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Abstract—This paper proposes an efficient neural network
model for learning the articulatory-acoustic forward and inverse
mapping of consonant-vowel sequences including coarticulation
effects. It is shown that the learned models can generalize vowels
as well as consonants to other contexts and that the need for
supervised training examples can be reduced by refining initial
forward and inverse models using acoustic examples only. The
models are initially trained on smaller sets of examples and
then improved by presenting auditory goals that are imitated.
The acoustic outcomes of the imitations together with the
executed actions provide new training pairs. It is shown that
this unsupervised and imitation-based refinement significantly
decreases the error of the forward as well as the inverse
model. Using a state-of-the-art articulatory speech synthesizer,
our approach allows to reproduce the acoustics from learned
articulatory trajectories, i.e. we can listen to the results and
rate their quality by error measures and perception.

I. INTRODUCTION

Speech production and the imitation of perceived sounds
requires knowledge about how to control the articulators
of the vocal tract in order to achieve desired acoustics.
Knowledge of two mappings is required in this context:
The forward mapping estimates which acoustics will result
from a specific articulatory movement. This corresponds
to the learner’s expectation of which acoustics his vocal
tract will produce in response to a motor command. The
inverse mapping, in contrast, estimates which vocal tract
movements are required in order to reproduce an acoustic
signal. Knowledge of the inverse mapping enables acoustic
imitation.

Especially the inverse mapping is extensively studied due
to evidence that articulatory parameters are beneficial for
speech recognition [1]. Proposed models to solve this non-
linear and non-unique mapping include neural networks
[2], statistical methods [3] and codebook approaches [4]
and generally rely on large data bases of human recorded
articulatory-acoustic data, e.g. the MOCHA data base [5].
However, such supervised learning does not explain how an
agent can learn and refine its model for speech recognition
and production. Developmental approaches which aim at

modeling the autonomous acquisition of speech are promis-
ing, but often focus on rather restricted speech production
skills, e.g. vowel production and reinforcement using formant
space representations [6], [7], [8], [9], [10]. The biologically
inspired DIVA model [11] and similar models (e.g. [12]) can
produce consonants, but do not learn the inverse mapping
directly. Instead acoustics and articulation are connected by
a map of speech sounds. A recent related work is [13]
where goal babbling is shown to lead to the emergence of
consonant-like structures. But due to the low-dimensional
acoustic representation their model does not distinguish be-
tween different consonants.

This paper tackles the question of how to efficiently learn
the forward and inverse mapping for syllable sequences from
few supervised training examples and how such initial models
can be refined in an unsupervised manner by trying to imitate
acoustic stimuli.

In a first step, we apply an efficient recurrent neural
network approach to learn the forward and inverse model
of speech production for syllable sequences which cover
the coarticulation of eight vowels and eight consonants. The
recurrent neural network model handles syllable sequences
as continuous trajectories in the acoustic as well as in
the articulatory space. The network dynamics account for
temporal dependencies in the sequences.

In a second step, we train initial forward and inverse
models on a small set of articulatory-acoustic example tra-
jectories. These initial models are improved by presenting
auditory goals that the learner tries to imitate. The acoustic
outcomes of the imitations together with the executed actions
serve as new training pairs for sequential learning. This
refinement process is similar to goal babbling as implemented
in [10] and [13], and unsupervised, i.e. it requires only
acoustic data.

While the initial models can produce the vowels and
consonants in specific contexts, this paper shows that it is
indeed feasible to improve the generalization accuracy of
such initial models in novel contexts by trying to imitate
acoustic stimuli. This result contributes to earlier demonstra-
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Fig. 1. The forward and inverse mapping between articulatory and acoustic parameter spaces.

tions of refinement, e.g. learning direct inverse kinematics
of a robotic arm [14], and extends these results to the
imitation of complex articulatory-acoustic feature trajectories
with intricate temporal dynamics. In contrast to [14], the
proposed method does not require the derivation of the
forward or inverse model.

A learner using its own prediction to teach itself is also a
common technique in the field of semi-supervised methods
for pattern classification and known as self-training (e.g.
[15]). In self-training, a confidence criterion is typically
used to decide which unlabeled examples should be used
for retraining with the estimated class labels. Here, instead
the learner has the forward model (i.e. its vocal tract)
available. This paper contributes to the research on self-
training by showing that this principle can also be applied
to learning of high-dimensional and continuous sequence
transduction tasks.

