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Abstract—We consider a scenario where an agent has multiple
available strategies to explore an unknown environment. For
each new interaction with the environment, the agent must
select which exploration strategy to use. We provide a new
strategy-agnostic method that treat the situation as a Multi-
Armed Bandits problem where the reward signal is the diversity
of effects that each strategy produces. We test the method
empirically on a simulated planar robotic arm, and establish
that the method is both able discriminate between strategies of
dissimilar quality, even when the differences are tenuous, and
that the resulting performance is competitive with the best fixed
mixture of strategies.

I. MOTIVATION

We are given a black-box that takes inputs and produces
outputs. We know the values the inputs can take, but we do
not know which inputs produce which outputs. We do not
even know which outputs can be produced. We are given
the opportunity to sample the black-box a limited number of
times. In this context, we propose to investigate the following
question: how much diversity of outputs can be produced with
the limited access we have?

This question defines an exploration problem. Here, the ob-
jective is to discover what outputs the black-box is capable to
deliver. To answer such a problem is to provide an exploration
strategy, i.e. a method that selects which inputs to experiment
with on the black box, in order to produce a diversity of
outputs.

In this paper, we interest ourselves with a scenario where we
have multiple exploration strategies available, whose internal
operational details are not specified, and we must select, for
each available interaction with the environment—i.e., the black
box—, which exploration strategy to use to generate the inputs
to execute.

Stated differently, we have several exploration black-boxes
and one environmental black-box, and we want to know which
exploration black-box to use on the environmental black-box
at each interaction, so as to maximize the diversity of the
effects produced by the environmental black-box.
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Two salient points are present in our problem statement. We
consider exploration problems rather than learning ones. And
we establish an objective of diversity, not one of control or of
prediction or of fitness or of reward optimization. We briefly
motivate these two stances in the following sections.

A. Diversity and Exploration

Behavioural diversity is a factor of individual robustness
when facing an evolving environment. It ensures that the next
time the environment changes some of the behaviours will
remain relevant. At the population level, behavioural diversity
provides variability even in the absence of genetic diversity.

This point was recently heeded by the evolutionary robotics
community, which was facing, amongst others, two specific
challenges: early convergence, when the evolutionary process
would get trapped in local minima because of a deceptive
fitness function, and bootstrapping problems where the first
generation fails to produce rewarding behaviour, hence stalling
the evolutionary process. The then solution, staging the fitness
function [14, 20, 37]—a method similar to reward shaping in
reinforcement learning [10, 26]—, was deemed impractical
because requiring problem-specific fitness functions.

The solution came from replacing or modifying the fitness
function to encourage behavioural diversity in the population
of candidate solutions [8, 9, 15, 23, 27, 36], a method proposed
first in the classical evolutionary algorithm domain [13, 33].

In infants, actively fostering diversity in our interaction
with the environment through exploratory behaviour is pivotal:
it allows to discover and investigate new phenomena and
affordances before they are detected as such. For Eleanor
Gibson [12], babies are not endowed with the abilities to per-
ceive affordances, but must spend their first years discovering
affordances in their environment. For instance, children do not
already know that mirrors are special objects proposing unique
and salient interactions. Instead they must discover their affor-
dance through an unrealed exploration of their environment.
This point is important: studying exploratory behaviours on
their own—rather than in the context of a learning problem—
can shed light on how problems are discovered in the envi-
ronment in the first place, before they are acknowledged as
learning activities.
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One could argue that, after noticing the mirror particular
nature, the exploratory behaviour of the child in front of the
mirror is in fact highly structured, and follows the child-as-
a-scientist paradigm [16, 17, 35]. But as Cook points out,
more ecological explanations are also available: “selective
exploration of confounded evidence is advantageous even if
children explore randomly (with no understanding of how to
isolate variables)” [7, p. 352]. Therefore the mere production
of behavioural diversity is a useful tool in broad and specific
exploration.

One other reason to investigate exploration independently
from learning: exploration can happen without learning. For
instance, a robot randomly producing movements does not
exhibit learning, yet exhibit an exploratory behaviour. Sim-
ilarly, a robot following mindlessly the left wall of a maze
explores the maze, and does it successfully to boot. And
many vacuum robots available today explore their environment
without learning them. In all those examples, exploration
is present because the behaviour creates access to (new)
information about the environment. That the information is
not remembered or exploited is not an exploration issue, it is
a learning one.

