
Autonomous Reinforcement of Behavioral Sequences
in Neural Dynamics

Sohrob Kazerounian†, Matthew Luciw†, Mathis Richter and Yulia Sandamirskaya

†Joint first authors.

Abstract— We introduce a dynamic neural algorithm called
Dynamic Neural (DN) SARSA(λ) for learning a behavioral se-
quence from delayed reward. DN-SARSA(λ) combines Dynamic
Field Theory models of behavioral sequence representation,
classical reinforcement learning, and a computational neuro-
science model of working memory, called Item and Order work-
ing memory, which serves as an eligibility trace. DN-SARSA(λ)
is implemented on both a simulated and real robot that must
learn a specific rewarding sequence of elementary behaviors
from exploration. Results show DN-SARSA(λ) performs on the
level of the discrete SARSA(λ), validating the feasibility of
general reinforcement learning without compromising neural
dynamics.

I. INTRODUCTION

Standard approaches to reinforcement learning
(RL; [1]) typically formalize the learning problem in terms
of discrete state and action spaces, and have a learning agent
that operates in discrete time. How can such discrete repre-
sentations emerge from spatiotemporally continuous sensory
and motor representations? Computational neuroscience
models of learning from reward do include continuous
neural representations of states and actions, but these typ-
ically involve purely immediate rewards; thus not addressing
the general RL problem, in which the reward is potentially
delayed. How can a neural model learn rewarding sequences
through delayed reinforcement, and, further, how can these
sequences be generated using real sensors and motors [2],
[3]?

To understand the contribution herein, one needs to un-
derstand three perspectives: at the core is the Dynamic
Field Theory (DFT) perspective. DFT has not yet integrated
general learning from reward into its framework. Our purpose
is to add RL to DFT, but standard reinforcement learning
is not completely appropriate for DFT, while computational
neuroscience RL does not address the general learning
problem, nor is it typically fast enough for real-time robotic
systems. We arrive at a middle ground: an algorithm we
call Dynamic-Neural (DN) SARSA(λ). This neural-dynamic
RL model is able to learn action sequences from a delayed
reward signal over state and action representations that are

S.K. and M.L. are with the Istituto Dalle Molle di Studi
sull’Intelligenza Artificiale (IDSIA), Manno-Lugano, Switzerland (email:
{sohrob, matthew}@idsia.ch). M.R. and Y.S. are with the Institut für Neu-
roinformatik at the Universitätstr, Bochum, Germany (email: {mathis.richter,
yulia.sandamirskaya}@ini.ruhr-uni-bochum.de)

This work was supported in the European Union Seventh Framework
Program FP7-ICT-2009-6 under Grant Agreement no. 270247 – NeuralDy-
namics.

continuously linked to raw perceptual inputs and motor
dynamics. Moreover, the model shows how eligibility traces
(ET), can be realized in neural circuits by implementing the
ET as an Item and Order working memory [4], [5].

II. BACKGROUND

A. Dynamic Field Theory Perspective

Dynamic Field Theory (DFT [6]) is a mathematical frame-
work, originally used to model reactive motor behaviors [7],
which, more recently, has been used to model complex cog-
nitive processes [8]. In DFT, dynamic neural fields (DNFs)
represent activation distributions of neural populations. Acti-
vation is over graded metric dimensions (e.g., color or space)
and develops in continuous time based on the classical Amari
dynamics [9]. Stable peaks of activation form as a result
of supra-threshold activation and lateral interactions within
a field. DFT architectures are able to deal with continuous
time and real world environments and are thus well suited
for robotic control systems.

The basic learning mechanism in DFT has been a memory
trace of the positive activation of a DNF. This mechanism
has shown quite flexible: it has been used to model long-
term memory with respect to task space [10], [11], the motor
memory of previous movements [12], [13], to encode invari-
ant features [14], and to represent locations of objects [15].
In these models, learning is achieved by the dynamics of the
memory trace’s build-up and decay. Memory traces of multi-
dimensional DNFs implement associative learning between
different modalities. These associations have been used to
learn a serial order of actions [16], from teacher supervision.
We would like the rewarding sequence of behaviors to be
learned autonomously based on a delayed and non-specific
reward signal. While it is impressive what has been accom-
plished using the memory trace alone, it is insufficient for
this purpose.

B. Standard RL Perspective

Standard RL algorithms [1] bring strong guarantees of
convergence and optimality for any type of reward function.
A general statement of the RL problem starts with an agent
that interacts with its environment. At any moment in discrete
time (t), the agent observes the state of the environment
(st), then makes a decision about which action to take (at).
The decision is determined by the agent’s policy (π(s, a)).
The learning task is to attain the optimal policy, which,
when followed, maximizes the long-term reward, through

ar
X

iv
:1

21
0.

35
69

v2
  [

cs
.N

E
] 

 1
4 

M
ay

 2
01

3



exploration. Value-based RL methods focus on estimating
the value function of the optimal policy (the value of a state-
action is the expected future cumulative discounted reward if
the agent takes that action in that state and follows its policy
thereafter).