In comparison to autonomous exploration techniques, e.g.
using goal babbling ([16], [10]), learning in this paper is
guided by a teacher similar to [6], [7], [9] and [13]. In [13],
mappings were implemented as Gaussian mixture models,
while we apply recurrent neural networks. Besides, the focus
in [13] is on modeling the development of vocalization in
terms of active exploration; utterances are characterized by
formant values and intensity only. This work, in contrast,
focuses on teaching the learner to reproduce a large set
of different consonant and vowel sounds by using a rich
acoustic representation.

We show that the error of the forward and inverse model
can be decreased significantly by sequentially retraining both
models with the estimated articulation and the corresponding
acoustic outcome. The results are systematically evaluated by
standard error measures and by perceptual tests, i.e. rating the
acoustics produced by the model.

II. LEARNING THE ARTICULATORY-ACOUSTIC MAPPING

In this section a set of articulatory-acoustic sequences is
introduced and a cross-validation test is conducted which
verifies that mappings between the articulatory and acoustic
representations of these sequences can be learned with ex-

cellent generalization errors by an efficient recurrent neural
network model.

In the following, we refer to the model that maps from
articulatory to acoustic space as the forward model f , while
the inverse model g realizes the mapping from the acoustic to
the articulatory space. Trajectories in the articulatory space
are denoted by x(k) and acoustic trajectories by y(k), where
k denotes the time step. We aim at training an artificial neural
network to approximate the forward model y(k) = f (x(k))
as well as the inverse model x(k) = g (y(k)). To account
for the dynamical properties of the feature trajectories, a
recurrent neural network model is used to learn the forward
and inverse model, respectively (cf. Fig. 1).

A. Articulatory-Acoustic Data Set

For data generation and evaluation of the estimated articu-
latory sequences, the speech synthesis system VocalTractLab
developed by Birkholz [17] was used to generate acoustic sig-
nals from articulatory parameter trajectories. The articulatory
parameters describe the positions of important articulators
and the vocal tract shape (e.g. the tongue tip position, lip
distance and jaw opening angle) as a function of time. The
sequences were created manually using the phone definitions
and the gestural scores representation provided by Vocal-
TractLab 1.0. 22 out of the 25 tract parameters and 4 glottis
parameters were used for the articulatory representation. 1

The data set consists of 64 different articulatory sequences
which start with the vowel [a:] and have the form <aCV>,
where C is one out of eight consonants ([b], [d], [g], [z],
[p], [t], [k], [S]) and V is one out of eight vowels ([a:], [e:],
[i:], [o:], [u:], [æ:], [÷:], [y:]). Each utterance is 500 ms
long. Note that the data comprise four voiced and four
voiceless consonants. Three of the voiced consonants are
plosives and used together with their voiceless counterparts.
The other two consonants are fricatives. For each of the
64 sequences, 50 noisy samples were generated by varying
the consonant and vowel durations, the articulatory effort,

1Velum position and tongue center radius were omitted as they do not
change within the data set.



and by adding noise to the lung pressure parameter and the
fundamental frequency.

VocalTractLab generates acoustic signals based on the
articulatory trajectories. As acoustic features we chose Mel-
frequency cepstral coefficients (MFCCs), the standard fea-
tures for speech recognition. The 39-dimensional feature
vector contains logarithmic energy and the first 12 MFCCs as
well as the first and second derivatives. All articulatory and
acoustic sequences have been normalized to the range [−1, 1].

B. Echo State Network Learner

For efficient learning of the forward and inverse models,
we apply the so-called reservoir computing approach which
separates a non-adaptive reservoir of recurrently connected
neurons from an adaptive linear read-out layer. We apply a
particular flavor of reservoir computing known as Echo State
Network (ESN, [18]). ESNs comprise three layers of neurons:
The input layer u ∈ RD, a hidden layer of reservoir neurons
h ∈ RH , and the output layer v ∈ RO. The reservoir state h
is updated according to

h(k) = tanh(Winpu(k) +Wresh(k−1)),

where k is the time step of the discrete dynamics and u(k)
the current input. The connection weights Winp ∈ RH×D

from the input layer to the reservoir as well as the recurrent
connections Wres ∈ RH×H are initialized randomly and
remain fixed. To assure that perturbations of the reservoir
state by the input decay over time, i.e. cause an echo in the
reservoir dynamics, the spectral radius of the reservoir matrix
Wres is scaled close to 1 (cf. [18]).