B. More Than One Exploration Strategy

Different environments lend themselves to different ex-
ploration strategies. In simple environments, doing random
actions will be as effective as any other strategy. In more
complex contexts, more elaborate strategies are needed.

The field of computational intrinsic motivation has devel-
oped an abundance of different motivational drives such as
novelty, surprise, prediction error, predictive information or
competence progress (see [2, 30] for reviews). Each of these
drives express preferences over what is interesting in the
world, and define specific exploration strategies.

Moreover, exploration, for a robot, may be possible through
different means: asking for social guidance, observing a peer,
or opting for self-exploration. Each of those venues may not
be always available, and some, e.g. social guidance, may only
be available for infrequent use.

This suggests that robots should be endowed with different
exploration strategies to tackle complex environments. Further-
more, we argue that one should resist hiding the choice these
strategies represent under a larger, monolithic, opaque explo-
ration strategy. Indeed such a strategy would need to handle
simultaneously how, what and possibly when to explore, three
aspects which may need to be specifically mediated by other
components of behaviour.

Therefore, agents having multiple available exploration
strategies are justified. In this article, we propose a strategy-
agnostic method to select which strategy to choose in function
of the empirical behaviour of each of them.

II. PROBLEM
A. Environment

An environment, is formally defined as a function f from
M to S. M is the motor space, a bounded hyperrectangle of

R™, and represents a parameterization of the movements the
robot can execute. S is the sensory space; it is a subset of R®.
Effects and goals' (desired effects) are elements of S.

A task is defined as a pair (f,n) with f : M +— S the
environment and n the maximum number of samples of f
allowed, i.e. the number of inputs the exploration strategy can
try on the environment.

B. Exploration

An exploration strategy evaluates the function f, n times,
by providing a sequence of elements of M, xq, x1,
Each x; is evaluated as y; = f(x;), and y; is observed by the
exploration strategy before x;; is chosen.

In order to evaluate the exploration strategy, we use an
exploration measure C, that takes the behavioural trace of the
agent as input, i.e., the actions executed and effects produced:
{(xi,¥i)o<icn:

A common objective of the experimenter is to evaluate if
the agent has obtained knowledge of all the possibilities of the
environment. A good proxy for this is to evaluate the set of
effects the agent was able to produce during the exploration. In
other words, how well the image of f, f(M)—the reachable
space—was sampled.

Since we do not assume that the agents have knowledge
of the exploration problem they are examined under, or that
they have knowledge of the exploration measures that are used
to evaluate their behaviour, and since agents may explore the
environment for their own purposes, and self-evaluate their
behaviour according to their own metrics, the choice of an
exploration measure is necessarily arbitrary. This consideration
is not present for instance in reinforcement learning, where
the cumulative reward defines an objective motivation for the
agent, and an objective evaluation for the experimenter. In an
exploration context, it is the responsibility of the experimenter
to justify the interest and relevance of the selected exploration
measure.

In this work, we select a diversity measure to evaluate the
exploration. The importance of diversity for the development
of humans and animals was argued above. And behavioural
diversity has proven itself empirically in the field of evolu-
tionary robotics. Absent an objective environmental reward for
the agent’s behaviour, and absent an assumption that the agent
possesses specific learning abilities, encouraging diversity in
behaviour is relevant in multiple ways. First, it does not put
tight constraints on the structure of the behaviour of the agent.
Second, it prepares the agent for future problems: an agent
with a diverse behavioural repertoire is likely to also have
high amounts of diverse knowledge and skills.

The diversity measure concerns itself only with the sensory
part of the behaviour: {y;}o<i<n. It is defined as a coverage
measure. Given 7 > 0, the diversity of the exploration
C({yi}o<i<n) is defined as the volume (more precisely the
Lebesgue measure) of the union of the n hyperballs of R?

ey Xpp—1-

'We assume that S is known by the exploration strategy, but nothing
prevents S to be set equal to R*®



with yg, ¥1, ..., Yn_1 as a centres, and radius 7.
n
C-({yi}o<i<n = |J Blyi,7)
i=0

with B(y;, 7) the hyperball of radius 7 and centre y;.
In evolutionary robotics, other measures of diversity such
as sparseness [23] or entropy [8] have been used.