At the heart of standard value-based RL is Temporal-
Difference (TD) learning. During exploration, TD learning
updates the estimated value of a particular state (or state-
action), based on the estimated value of the subsequent
state. The SARSA algorithm makes use of TD learning
to incrementally update state-action values of the agent’s
exploration policy. Coupled with policy improvement (by
taking the action with the highest estimated value), SARSA
will converge to the optimal policy for any reward func-
tion [1]. SARSA(λ) introduces the eligibility trace (tuned by
0 < λ ≤ 1), so that not just the previous state-action value
is updated, but a limited history of state-action values. That
is, if we denote our TD-error at any given time t as δt, state-
action values which occurred t timesteps back, are updated
by a factor of γtλδt, where 0 < γ ≤ 1 is the discount factor.

In many formulations, the environment is a Markov De-
cision Process (MDP), i.e., the response of the environment
depends solely on the current state and action (the history
of states or actions prior is irrelevant). An example would
be a game of chess, where the next board configuration
depends only on the current configuration and the selected
action, rather than the sequence of moves which lead to
that configuration. But in many environments this property
does not hold. In these cases, the environment is a partially
observable MDP (POMDP). The use of eligibility traces
has not only been shown to speed up learning, but also
been shown to help overcome the problem of learning in
POMDPs [17].

C. Computational Neuroscience RL Perspective

A number of neural models have been able to model
low-level aspects of reinforcement learning, including se-
quence production in Basal Ganglia [3], foraging behavior in
bees [18], and planned and reactive saccades [19]. However,
while these models explain an impressive array of physio-
logical data regarding RL, they make simplified assumptions
about the nature of the environments they model, mainly
dealing with purely immediate reward in a basic conditioning
sense. Moreover, they do not account for how behavior
is generated in continuous time based on realistic sensory
information and tied into actual motor systems.

As noted by Kawato and Sanejima [20], there are three
primary problems facing neural models of RL. First, the
neural TD algorithms learn too slowly to be considered
realistic methods of learning, either in animals or in robots.
Second, even though there is accumulating neurophysiolog-
ical evidence that midbrain dopaminergic neurons encode
TD-error [2], the exact mechanisms by which TD-errors
are computed by neural circuits remain elusive. Specifically,
the TD error involving value estimates alone, in the case
of non-immediate reward, is not accounted for in existing
models. Third, neural models of RL fail to explain complex

Sensory Input

50 100 150 200 250 300

20

40

60

80

+
-

Reward

TD 
error

Perceptual field CoS field

Sensory input

������Heading direction

Motor field

CoS nodes

In
te

nt
io

n 
no

de
s

Value nodes Value opposition 

State/action field

a

s

Transient pulse cells

� � �� �� �� �� �� ��
����

����

����

����

����

�

���

���

���

���

���

� ��� ���� ���� ���� ���� ���� ����
�

���

�

���

TP+

TP-

(s',a') ON (s,a) OFF
Eligibility trace 
field

H
ue

Fig. 1
SYSTEM ARCHITECTURE. SEE TEXT FOR DETAILS.

behavioral learning which incorporate cerebral cortex and
cerebellum.

DN-SARSA(λ) provides a framework which can address
these conceptual issues, by showing how computational
enhancements to learning, such as eligibility traces, can
be realized in neural circuits; to propose a mechanism by
which TD-errors with eligibility traces can be computed,
while maintaining the Bellman consistency; and to show how
neural reinforcement learning algorithms can interact with
sensory cortices, all of which operate in real-time, on real
inputs. Our overall architecture therefore integrates standard
RL, with its strong guarantees for general environment,
and neuroscience-based RL, with its biological plausibility
for continuous environment, with DFT, with its capacity to
handle complex, real-time and dynamic environments.

III. THE DN-SARSA(λ) ARCHITECTURE

A. Overview

The DN-SARSA(λ) model consists of a neural-dynamic
architecture for generation of behavioral sequences as well



as a neural-dynamic reinforcement learner that learns the
values of each behavior, relative to a behavior that preceded
it. Fig. 1 shows a diagram of an architecture, which includes
DN-SARSA(λ) and simplified sensory and motor systems.
Elementary behaviors. A number of coupled dynamic neu-
ral fields (DNFs) [9] and neural nodes form the elementary
behaviors (EBs) of the agent’s behavioral repertoire. Each EB
is defined by an intention and the condition-of-satisfaction
(CoS). The intention node has a weight vector that biases
(e.g., selects) specific bottom-up sensory inputs (detected
features from the environment) and uses the information
gathered from the selected features to drive low-level motor
commands. For example, an intention of a “go to red”
behavior biases the red hue in the input color space, so that
only the position of the red object becomes salient. This
position becomes an attractor to a motor system, and the
robot will go towards the red object. The corresponding CoS
node has an input bias that is used to tell when the behavior
has successfully completed. This is similar to [21], where a
sequence of behaviors is chained together through a set of
ordinal nodes; instead we want to learn a particular sequence
from delayed reward.

For the reinforcement learner, an active CoS node repre-
sents the state, following which the agent decides an action
— which intention to activate next. A state-action DNF
builds a peak of positive activation in each transition phase
between EBs, when the CoS of the previous EB is still active
and the intention of the next EB is already activated.

The positive activation in the state-action DNF ultimately
serves as input to an Item-and-Order working memory [5],
[22], wherein the order of a sequence is encoded by relative
amounts of activity across neurons representing these transi-
tions. We argue that the properties of Item and Order working
memories which give rise to this relative (graded) activity
pattern, are also what make it computationally analogous
to an eligibility trace, and are crucial in their ability to
maintain fixed (sustained) activation levels during variably
timed action intervals while an action is being produced.