Supervised training is restricted to the read-out weights
Wout ∈ RO×H which linearly combine the reservoir state to
compute the output:

v(k) = Wouth(k)

Given a set of input and target output pairs
{(u(k), t(k))}k=1,...,K , training can be accomplished
by linear regression according to

Wout = (HTH+ λI)−1HTT, (1)

where the matrices H ∈ RK×H and T ∈ RK×O row-wise
collect the reservoir state and target outputs, respectively.
The model complexity is controlled by the number of hidden
neurons H and the regularization parameter λ ≥ 0 in (1).
Initial transients of the reservoir dynamics are washed out by
feeding the network with the first vector of the new sequence
for a number of time steps.

Note that inputs u and outputs v of the ESN take the role
of articulatory parameters x and acoustic representation y for
the forward model (cf. Fig. 1). Accordingly for the inverse
model, inputs u correspond to y and outputs v to x.

C. Forward and Inverse Mapping Results

We conduct a leave-one-sequence-out cross-validation test
in order to assess the generalization performance of the ESN
for the forward and inverse model. That is, we train ESNs
on 63 out of the 64 sequences (including the 50 variations

per sequence) and compute the generalization error on the
left out sequence. The errors of the forward and the inverse
models are both calculated in the acoustic space using the
dimension-normalized Mean Square Error (MSE)

e =
1

K

∑
k

(
1

D

∑
d

||y(k)d − ŷ(k)d||2), (2)

where y is the acoustic target trajectory and ŷ the model
estimate. K refers to the number of discrete time steps and
D is the dimensionality of the acoustic feature vector. The
error of the forward model is calculated directly between the
estimated and the target trajectories. For the inverse model,
the estimated articulatory trajectories are transformed back to
the acoustic space via VocalTractLab and then compared with
the acoustic target sequences. We trained networks with H =
300 hidden neurons and regularization parameters λ = 10−3

for the forward model and λ = 10−6 for the inverse model.
The connection weights in Winp and Wres are drawn from a
uniform distribution in [−1, 1]. The spectral radius of Wres

is scaled to 0.95, the input weights are scaled with 1/D.
The upper two rows in Tab. I show the results for the

forward and inverse model, averaged over 10 repetitions
of the cross-validation to account for the random network
initialization. The results show that ESNs are capable to learn
the forward and inverse model of the articulatory-acoustic
mapping with low errors. Generalization errors are in the
same range as the training errors which indicates proper
generalization for both models. The error of the inverse model
is slightly higher than the error of the forward model. This
is mainly due to the special characteristic of the inverse
mapping: It requires the production of smooth articulatory
trajectories from rather jerky acoustic feature trajectories.

In addition to the results for the ESN with a dynamical
reservoir (upper two rows in Tab. I), we also include results
for a non-dynamic variant of the ESN without recurrent
connections (Wres = 0) which is known as Extreme Learning
Machine [19] (ELM, lower two rows in Tab. I). Using the
non-dynamic ELM, a higher error in the forward model can
be observed. This indicates that the reservoir dynamics sup-
port the generation of distinct features of the jerky acoustic
trajectories from the rather smooth articulatory sequences.

Tab. I
TRAINING AND GENERALIZATION MEAN SQUARE ERRORS OF THE

FORWARD AND INVERSE MODEL.

forward model inverse model
ESN training 0.012 0.045

generalization 0.019 0.049
ELM training 0.020 0.042

generalization 0.026 0.048

III. REFINING THE FORWARD AND INVERSE MODEL

The previous section showed that ESNs are suitable to
learn the forward and inverse model of the articulatory-
acoustic mapping. However, training requires a large amount
of supervised articulatory-acoustic examples. In the following
we use only a small subset of articulatory-acoustic data for
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supervised training. The obtained initial models are then
refined by presenting new acoustic sequences without their
articulatory counterparts to the network.

The process of refinement is depicted in Fig. 2 using the
example of a robot interacting with its environment. The
novel acoustic utterances are mapped to the articulatory space
using the current inverse model. This mapping corresponds to
an estimation process of how the perceived acoustics could be
imitated. The estimated articulatory sequence is then fed into
the true forward model given by the articulatory synthesizer.
The generated acoustic feature trajectory yrobotV TL together with
the estimated articulatory trajectory xrobot then represents a
new training pair which is used to update the internal forward
and inverse model.

In the following, we show that the refinement process
significantly enhances the inverse as well as the forward
model with respect to imitation accuracy of the acoustic
stimuli. Note that the learned forward model f is optional
in this approach. While we assume the presence of an initial
model trained on supervised data, we show that a small initial
training set is sufficient. Generating initial models without
requiring supervised data is subject of future work.