III. ILLUSTRATING THE PROBLEM

In this section, we illustrate the problem on a specific
example, that will serve as the experimental setup for the
method, exposed in the next section.

We consider an idealized robotic arm on a two-dimensional
plane, made up of an open chain of 20-joints linked by
segments of 1/20th of a meter each, so that the total length of
the arm is one meter. The angles of the joints are restricted to
values between -150 and 150 degrees. The angles of the joints
are the inputs: they uniquely define the posture of the arm, and
therefore, the position of the end-effector, which corresponds
to the environmental feedback. Let’s remark that only the final
position of the end-effector, corresponding to the angle inputed
in absolute value, is returned by the environment (i.e. there is
no posture dependence between two consecutive samples).

A. A Tale of Two Exploration Strategies

Despite the simplicity of the arm setup, it is not a trivial
problem, and this is exacerbated since we cannot assume any
knowledge about the arm.

The most simple strategy, random motor babbling (RMB),
samples the motor space randomly. Here the RMB strategy
(Figure 1) is inefficient: indeed, the redundancy’ of the arm

2Considering a subset of the sensory space B, the redundancy of B is
defined as the volume (more generally, the Lebesgue measure) of the set
of motor commands whose effect belong to B, ie. {x|f(x) € B} with
f the environment feedback function (see section II-A)). [24] provides an
algorithm to quantify the redundancy of rigid, multijoint robotic arms, but the
computation is only tractable for a small number of joints.

random motor babbling

Fig. 1. Random motor babbling is not an efficient exploration strategy with
a high number of joints.

is heterogeneously distributed in the sensory space (the end-
effector position space). In particular, the redundancy is high
near the origin, and order of magnitude lower on the edge of
the reachable space. Because the RMB strategy is precisely an
estimator of the heterogenity of the redundancy, it rarely ever
explores the edges of the reachable space.

random goal babbling

Fig. 2. Random goal babbling can be a very efficient strategy—if the inverse
model is well chosen. Each exploration is done over 5000 timesteps. In each
case, the last five postures of the exploration are displayed.



A goal babbling strategy is (usually) better suited for
exploring the arm setup. We will consider a random goal
babbling (RGB) strategy [4, 32], that picks a goal at random
in the square [—1,1] x [—1,1], and translate it to a tentative
motor command that tries to put the end-effector as close as
possible of the goal.

To translate a goal into a motor command, we need an
inverse model. In this paper, we are only interested in relative
performance: we choose a simple inverse model. Our inverse
model, when given a goal, finds the nearest effect available in
the observed data, retrieves the motor command that produced
it, applies a small perturbation to it, and returns the perturbed
command for execution of the exploration strategy. The mag-
nitude of the perturbation is parametrized by the perturbation
coefficient d: the perturbation is randomly chosen between
+d times the legal joint range (here 300°). For instance, if
d = 0.05, the motor command is perturbed by a random value
chosen in £15° on each joint.

Choosing d appropriately is not trivial. In Figure 2, the
RGB exploration of three different values of d is shown. The
d = 0.05 case results in a good exploration. But d = 0.001
creates degenerated clusters: the perturbation is too low to
create enough sensory variability. A contrario, d = 0.5 creates
too much variability, and is only marginally better than the
RMB exploration of Figure 1.

Let’s imagine now that we are given two strategies to
explore the arm setup. One is the RMB strategy, and the other
is a RGB strategy, with unknown d. We don’t assume any
knowledge of either strategy. How can we dynamically decide,
for each interaction with the black-box, which exploration
strategy to choose to maximize the coverage of the exploration
over the reachable space?

B. Inverse Model

Given a goal, the inverse model finds the nearest neighbour
in the observed effects and applies a small perturbation on its
corresponding motor command.

Formally, M is an closed hyperrectangle of R™, and as
such it is the Cartesian product of m closed intervals:

m—1

M = H [ai,bi]

m=0

Given an motor command x = {xg,1,...,Tm_1} in M, a
perturbation of x is defined by:

PERTURB(x) = {random(max(a;,xz; — d(b; — a;)),
min(z; + d(bj — a;),b;))Yo<j<m

with the function random(a,b) drawing a random value in
the interval [a, b] according to a uniform distribution. d is the
perturbation parameter, and the only parameter of the inverse
model, that we can now express in Algorithm 1.