The eligibility trace’s pattern of activity excites a value
opposition (VO) field, which sets input to a dynamical array
performing calculation of a Temporal Difference error. The
calculated value of the TD-error modulates learning, imple-
mented as a Hebb-like process, whose long-term memory
values, i.e., value nodes, represent the stored values (state-
action, or Q, values) of the reinforcement learner. The Q-
values are updated in the learning process and are utilized
during sequence production to select the next EB.

B. Sequence Generation Dynamics

Dynamic Neural Fields. The activation level of DNFs
uses the following differential equation, as analyzed by [9]

τ u̇(x, t) = −u(x, t)+h+S(x, t)+

∫
ω(x−x′)σ(u(x, t))dx′,

(1)
where h < 0 is a negative resting level and S(x, t) is the sum
of external inputs, for instance from sensors or other DNFs.

The Gaussian-shaped kernel ω(∆x) determines the lateral
interaction within the field. For supra-threshold activation,
this interaction leads to stable peaks of activation, the unit
of representation in DFT.

Elementary Behaviors. In order to represent actions (e.g.,
”move to red object”) in a real-world environment and in
continuous time, we use a DFT based model of an elementary
behavior [23]. An EB consists of two dynamical structures:
a representation of the intention (e.g., move toward red
object) and of the condition of satisfaction (e.g., the agent
is at the red object). At every point in time, the CoS DNF
matches the intention with the current sensory input. Upon a
successful match, the CoS signals the completion of the EB
and deactivates its intention. The structure of EBs enables
segmentation of a continuous behavioral flow into discrete
intentional (goal-directed) actions.

To represent the above, we’ve used coupled intention and
CoS nodes, linked to perceptual and CoS fields. An example
of a perceptual field is one which takes camera input, and
transforms it so that the y-axis represents maximum hue,
and the x-axis is pixel column [21]. The corresponding CoS
field, defined over the same axes as the perceptual field,
serves as input to the CoS nodes. Intention nodes provide
top-down biases to the perceptual and CoS fields, and these
biases effectively define the behaviors. An intention node of
a particular EB (e.g., “find yellow”) will bias the appropriate
hue in the perceptual field and the appropriate area (e.g., the
center) of the CoS field. Bottom-up input from the CoS field
to an EB’s CoS node allow the node to become active in
response to the stimuli which define when the behavior has
been completed [21].

Superposition of the perceptual field and the preshape
from intention nodes results in regions of super-threshold
activity, which then drive low-level motor commands via the
motor field, e.g., setting an equilibrium point for a muscle
or an angular velocity for the wheels of a mobile robot.
An example motor field is a simple 1D space representing
heading direction. As the agent performs an action, environ-
mental stimuli such as visual input from cameras, or position
information from motor encoders, change continuously in
time, resulting in changes in the pattern of activity across
the perceptual field.

The intention nodes balance self-excitation, inhibition
from its own CoS node, and excitation from its value node
(value nodes are explained later). The parameters are tuned
so that, when no intention node is above threshold (sigmoidal
f is near zero for all) a winner-take-all behavior results.
Otherwise, a single intention node stays “on” (high f ) due
to self-excitation and suppression of the others. The equation
for each intention node’s activity is given by:

τ intḋinti = −dinti + hint + cint+ fS(dinti ) + cintvald
val
i

−cint−
∑
k 6=i

fS(dintk )− cintcosfS(dcosi ) (2)

The CoS nodes signal when a behavior has been com-



pleted, on the basis of bottom-up perceptual input. The
equation for each CoS node is given by:

τ cosḋcosi = −dcosi + hcos + ccos+ fS(dcosi )

−ccosint

∑
k 6=i

f(dintk ) + ccosinput

∑
j

f(U cos
i,j ) (3)

Activities of both nodes, (dint,cosi ), in the absence of
excitatory or inhibitory inputs are driven by a resting level,
hint,cos as well as a passive decay term, −dint,cosi which
drives the node’s activity back towards a resting equilibrium.
Self-excitatory feedback (cint,cos+ fS(dint,cosi )) stabilizes ac-
tivity of a node if an external input pushes it through the ac-
tivation threshold. Lateral inhibition (−cint−

∑
k 6=i fS(dintk ))

among intention nodes causes these nodes to compete in
a winner-take-all fashion, such that only a single intention
node can remain on, while suppressing others. This com-
petition is biased by nodes which encode learned values
via the term cintvald

val
i . Unlike the intention nodes, the CoS

nodes receive bottom-up inputs from the perceptual field
ccosinput

∑
j f(U cos

i,j ) which excite a CoS node when environ-
mental conditions match the expected context which defines
that a behavior is completed. Once a behavior is completed,
the CoS node of the given behavior will become active,
and shut down the active intention node by inhibitory inputs
−cintcosfS(dcosi ).

In our simulation, we set the parameters in these equations
as τ int = τ cos = .3, and hint = hcos = 5. The inhibitory
coefficients were set to cint− = 10 and cintcos = 5 and −ccosint =
2, while the excitatory coefficients were set as cint+ = 10 and
cintvald

val
i = 20.

