NUMBER OF PATTERNS AVERAGED OVER ALL FOLDS

associated meaning avg #patterns Example of an extracted N̂L
pass(P, P ) 95.25 SE passesto SE nearmidfield
kick(P ) 42 SE dribblestowardthegoal
badPass(P, P ) 46 SE loosestheballto SE
turnover(P, P ) 19 SE turnstheballoverto SE
steal(P ) 8.75 SE stealstheball
block(P ) 1.5 SE blockstheball
playmode(PM) 0.25 pink SE
defense(P, P ) 0 –
ballstopped 0 –
⊥ 182.5 pinkteam willkick in

were regarded as meaningless, and in fact about one fifth of
the comments in the games actually does not have a correct
meaning according to the semantic representation in predicate
logic [6]. Yet, the model also judged several patterns incor-
rectly as meaningless. In particular, playmode events were
often associated to ⊥ since the model is not able to induce
correct slot-and-frame patterns in case of playmode due to
the fact that instances of its argument are composed of several
individual parts which in turn correspond to both the predicate
and an argument; an example describing a playmode event
taken from the gold standard is given by (“freekickfromthep-
urpleteam”, playmode(free kick l)). As can be seen, the
whole NL maps to the complex argument and therefore a
correct slot-and-frame pattern cannot be derived. Furthermore,
patterns containing more equivalence classes than required
by the appropriate predicate – e.g. “SE1 triestopassto SE2
butwasinterceptedby SE3” and its corresponding predicate
badPass – cannot be learned by our model due to the fact
that no one-to-one mapping can be extracted in this case.

V. CONCLUSION

We have presented a model for the acquisition of construc-
tions at different levels of complexity, from (sequences of)
words through to generalized patterns given ambiguous input
examples of phoneme sequences coupled with a symbolic
representation of the visual context. Linguistic knowledge is
acquired in an incremental, usage-based and online fashion.

We have tested the model on the Robocub dataset, showing
that it can indeed acquire a domain-specific construction gram-
mar effectively, with one pass over the data. This is contrast to
many other approaches which perform learning in batch mode
and require several passes over the data. To our knowledge,
our model is the first that induces syntactic patterns by starting
from phoneme sequences. A particular feature of our model is
that it learns structures of different complexity as well as the
syntax and semantics in an interleaved and parallel fashion.
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