Algorithm 1: INVERSE4(y,, E)

Data:
e d € [0,1], a perturbation ratio.
o E={(x4,¥¢)}o<t<n € (M X S)N, past observations.
e yg €S, agoal
Result:
e X' € M a motor command.

Find (x;,y;) in E so that y; is the the nearest neighbour

of yg in {Yt}ogxzv.
x’ = PERTURB(X;)

IV. METHOD

A. Effect Diversity

Choosing which strategy to employ at each step of the
exploration faces three main challenges:

1) Interdependence: an exploration strategy effectiveness
may depend on another strategy; goal babbling relies
on motor babbling to bootstrap the exploration. Given
the inverse model currently used, this is even more
true, as goal babbling’s performance depends heavily the
sensorimotor attractors in which it expands, and thus
on the location of the observations produced early in
exploration by motor babbling.

2) Dynamical Value: the usefulness of a strategy may
change rapidly. Motor babbling is useful in the begin-
ning of the exploration, but its usefulness drops quickly.

3) Agnosticity: since an exploration strategy might be
arbitrarily complex, and possibly involve, in turn, other
exploration strategy, an adaptive strategy should not rely
on knowledge of the internal workings of the strategies
amongst which it must choose.

Interdependence does not have to be handled directly, but
it implies that even strategies that did poorly in the past must
be re-evaluated regularly as the exploration progresses. The
dynamical nature of the contribution of each strategy means
that performance data becomes obsolete quickly: evaluations
should be done over short-term time windows. Agnosticity
implies the contributions of the strategies have to be evalu-
ated only from the observations the strategies produce. We
introduce a measure that matches those constraints now.

A strategy that produces effects over areas that have already
been explored is of little use for exploration. We introduce an
online diversity measure that evaluates, each time a strategy is
used, how much diversity is created, with regards to already
observed effects.

In order to do that, we rely on the diversity measure
introduced in section II, based on the union of disks centred
on observed effects. Although we reuse the coverage measure
here out of convenience, the two measures do not have to have
any relationship with one another. The measure is adapted to
evaluate a single effect: the diversity of a new observed effect



is the increase in diversity, i.e., the increase in the covered
area.

Definition 1: Given a set of effects £ = {yo,¥1, -, ¥Yn-1}>
and a coverage threshold 7 in R, the diversity of a new effect
yn relative to F is defined as:

div.(yn, E) = C-(EU{yn}) — C-(E)

The diversity of a strategy, in turn, is the averaged diversity
of the effects it produced, over a given time window.

Definition 2: Given a set of strategies sg, 51, ..., Sq—1, and
a set of observed effects £ = {yo,y1,...,¥n}, We have for a
given strategy s; a subsequence yj,y7, ..., y%j of the effects
produced by motor commands emanating from the strategy.
Given a time window w in N, we define the diversity of
strategy s; as:

1Y .
— div.(y? _.,E) ifn,
v (s ) = § w 28Vl B) 75 >0

0 otherwise
with w’ = min(w, n;).
B. Multi-Armed Bandits

As expressed above, the problem we tackle shares simi-
larities with the Multi-Armed Bandit problem (MAB) [31].
The exploration strategies are the bandits, amongst which the
agent must choose to create diversity. However, the feedback
received is a sensory feedback from the environment, which
cannot be used as is in the MAB setting.

Using the diversity measure of a strategy introduced above,
we can now evaluate the contribution of each strategy to the
exploration. We now have a classic MAB problem: we choose
between a finite number of different strategies with different
diversity scores, and after choosing one we receive a feedback
signal from the chosen strategy from which we compute an
updated score.

The classic MAB problem considers only bandits that are
independent from one another (choosing one does not affect
the value of the others), and stationary (the distribution of
rewards of the bandit does not change). A variation of the
problem, the adversarial (also called non-stochastic or non-
stationary) MAB, removes the stationary and interdependence
assumptions: an adversary is free to choose arbitrary rewards
for each bandit at each timestep.