The sigmoid function fS ensures that output activations
are bounded between 0 and 1, and is given by:

fS =
1 + β(x− µ)

2(1 + β|x− µ|)
(4)

Because of winner-take-all (WTA) competition between
intention nodes of the EBs, only a single behavior can be se-
lected and active at any given time. This competition is driven
either by 1. endogenous random activity (during exploration),
or 2. by long-term memory representations of values (during
exploitation). These values, stored in weights Wij , can be
read out into value nodes. In the absence of randomized
exploration, the value weights specify a chain of behaviors.
They cause one behavior to reliably follow another. Ideally,
the chain of behaviors will serve to maximize the agents
expected future reward.

The activity of the value nodes is computed as:

τval ˙dvali (t) =
∑
j

f(dcosj )Wij . (5)

Afterwards they are divisively normalized to sum to one.
The value nodes, intention nodes, CoS nodes, perceptual

and motor fields work together to produce a sequence of

elementary behaviors. In the next subsection, we discuss the
RL part, the goal of which is to tune the values.

C. Reinforcement Learner

The second major component of DN-SARSA(λ) is the re-
inforcement learner. An initial requirement of an RL system
is a representation of states and actions.

State-Action Representations. In DN-SARSA(λ) a
state/action field is a set of discrete nodes organized in a
matrix, wherein each row receives input from one of the
intention nodes, and each column receives inputs from one
of the CoS nodes of the available EBs. The sites in the
state/action field are excited in response to coincident ac-
tivations of CoS and intention nodes, which happens only in
a transition phase between two EBs. By detecting transitions
in this manner, the states in the RL sense are defined by the
CoS nodes (i.e., which behavior the agent has just finished),
and the actions are defined by the intention nodes (i.e., what
behavior the agent selects next).

The SA (state-action) cells (Iij) are not implemented as
differential equations, but rather assume steady state dynam-
ics, and are defined by:

Iij = [
∑
k 6=i

∑
j 6=l

dintk dcosl ]fH(fs(d
int
i )fs(d

cos
j )) (6)

where fH is the Heaviside step function.
Transient Pulse (TP)-Cells. The activity within the

state/action field excite another field of nodes known as
transient pulse cells [24]. Each node in this field is modeled
as a coupled circuit composed of an excitatory and inhibitory
TP cell (TP+ and TP− respectively). The activities of each
of the TP+ cells in these circuits behave as onset and
offset detectors for their respective state/action nodes, by
producing a transient excitatory pulse in response to the onset
of input from the state/action field, and a transient inhibitory
(negative) pulse in response to the offset of that activity.

The behavior of the field of coupled excitatory (TP+
ij ) and

inhibitory (TP−ij ) cells is given by:

τTP ˙TP+
ij = (−TP+

ij + Iij − TP−ij ) (7)

τTP ˙TP−ij = (−TP−ij + Iij) (8)

Both the excitatory and inhibitory cells contain a passive
decay term (−TP+

i and −TP−i ), as well as excitatory input
from their corresponding state/action cells, Iij . In addition,
the TP+

ij receive inhibition from their corresponding in-
hibitory cell, TP−ij . For each intention, i, and each CoS,
j, both cells (TP+

ij and TP−ij ) are initially at rest. When
the input, Iij , from the state/action field turns on, both cells
integrate activity at a rate proportional to this input. However,
whereas the TP−ij cell integrates activity until it reaches
equilibrium (while input remains on, equilibrium is reached
at the value of the input), the TP+

ij cell will begin to decrease
in activity as TP−ij increases. In fact, it is easy to see that
at equilibrium, TP+

ij = Iij − TP−ij , which will therefore



approach zero. Once input shuts off, TP+
ij is approximately

0, whereas TP−ij is approximately equal to the input strength.
As a result, TP+

ij will experience an initial burst of inhibition,
until both TP+

ij and TP−ij then relax back to rest at 0. In
both equations, the parameter τ = 1/2.

In DN-SARSA, the onset and offset detection capabilities
of TP cells have multiple uses. Firstly, because they exhibit a
fixed-width (in time) pulse of activation, they allow buffering
of inputs to the eligibility trace layer, in order to prevent
persistent inputs to those cells. Secondly, as consequence
of the fact that they detect onsets and offsets of inputs,
they can serve as the mechanism by which calculation
Q(s′, a′) − Q(s, a) is calculated. That is, if inputs occur
in back-to-back fashion, such a mechanism results in the
positive activation of TP cells corresponding to the currently
active state/action pair (s′, a′), while simultaneously produc-
ing negative activation of the previous state action pair (s, a).

Activity from the TP+ cells serves as input to a neural
structure, wherein eligibility traces for the history of the
activated state/action pairs is maintained, as described next.