A. Training of the Initial Models

The initial models are trained on 8 of the 64 sequences
such that every consonant and every vowel is contained
once. Specifically we use the sequences [a:ba:], [a:de:], [a:gi:],
[a:zo:], [a:pu:], [a:tæ:], [a:k÷:], [a:Sy:] for training. Note that
these sequences contain each consonant only in combination
with a single ending vowel. The unsupervised refinement
targets at improving the generalization of the models to
novel contexts, where the consonants are followed by the

other vowels.
The ESN parameters are chosen like in Sec. II-C. By

training the initial model with a different number of variations
of each of the 8 sequences we can affect its quality. In the
following the number of initial training data per sequence is
referred to as S. If S=1, the initial model is trained with only
1 sample of each of the 8 sequences, while S=50 refers to
an initial model trained with 50× 8 sequences.

B. Imitation-based Refinement
After the initial forward and inverse models have been

trained, we improve the models by conducting a number of
refinement iterations given by max iterations (cf. Algo-
rithm 1). In each iteration, 64 sequences are randomly chosen
(one from each sequence class) and presented to the network.
8 of these sequences are known to the network from the initial
model training. The other 56 sequences are new to the learner,
as the vowels and consonants appear in novel contexts.

The learner tries to imitate the perceived acoustics by
applying the current inverse model g and producing the
acoustics corresponding to the articulatory estimations us-
ing the true forward model fV TL. Then, error values are
computed for evaluation purposes. Finally, the forward and
inverse model are updated with the new training pair: the
learner’s articulatory estimation and the acoustic outcome.

Algorithm 1 Refinement
Require: true forward model fV TL, initial forward model
f , initial inverse model g
for iteration = 0 . . .max iterations do
ytutor ← receive new acoustic samples
xrobot = g(ytutor)
yrobot
V TL = fV TL(x

robot)
inverse error =MSE(ytutor,yrobot

V TL )
forward error =MSE(yrobot

V TL , f(x
robot))

Update f and g with (xrobot,yrobot
V TL )

end for

We adopt the training procedure for the output weights
Wout of the Echo State Network in order to account for the
sequential arrival of new data in the refinement phase. We
apply the online sequential learning introduced for Extreme
Learning Machines in [20] to the ESN, which proceeds
similar to recursive least squares [21].

C. Evaluation of the Forward and Inverse Model Refinement
Errors of the forward and inverse model are measured in

the acoustic domain as illustrated in Fig. 3. The inverse model
error is calculated between the initial acoustic sequence
and the signal reproduced from the estimated articulatory
sequence via VocalTractLab, i.e. it is the difference between
the tutor’s signal and the learner’s imitation.

To evaluate the forward model, we take the estimated artic-
ulatory sequence xrobot as a basis and compare the outcome
of the learner’s internal forward model yrobot to the acoustics
generated by the true forward model yrobot

V TL = fV TL(x
robot).

The forward model error therefore expresses how well the
learner can predict the acoustic outcomes of its vocal tract.
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D. Refinement Results

Tab. II and Tab. III show the performances of the initial
models and the refined models for the forward and the inverse
mapping direction, respectively. For each value of S the
errors were averaged over 5 repetitions of the experiment
with max iterations = 10 iterations of refinement.

The performance of the initial model depends highly on the
number of initial training data: Models trained with a larger
amount of data produce lower errors. The refinement process
reduces the error of the forward and inverse model in all
cases significantly. While the error decreases quickly in the
first iterations, it converges to a minimum that is comparable
to the earlier generalization results presented in Tab. I. The
standard deviations of the errors in the last iteration are very
low (on average 0.0008 for the forward model and 0.0025
for the inverse model).

After 10 iterations of refinement, the lowest errors of the
forward and inverse model can be found for S=3. But even
for minimal initial models with S=1, the errors decrease to a
low level in both models. For models with a higher number of
initial training data it can be observed that the errors after 10
iterations are slightly larger than for starting with a smaller
S. This is due to the fact that the influence of newly arriving
data is weaker in the beginning and gets balanced with respect
to the initial training data during prolonged iteration. After

Tab. II
FORWARD MODEL ERRORS FOR 0 . . . 10 ITERATIONS OF REFINEMENT

AND DIFFERENT SIZES S OF THE INITIAL TRAINING SET

Forward error after . . . iterations
S 0 1 2 5 10 Error decrease
1 0.846 0.055 0.035 0.025 0.022 97.4%
3 0.208 0.040 0.026 0.020 0.018 91.1%
5 0.164 0.040 0.027 0.021 0.019 88.4%
10 0.160 0.039 0.029 0.022 0.020 87.8%
50 0.165 0.044 0.036 0.029 0.025 85.1%