In practice, a significant portion of the published literature
on the adversarial MAB problem only removes the stationary
assumption. In other words, the problem takes place in the
oblivious opponent model: the actions of the adversary, i.e.
the rewards for each bandit at each timestep, are decided
before the game starts. This is the case in [38] and [1],
who investigate rewards that can arbitrarily change. [11]
presents abruptly changing environments, where all bandits’
reward distributions change at specified timesteps. [5, 156—
169] provides a treatment of the nonoblivious case.

Recently, [25] introduced the Strategic Student Problem that
tries to capture the issues involved when learning multiple

tasks at the same time. A student has to learn multiple topics
(maths, chemistry, history, etc.), and has limited resources
(time) to do so. How should he allocate his study time between
topics in order to maximize its mean grade at the end of the
semester? A possibility is to consider the problem as a MAB
problem where the bandits are learning tasks. Interestingly,
the works of [4] on goal babbling can be understood in
this perspective: each region of the goal space is a different
topic, whose improvement is empirically measured through
competence progress during learning, and the exploration
strategy must decide how to distribute its action given those
learning feedback signals.

The strategic student problem also considers another related
problem: a student has one topic to learn, but several possible
learning strategies. Which one should he choose? Is a mixture
of several strategies better than employing the best one all the
time? This is the problem of learning how to learn [34]. [3] ex-
plored such a problem and showed that a dynamically selected
mixture of three active learning strategies outperformed any
pure strategy. [21] demonstrated that empirically evaluating
and selecting among different small state space representations
specific to a task during learning was effective and avoided a
large task space when learning was unfeasible. The work of
[29] investigates robots dynamically choosing between asking
a teacher for a demonstration or doing self-exploration on their
own. [19] proposes a method where a robot can self-assess,
and has a frustration drive. When frustrated, the robot can opt
to choose social help to improve its performance. In the con-
text of reinforcement learning, [18] develops an algorithm that
can evaluate dynamically which exploration strategy brings
the most rewards. These exploration strategies are driven
by extrinsic and intrinsic motivations: maximizing rewards,
reducing variance, seeking novelty, seeking unexplored states
(a binary novelty), and seeking or avoiding particular features
of the state representation. [6] uses the framework of the
Strategic Student Problem to create a tutoring system that
actively personalizes the sequence of activities to each student,
by tracking their performance and identifying which exercises
and modalities make the student progress faster. The works of
[3], [29] and [18] are singular because they combine deciding
how to learn, and deciding what to learn, using a hierarchical
approach. The learning strategy is selected first (how), and
then it chooses what input to sample (what).

Learning performance typically exhibits diminishing re-
turns, and [25] shows that, in the strict case, this allows to
express the mean performance across tasks as a submodu-
lar function [22]. [28] has proven that with non-decreasing
submodular function, the greedy strategy is guaranteed to be
no worse than 1 — % ~ 0.63 times the optimal solution for
maximizing the function. Of course, not all set of learning
tasks exhibit a submodular structure. Still, it suggests that a
good-enough performance might be obtained through simple-
enough algorithm in practice. [25] and [18] advocate the use
of the EXP4 algorithm [1] rather than a greedy algorithm, as
a more robust approach.

Compared to these works, our approach distinguishes itself



on two fronts: first, we are selecting exploration strategies
to improve exploration, rather than exploration or learning
strategies to improve learning. The resulting strategy is an-
other exploration strategy. Second, we are using diversity to
transform the feature vector of the sensory feedback into a
scalar that can be adequately interpreted as a reward. To our
knowledge, this is the first work to do that in the context of a
Multi-Armed Bandit problem.

C. Adaptive Strategy

The ADAPT algorithm chooses strategies proportionally to
their diversity. To allow for constant re-evaluation of the
strategies, even those with low diversity, the algorithm chooses
a strategy at random « percent of the time, with a > 0.
Algorithm 2 formally describes this.

Additionally, in order to foster initial experimentation with
each strategy, the diversity measure is overestimated at the
beginning of the exploration. For a given strategy s;, instead
of considering the set E; = {yo,y1,...,¥n, }» We consider the
set B ={y 5, Y ki1, Y0, Yn}, with k in N*. The set
{y-k;Y—k+1,-.-,¥—1} is composed of fictitious points only
available to the selecting strategy, that generate hyperballs
that do not overlap with the observed effects. That way,
the diversity of the strategy is overestimated during the w
first times it is selected. This also avoids having the first
strategy selected unfairly preferred because it created the first
observation, thus receiving the diversity of a full hyperball
volume. We will use k£ = 1 in all strategies.