Eligibility Trace. Since the eligibility trace in RL [1] may
be interpreted as a form of a working memory, we simulate
the eligibility trace (ET) field as an Item and Order working
memory, which has been used to model a range of behavioral
and psychological data regarding working memory, speech
perception, and unsupervised sequence learning [4], [5]. Item
and Order working memories encode the order of a sequence
of presented items by the relative levels of activation across
those items. In DN-SARSA(λ), more recently occurring
state/action transitions result in higher levels of activity in the
ET field than those state/action transitions having occurred
further in the past. This property emerges naturally due to
a ubiquitous neural architecture, known as a recurrent on-
center, off-surround network, whose cells obey shunting dy-
namics. This structure ensures that the summed total activity
is bounded, and that shunting dynamics lead to divisive
normalization, which causes individual cell activities to be
reduced by constant ratio factors upon presentation of new
items. For a more technical analysis, see [22]. Because of
the recurrent on-center, off-surround structure, cell activities
can reach sustained equilibrium values in the absence of
inputs. Further, because the inputs to this field are brief
duration pulses corresponding to the onsets of inputs from
state/action representations, the activity pattern across this
field reaches equilibrium, and is no longer altered regardless
of how long the state/action cell itself remains active. Taken
together, these processing capabilities give rise to a system
which can sustain a fixed activation level as variable length
actions are undertaken, and whose activities self-stabilize in
periods between, as well as during, subsequent actions.

For a working memory cell which encodes the state/action
pair indexed by (i, j), its activity uij is given by:

τu ˙uij = (1− uij)(αfP (TP+
ij ) + βuij)

−uij(α
∑

k,l 6=i,j

fP (TP+
kl) + β

∑
k,l 6=i,j

ukl) (9)

The cell’s activity is bounded below by 0, and bounded
above by 1 due to the excitatory shunting term (1 − uij),
which prevents the inputs from having any effect once
uij = 1, and the inhibitory shunting term (−uij) which
prevents the inhibitory inputs from having any effect once
−uij = 0. Inputs from state/action pairs (Iij) are pulse
inputs resulting from joint activations in CoS and Intention
nodes across the EBs. There are also on-center (βuij) and
off-surround (β

∑
k,l 6=i,j ukl), which, when coupled with

shunting dynamics, give rise to the Item and Order properties
discussed above. The parameters are set as α = 1.1 and
β = .8.

Value Opposition Field. The pattern of activity which
unfolds across the eligibility trace field excites a value
opposition (VO) field, which prepares the calculation of the
TD-error. In the VO field, the representations of the currently
active state/action pair (with value Q(s′, a′)) and the negative
of the previously active state/action pair (with value Q(s, a))
become active. This results from the onset/offset detections
of state/action pairs by the TP cells in the following way.
When the state/action pair (s′, a′) is selected to be performed,
it’s corresponding TP+ cell emits a pulse of activity. At
the same time, the previous, just finished state/action pair,
(s, a), has a TP+ cell emitting a negative pulse of activity,
since its corresponding state/action representation is the most
recent one to have turned off. All other TP+ cell activities
remain zero. Consequently, the onset / offset detectors simul-
taneously exhibit excitatory activation in the currently active
state/action pair, with inhibitory activation in the previously
active state/action pair. These TP-cell activations gate inputs
from the eligibility trace field to the VO field. These inputs
are also weighted by LTM traces which represent the Q-
Values. Together, these multiplicative inputs ensure that the
activity in the VO field represent Q(s′, a′), and −Q(s, a).

Activity in the Value Opposition field follows the dynam-
ics:

τOȮij = (−Oij + γfH(uij)WvufH(TP+
ij )

−fH(uij)WvufH(−TP+
ij ), (10)

where the function fH(w) is the Heaviside function.
Because the only excitatory TP+ cell activity corresponds
to the presently active state action pair, (s′, a′), and the
only inhibitory TP+ activity corresponds to the previously
active state action pair, (s, a) at equilibrium gives Oij =
(γW(s′,a′) −W(s,a)).

where the weights correspond to our learned Q-values,
and the indices i,j have been replaced by the presently and
previously active state action pairs. Our parameter τO =
1/10, and γ = .8.

TD-Error. The TD-error is calculated in part by a value
cell that receives excitatory inputs from all cells in the



1.5 1.55 1.6 1.65 1.7 1.75 1.8
x 104

1

2

3

4
Behavior Sequence: Intention Output (Exploration)

B
eh

av
io

r

7.5 7.55 7.6 7.65 7.7 7.75 7.8
x 104

1

2

3

4
Behavior Sequence: Intention Output (Exploitation)

B
eh

av
io

r

4

−4
−2

0
2
4

1.5 1.55 1.6 1.65 1.7 1.75 1.8
x 10

Activation: Intention Nodes (Exploration)

1.5 1.55 1.6 1.65 1.7 1.75 1.8
x 104

−6
−4
−2

0
2

Activation: Condition of Satisfaction (Exploration)

7.5 7.55 7.6 7.65 7.7 7.75 7.8
x 104

−4
−2

0
2
4

Activation: Intention Nodes (Exploitation)

7.5 7.55 7.6 7.65 7.7 7.75 7.8
x 104

−6
−4
−2

0
2

Activation: Condition of Satisfaction (Exploitation)

Time Time

Behavior 1 Behavior 2 Behavior 3 Behavior 4

Fig. 2
ILLUSTRATION OF HOW OUR CONTINUOUS TIME PROCESS MODEL DN-SARSA(λ) CONVERTS SENSORY-MOTOR REPRESENTATIONS TO

DISCRETE-LIKE EVENTS. LEFT: THE ACTIVATION OF INTENTION AND CONDITION OF SATISFACTION NODES DURING A SHORT CHUNK OF TIME

DURING THE ROBOT’S EXPLORATION PHASE. LEFT BOTTOM: THE INTENTION NODE OUTPUT, INDICATING THE BEHAVIORAL SEQUENCE. NOT ALL

BEHAVIORS TAKE THE SAME AMOUNT OF TIME. RIGHT: AFTER LEARNING. THE OPTIMAL SEQUENCE WAS LEARNED AND HAS STABILIZED.