Tab. III
INVERSE MODEL ERRORS FOR 0 . . . 10 ITERATIONS OF REFINEMENT AND

DIFFERENT SIZES S OF THE INITIAL TRAINING SET

Inverse error after . . . iterations
S 0 1 2 5 10 Error decrease
1 0.098 0.071 0.065 0.059 0.057 41.4%
3 0.069 0.055 0.051 0.048 0.047 32.5%
5 0.066 0.055 0.053 0.051 0.049 25.5%
10 0.063 0.053 0.052 0.049 0.048 23.8%
50 0.062 0.056 0.054 0.052 0.050 18.9%
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Fig. 4. Mean and standard deviation of the forward and inverse model errors
of the initial model trained with 3× 8 sequences and during refinement.

50 iterations, the S=50 model as well reaches an error of
0.019 for the forward and 0.047 for the inverse mapping
which is comparable to the errors of the S=3 models after
10 iterations. Thus, refinement succeeds independent of the
number of initial training data.

In Fig. 4, the forward and the inverse model errors together
with their standard deviation are plotted over the refinement
process for an initial model with S=3. It can be noticed that
especially the error of the forward model is very high in the
initial model and decreases by approximately 90% during
the refinement. The reason for the high initial error is that
the forward model is applied on the estimated articulatory
sequences which may be initially very different from the
known articulatory trajectories. After the first iteration, the
prediction error of the forward model decreases drastically
as the network now contains acoustic correspondences for
such estimated articulatory sequences.

All in all, the results demonstrate that the refinement pro-
cess decreases the forward and inverse model errors signifi-
cantly. An initial model trained with only 3× 8 articulatory-
acoustic sequences is sufficient for the proposed refinement
strategy to reach generalization errors similar to the cross
validation results on the complete data set with 64 sequence
classes, while requiring only acoustic data.

E. Perceptual Evaluation

In addition to the error-based analysis, the authors also
qualitatively evaluated the results by listening to the acoustics
corresponding to the estimated articulatory trajectories of
the inverse model (as reproduced by VocalTractLab). They
listened to each of the 64 syllables before refinement and
after 10 iterations of refinement in comparison. Then they
rated which sample is better comprehensible or if the com-
prehensibility does not change. An initial model trained with
3× 8 sequences was chosen.

This perceptual evaluation revealed that approximately
40% of the sequences can be better recognized after the
refinement, while 12% become less comprehensive. For the
others no significant difference can be heard before and after
the refinement. The most common improvement is that the
acoustic sequences estimated by the initial inverse model
sometimes contain click noises, but sound more smooth and
natural after the refinement.
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utterance [a:gæ:]. The black line is the ground truth, the red lines are the
estimations of the initial (dotted line) and the refined model (dashed line).

As an example, Fig. 5 shows the horizontal and vertical
tongue root position parameters of the sequence [a:gæ:] for
an initial model with S=1. The position of the tongue root
is important for the correct reproduction of the consonant
[g]. The black lines show the articulatory trajectories that
were used to generate the acoustic target. The red dotted
lines show the articulatory trajectories as estimated by the
initial model, and the red dashed lines are the articulatory
trajectories estimated by the refined inverse model.

It can be observed that the reproduction of the initial
model is very rough and noisy. Such noisy outcomes can be
especially observed in case of few initial training data. After
model refinement, the articulatory trajectories are smoother
and more accurate. Although the estimation is still not
perfect, this improvement leads from an incomprehensible
utterance to a clear [a:gæ:] and thus a successful acoustic
imitation using the refined inverse model.

Not all sequences are improved during the refinement.
Especially those sequences used for initial training can be
better approximated by the specialized initial models than by
the refined models, which is an expectable result. 48% of the
sequences do not show a perceivable improvement at all. The
problem is two-fold: Firstly, in the learning process errors
are weighted equally in each articulatory parameter, whereas
perceptual features in fact change in a highly non-linear
manner with respect to articulatory parameter changes. This
can be addressed by utilizing respective error metrics, which,
however, are not easy to define. Secondly, the unsupervised
refinement presented in this paper does not actively explore
its actuation space in order to achieve better imitation results.
To complement the refinement with an active exploration
mechanism is subject of future work.

IV. CONCLUSION

We showed the efficient learning of forward and inverse
models for speech production and imitation using a recurrent
neural network model. The considered data contain coar-
ticulations of a large set of vowels and consonants. We
demonstrated that initial models trained on small subsets

of articulatory-acoustic data can be improved significantly
by imitation-based refinement. This unsupervised process
requires only acoustic data and can be developmentally
interpreted as imitative learning in a tutoring situation.
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