V. RESULTS

Figure 3, the results of the strategy are displayed. In all
three learner configurations, the ADAPT algorithm identifies
and uses the correct strategies. When d = 0.001, the goal
babbling strategy is inefficient in the beginning, and motor
babbling is overwhelmingly used. Motor babbling diversity
declines continually during the exploration, and in the later
stage, is comparable to goal babbling. As a result, after 4000
timesteps, the two strategies are used roughly equally.

Algorithm 2: ADAPT(w, T)
Input:
e 50,51, ..., 541, Strategies.
e E={y0,¥1,-sYn-1}, a set of effects.
e T, coverage threshold.
o w, time window.
e «, ratio of random choice.

Result:
e s;, chosen strategy

if RANDOM() < « then
‘ choose a random strategy.

else
L choose a strategy s; proportionally to its diversity

diversity,. ,,(s;, E).

When d = 0.05, goal babbling and motor babbling produce
the same diversity at the beginning, but goal babbling declines
more slowly than motor babbling. As a result, goal babbling is
used more and more as the exploration progresses, as it should
be.

When d = 0.5, motor and goal babbling behave similarly—
if d had been equal to 1.0, they would be the same strategy.
During the early phase of the exploration, the ADAPT algo-
rithm does not distinguish between the two strategies. But
in the later phase, goal babbling is able to provide an edge,
however small, that is detectable by the ADAPT algorithm.
Goal babbling usage dominates after 1500 timesteps, and is
used 80% of the time after 4000 timesteps.

While the algorithm works qualitatively, it remains to be
seen if this translates quantitatively. Figure 4 compares the
error of the ADAPT algorithms with fixed-ratio strategies,
where the motor babbling strategies is chosen with probability
p, and the goal babbling with probability 1 — p.

When goal babbling is much worse than motor babbling
(d = 0.001) or when it is much better (d = 0.05), the ADAPT
algorithm manages performance on par with the best fixed
mixture of strategies. When goal and motor strategy behave
similarly, the adapt strategy is more conservative than the
best case. This stems from the early stage of the exploration,
when the motor babbling and goal babbling strategies are both
effective, and hence both significantly used.

VI. DISCUSSION

The ADAPT algorithm we proposed, and the corresponding
adaptive strategy we implemented demonstrate how a choice
of multiple exploration strategies can be exploited to explore
an unknown environment. The diversity measure is, in many
ways, rather crude, but it shows that discriminating between
exploration strategies is definitely possible, and, advantageous.
The general idea behind this work is not particularly new.

Its application to a diversity measure is, however. In fact,
since exploration, as explained, does not make the typical
assumption about the agents capabilities—it does not assume
the agent is capable (or willing) to make predictions, nor
to exert (or demonstrate) control over the environment—the
method we presented extends the applicability of the Multi-
Armed Bandits to situations where learning or reward signals
are not present. And it does so without requiring to design a
problem-specific reward function.

Our work could be criticized for the simplicity of the
environment that is used, and that’s a valid point. Yet, we chose
to present this method on a simple setup here to avoid the
reader having to suspend his intuition, or suspect interference
from the robot complex dynamics into the results. The extreme
simplicity of our inverse model is also a deliberate choice
in this regard. We are currently preparing experiments on a
real robot actuated through dynamical motor primitives to
reproduce the results in a more complex scenario.

From the experiments we conducted, it is unclear how the
ADAPT algorithm will scale with the number of strategies.
As more strategies are available, either more time will have
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Fig. 3. The ADAPT algorithm correctly selects the best strategy in all three contexts. For each learner, three graphs are shown: the spread graph with the
coverage area (7 = 0.02), the diversity graph giving the diversity measure of each strategy in function of the timesteps, and the usage graph, showing how
the strategies are effectively used. For the usage graph, the data at time ¢ shows the percentage of use averaged over the surrounding 100 timesteps (50 before,

50 after).
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to be devoted to exploratory sampling of bad strategies, or
strategies will be less accurately evaluated overall. This is the
classic exploration/exploitation trade-off.
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