VO field. This ultimately results in a cell whose activity
computes the difference between the stored LTM values for
the currently and previously active State/Action pairs.

The value cell activity is given by:

τv v̇ = (−v +
∑

Oij) (11)

Because the LTM weights Wvu ultimately come to encode
our desired Q-values, the value cell at equilibrium calculates,
v =

∑
ij O ≈ γWQ(s′,a′) − WQ(s,a). The value stored

here then modulates our learning law along with incoming
rewards.

LTM Weights (Q-Values). The update rule for the weight
values of connections between the state/action pairs essential
mirror the form of the update equation in SARSA. In partic-
ular, the Q-values (that is Q(s′, a′) and Q(s, a) representing
the Q-values of the current and previous s/a pairs) are values
of the weights, and the working memory based eligibility
trace values correspond to the SARSA eligibility trace values.
The weight update equation is Eq. 12,

Ẇij = α(1− SAij)[r + v]uij (12)

The summed activity across the VO field, plus any external
reward present, modulate the weights storing Q-values, as do

the eligibility traces which are the pre-synaptic cells to these
weights.

IV. IMPLEMENTATION AND RESULTS

A. Environment and Behaviors

The model is tested on a robotic vehicle simulated in
the Webots simulator, performing a search for rewarding
sequences of colored blocks, as illustrated in Fig. 3(a). The E-
Puck robot is surrounded by 16 blocks of four different colors
(red(R), green(G), blue(B), yellow(Y)), which are picked
up by the robot’s camera and are represented as localized
color-space distributions in the perceptual DNF. The robot
“finds” a particular color, as determined by the currently
active intention node, by rotating on the spot so that an object
of the given color falls onto the center of the image of the
vehicle’s camera. Once centered, activation in the CoS node
of the particular EB initiates a new EB to be performed (i.e.,
a new color to be searched for). If the robot finds the correct
five-item sequence G → B → Y → R → G, a positive
reward is provided for a few time steps.

We note here that the proof-of-concept implementation
described in this section uses rather simplified EBs. The DN-
SARSA(λ) learning system will work with other EBs than
these ones, for example, more sophisticated DNF behaviors
that enable mobile robots to deal with obstacles [25].



1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

5x 104

Run #

Ti
m

e 
S

te
p

Time When Correct Sequence Learned

0 1 2 3 4 5 6 7
x 104

0

5000

10000

15000

Time Step [S * 32]

C
um

ul
at

iv
e 

R
ew

ar
d 

Explore

Exploit

0 2000 4000 6000 8000 10000 12000
−2

0

2

4

Error Measurements
A

vg
. T

D
−E

rr
or

ExploitExplore
0 1 2 3 4 5 6 7

x 104

0

1

2 x 104

Time Step [S * 32]

C
um

ul
at

iv
e 

R
ew

ar
d Sequence Finding Difficulty(Run 6)

(a)

(b) (c)

(d) (e)

Fig. 3
(A) SIMULATION ENVIRONMENT IN WHICH A E-PUCK VEHICLE AT THE CENTER ROTATES ON THE SPOT TO DIRECT ITS CAMERA AT COLORED OBJECTS

AND IS REWARDED FOR DOING SO IN A PARTICULAR ORDER OF COLORS. (B) CUMULATIVE REWARD AS A FUNCTION OF TIME AVERAGED ACROSS 13
RUNS. IN THE FIRST 50, 000 TIME STEPS (32 TIME STEPS PER SECOND), THE SYSTEM RANDOMLY SELECTS INTENDED COLORS; THEREAFTER IT

SELECTS THE MOST VALUABLE INTENDED COLOR. (C) TIME NEEDED TO LEARN THE REWARDED SEQUENCE IN EACH OF THE 13 RUNS. (D) AVERAGE

TD-ERROR. (E) THE CUMULATIVE REWARD FROM EXAMPLE RUN (6)

Note that this is a POMDP, since our agent’s state encodes
the previously completed behavior only. In our environment,
the optimal policy is not representable given just the observ-
able state. If we use TD(0), for example, the horizon will be
too short — if R → G → Y → B → R is uncovered and
rewarded, the model will first boost values from B → R, and
will next boost values of any of the three R→ B, G→ B,
Y → B, but there will be no feedback so that only the correct
one could be learned. Memory of the last three behaviors
is needed to reliably predict reward. Due to the eligibility
trace, DN-SARSA(λ) can learn the sequence succesfully. It
is known that eligibility traces are not a complete solution
to POMDPs, but eligibility traces can lead to good or even
optimal POMDP solutions in some cases.

B. Setup of the Model

Initially, the value-encoding weights of the reinforcement
learner are set to zero. Ultimately, the goal for the robot
is that it discovers and learns the target sequence by rein-
forcement learning. We use a random exploration strategy
during the first 50, 000 time steps in which noise is added to
the weights. This causes the robot randomly select EBs for
approximately 300 orientation behaviors that occur during
this period. One could imagine future work using more
sophisticated exploration methods [26]. After 50, 000 steps,
the noise is removed and the robot operates in exploitation
mode, consistently excecuting what it estimates to be its most
valuable next behavior while continuing to learn.

C. Results

Please see Fig. 2. This illustrates how temporally discrete
events emerge from continuous time activation dynamics in
the elementary behaviors. These events arise from instabil-
ities in the neural dynamics triggered by CoS onsets. The
left column illustrates the irregular activation of EBs during
exploration, while the right column shows the consistent
sequence of activated EBs in the exploitation phase.

Fig. 3(b)-(e) shows results in terms of the robot’s learning
performance. In all trials in which the robot uncovered the
rewarding sequence in exploration mode, it was able to
eventually execute the optimal policy in exploitation mode.
In some trials, the optimal policy was attained only in the
exploitation phase, which showed that it is useful to maintain
learning both during exploration and exploitation. Learning
in the exploitation phase consists primarily of unlearning
incorrect “shortcuts” inherited from the exploration phase.
This occurs, for example, when the robot finds the sequence,
and correctly values the transition from R → G the most,
but incorrectly also values the transition from any other color
than Y to R. During exploitation the robot realizes that
shortcuts do not lead to reward (by executing them and not
receiving any reward). Their values are diminished until the
true rewarding sequence remains.

Fig. 3(c) shows the time at which the sequence was first
uncovered. Fig 3(e) illustrates the reward from one run,
in which the robot finds the target sequence a first time
after about 30, 000 steps, finds it again (by luck). When
the system enters exploitation mode its starts maximizing
reward by doing the correct thing over and over again until



Fig. 4
THE E-PUCK IN ITS ENVIRONMENT, SURROUNDED BY THE COLORED

OBJECTS OF DIFFERENT SIZES AND SHAPES. THE ”THOUGHT BUBBLE”
SHOWS THE REWARDING SEQUENCE OF COLORS.

the simulation ends. Fig. 3(d) shows the averaged TD-error,
illustrating that the neural system learns to predict discounted
future reward. The detection of reward acts as an instability
for the reinforcement learner, and the learning mechanism is
simply a constant drive towards stability.

D. Transfer to Real Robot

To show that our system can deal with real sensory
information and real motor system, we transferred a set of
weights learned from a successful run of simulation to a real
E-puck (see Fig. 4). A video of the robot successfully moving
through two iterations of the sequence is available at http:
//www.idsia.ch/˜luciw/videos/DFTBot.mp4.

In the video, the top row shows the sensorimotor process:
from sensory input to the perceptual field and to the motor
field. One can see the different colors that are detected
along the hue dimension (Y-axis of perception), and how
priming from the different intention nodes causes selection
of one color and execution of the corresponding behavior.
Observe that the system is robust against perceptual noise
and fluctuation in the visual channel (e.g. changing lighting
conditions, shades, mismatch between the robotic and the
simulated camera). The activities of the intention and CoS
nodes in the bottom row show the behavioral switching
dynamics. The CoS field is also shown here, which illustrates
the link from perception to behavior completion. Finally, the
learned value weight matrix is shown, where white indicates
a high value, with CoS (state) on the y-axis and intention
(action) on the x-axis. Note that it encodes the rewarding
sequence.

The successful transfer onto a real robotic system shows
that the DN-SARSA(λ) reinforcement learner brings about
a representation that is capable of producing behavior in the
physical robot based on continuous (raw) visual input and
physical motors, driven by continuous-time dynamics.

V. CONCLUSION

The DN-SARSA(λ) model provides a framework which
shows how computational learning algorithms can be in-
corporated into a continuous neural-dynamical model. This
enables autonomous learning and acting in continuous and
dynamic environments, a challenge that is easily overlooked
when formalizing the learning problem in discretized spaces
without accounting for their coupling to sensory-motor dy-
namics. Future work involves improving the exploration
phase, which in this paper is a simple random action selec-
tion, and integrating with a recently introduced architecture
for organizing elementary behaviors [27]. DN-SARSA(λ)
can potentially lead to learning of the behavioral constraints
in that architecture.

Acknowledgement. We’d like to thank Alexander Förster
for mounting the camera on the E-puck.

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement learning: An introduction.
Cambridge Univ Press, 1998, vol. 1, no. 1.

[2] W. Schultz, P. Dayan, and P. Montague, “A neural substrate of
prediction and reward,” Science, vol. 275, no. 5306, pp. 1593–1599,
1997.

[3] G. Berns and T. Sejnowski, “A computational model of how the
basal ganglia produce sequences,” Journal of Cognitive Neuroscience,
vol. 10, no. 1, pp. 108–121, 1998.

[4] S. Grossberg and S. Kazerounian, “Neural dynamics of speech percep-
tion: Phonemic restoration in noise using subsequent context.” Journal
of the Acoustical Society of America, vol. 125, no. 1, 2011.

[5] S. Grossberg, “Behavioral contrast in short-term memory: Serial binary
memory models or parallel continuous memory models?” Journal of
Mathematical Psychology, vol. 3, pp. 199–219, 1978.

[6] G. Schöner, “Dynamical systems approaches to cognition,” in Cam-
bridge Handbook of Computational Cognitive Modeling, R. Sun, Ed.
Cambridge, UK: Cambridge University Press, 2008, pp. 101–126.

[7] K. Kopecz and G. Schöner, “Saccadic motor planning by integrating
visual information and pre-information on neural dynamic fields,”
Biological cybernetics, vol. 73, no. 1, pp. 49–60, 1995.

[8] J. P. Spencer, S. Perone, and J. S. Johnson, “The dynamic field theory
and embodied cognitive dynamics,” Toward a new grand theory of
development, pp. 86–118, 2009.

[9] S. Amari, “Dynamics of pattern formation in lateral-inhibition type
neural fields,” Biological Cybernetics, vol. 27, pp. 77–87, 1977.

[10] K. Kopecz and G. Schöner, “Saccadic motor planning by integrating
visual information and pre-information on neural, dynamic fields,”
Biological Cybernetics, vol. 73, pp. 49–60, 1995.

[11] W. Erlhagen and G. Schöner, “Dynamic field theory of movement
preparation,” Psychological Review, vol. 109, pp. 545–572, 2002.

[12] E. Thelen, G. Schöner, C. Scheier, and L. Smith, “The dynamics of
embodiment: A field theory of infant perseverative reaching.” Brain
and Behavioral Sciences, vol. 24, pp. 1–33, 2001.

[13] G. Schöner and E. Thelen, “Using dynamic field theory to rethink
infant habituation,” Psychological Review, vol. 113, no. 2, pp. 273–
299, 2006.

[14] C. Faubel and G. Schöner, “Learning to recognize objects on the fly:
A neurally based dynamic field approach,” Neural Networks, vol. 21,
no. 4, pp. 562–576, 2008.

[15] S. K. U. Zibner, C. Faubel, I. Iossifidis, G. Schöner, and J. P. Spencer,
“Scenes and tracking with dynamic neural fields: How to update
a robotic scene representation,” in Proceedings of the International
Conference on Development and Learning (ICDL’10), 2010.

[16] Y. Sandamirskaya and G. Schöner, “An embodied account of serial
order: How instabilities drive sequence generation,” Neural Networks,
vol. 23, no. 10, pp. 1164–1179, 2010.

[17] M. Todd, Y. Niv, and J. Cohen, “Learning to use working memory
in partially observable environments through dopaminergic reinforce-
ment,” in Neural information processing systems. Citeseer, 2009, pp.
1689–1696.

http://www.idsia.ch/~luciw/videos/DFTBot.mp4
http://www.idsia.ch/~luciw/videos/DFTBot.mp4


[18] P. Montague, P. Dayan, C. Person, T. Sejnowski et al., “Bee foraging
in uncertain environments using predictive hebbian learning,” Nature,
vol. 377, no. 6551, pp. 725–728, 1995.

[19] J. Brown, D. Bullock, and S. Grossberg, “How laminar frontal cortex
and basal ganglia circuits interact to control planned and reactive
saccades,” Neural Networks, vol. 17, no. 4, pp. 471–510, 2004.

[20] M. Kawato and K. Samejima, “Efficient reinforcement learning: com-
putational theories, neuroscience and robotics,” Current opinion in
neurobiology, vol. 17, no. 2, pp. 205–212, 2007.

[21] Y. Sandamirskaya, M. Richter, and G. Schoner, “A neural-dynamic
architecture for behavioral organization of an embodied agent,” in De-
velopment and Learning (ICDL), 2011 IEEE International Conference
on, vol. 2. IEEE, 2011, pp. 1–7.

[22] S. Grossberg, A theory of human memory: Self-organization and
performance of sensory-motor codes, maps, and plans. New York:
Academic Press, 1978, pp. 233–374.

[23] Y. Sandamirskaya, M. Richter, and G. Schöner, “A neural-dynamic
architecture for behavioral organization of an embodied agent,” in
IEEE International Conference on Development and Learning and on
Epigenetic Robotics (ICDL EPIROB 2011), 2011.

[24] B. Rhodes, “Learning-driven changes in the temporal characteristics
of serial movement performance: A model based on cortico-cerebellar
cooperation,” Ph.D. dissertation, Department of Cognitive and Neural
Systems, Boston University, 1999.

[25] E. Bicho and G. Schöner, “The dynamic approach to autonomous
robotics demonstrated on a low-level vehicle platform,” Robotics and
autonomous systems, vol. 21, no. 1, pp. 23–35, 1997.

[26] J. Schmidhuber, “Formal theory of creativity, fun, and intrinsic mo-
tivation (1990–2010),” IEEE Transactions on Autonomous Mental
Development, vol. 2, no. 3, pp. 230–247, 2010.

[27] M. Richter, Y. Sandamirskaya, and G. Schoner, “A robotic architecture
for action selection and behavioral organization inspired by human
cognition,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 2457–2464.


	I Introduction
	II Background
	II-A Dynamic Field Theory Perspective
	II-B Standard RL Perspective
	II-C Computational Neuroscience RL Perspective

	III The DN-SARSA() Architecture
	III-A Overview
	III-B Sequence Generation Dynamics
	III-C Reinforcement Learner

	IV Implementation and Results
	IV-A Environment and Behaviors
	IV-B Setup of the Model
	IV-C Results
	IV-D Transfer to Real Robot

	V Conclusion
	References

