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Abstract— Developmental robotics suggests that the forward
and inverse kinematics should be learned through a sensory-
motor mapping, instead of being programmed in advance. Mo-
tor babbling and goal babbling are two common approaches to
generate training samples used to acquire a sensory-motor map-
ping. Motor babbling typically needs a considerable amount of
training data and time to acquire a sufficient mapping, while
goal babbling poses difficulties on how to select appropriate
goals. In this paper, we propose a neurobiologically-inspired
system to progressively learn a sensory-motor mapping boot-
strapped from a simple constrained DOF exploration, which
generates much less training data than motor babbling. Our
proposed system is designed according to two neurobiologically-
inspired paradigms: spatiotemporal prediction and uniformity.
The spatiotemporal prediction capability facilitates the acqui-
sition of sensory-motor mappings with less amount of training
data on the one hand, and facilitates robust behaviour on
the other hand. The uniform system design structure is the
foundation for building a scalable architecture for cognitive
development. We use an improved version of our predictive
action selector (PAS) as building block of our system. We
validate a PAS on a 2 DOF robot head where the robot learns
object tracking and evading. Then we validate a second PAS
on a 5 DOF arm where it learns reaching.
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[. INTRODUCTION

A. Learning the Sensory-Motor Mapping as Prerequisite for
Robot Behaviour

In this paper, we take on the developmental perspective
and solve a basic problem in robotics, which is the map-
ping between the visual space and the joint space, i.e. the
mapping between the visual representation of a task-relevant
feature (corresponding to the robot limb or an object of
interest) and the degrees of freedom (DOF) of a robot limb.
Developmental studies such as [1], [2], [3], [4] point out
that the acquisition of this visuo-proprioceptive mapping is
the prerequisite for learning subsequent motor and cognitive
skills, particularly related to hand-eye coordination. In order
to solve this visuo-proprioceptive mapping problem on a
real humanoid robot, we use our predictive action selector
(PAS) proposed in [5], where our PAS controlled only the
2 DOF head of the humanoid robot NAO and facilitated
the emergence of meaningful behaviour like object tracking
and evading. However, it was not clear whether the original
PAS [5] can be scaled up to deal with more than 2 DOF.
In this paper, we explain the neurobiological grounding of
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Fig. 1. Progressive learning of sensory-motor maps from scratch: The top
half shows a humanoid robot who is facing an object of interest (cup). Our
system starts with a constrained DOF exploration of the head joints (one
DOF moving at a time, only once). During exploration, sensory-motor data
is sampled and fed into our predictive action selector (PAS) [5] which we
have improved in this paper. The PAS bootstraps head coordination (tracking
behaviour and evading behaviour) from the training data. The bottom half
shows the same concept re-used for the arm. Again, the system performs a
constrained DOF exploration (one DOF moving at a time, only once) while
observing the arm tip. A second PAS bootstraps arm coordination (reaching
behaviour) from the training data.
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our PAS, and improve its algorithm in order to make it more
scalable and more accurate. Thus, our contributions are as
follows: We show that our improved PAS can be viewed
as an architectural building block for learning sensory-
motor maps. Instead of using common methods like motor
babbling or goal babbling to generate training data, we use
a constrained DOF exploration. By doing so, we emulate
the pre-structuring of the human biological motor system
in an early developmental stage, where the motions are
constrained to simplify the learning [6], [1]. Compared to
our original version [5], our improved PAS algorithm is more
scalable and it has an increased accuracy in visual tracking.
Compared to the related works, our proposed system is
a neurobiologically-grounded approach for the progressive
learning of sensory-motor maps. It offers the advantage of
requiring less training samples and exploiting spatiotemporal
prediction for the bootstrapping of robust behaviour. The
prediction capability is applied to a multitude of different
visual features (e.g. object of interest, arm tip, efc.). Figure 1
shows the conceptual diagram of our approach.



B. Related Works

In robotics, a common method for the sensory-motor map-
ping is the forward kinematics as well as the inverse kinemat-
ics, also known as the forward model and the inverse model,
respectively. Kinematic models are often pre-programmed,
for example by using the Denavit—-Hartenberg method or the
screw-based method [7]. Despite the accuracy of a priori
kinematic models, they cannot cope with sudden changes in
the robot’s morphology. For example, the robot might loose
(parts of) one limb or one DOF during an accident, but is
still supposed to re-calibrate its kinematics and continue to be
operational. The developmental perspective offers a solution
which enables the robot to learn this sensory-motor mapping
by itself in a self-exploratory manner. The developmen-
tal perspective of learning sensory-motor schemes by self-
exploration, in particular learning visuo-motor coordination,
has been widely investigated from different approaches. We
identify two main approaches: motor (or body) babbling on
the one hand, and goal babbling (including goal-directed
exploration) on the other hand. In the following, we review
each of these approaches.

In motor babbling (or body babbling) [8], [9], [10], [11],
random DOF motions are generated. Kuniyoshi et al. [§]
realize self-exploration of the embodiment on a simulated
baby robot. Its limbs are driven randomly in simulated water,
and spatiotemporal correlation of the sampled tactile and
motor signals is used to acquire a body map. Schillaci [9]
applies motor babbling to realize the generation and sampling
of rich proprioceptive and visual data, followed by a k-
NN implementing the forward as well as the inverse model,
all together with the aim of learning a body map. Taka-
hashi et al. [10] use babbling to provide enough amount of
data for training dynamic neural networks to acquire a body
image. Kaji¢ et al. [11] apply babbling to gather training
data for self-organizing maps (SOMs) [12]. In [11], they use
2D SOMs in order to realize the learning of hand-eye coor-
dination. The works [8], [9], [10], [11] use motor babbling
for the acquisition of the sensory-motor mapping. Babbling
generates a rich amount of training data. Sometimes, a big
amount of training samples is desirable, for example when a
deep neural network is being trained, like in [10]. Mapping
models using SOMs also require a considerable amount of
training samples. For example, in [11], Kaji¢ et al. mention
that 74143 input vectors are collected and used for training
the SOMs, and they also mention that their random body
babbling lasted approximately 40 minutes.

Goal babbling [13], [14], [15], [16] offers a more efficient
approach towards learning the sensory-motor mapping. Rolf,
Steil, and Gienger [13] demonstrate that goal babbling allows
to learn inverse kinematics on humanoid robots (up to 50
DOF). Their work has been inspired by the insight that
goal-directed actions occur early in infant development [17].
Rolf and Steil also show the success of their approach
on different robot morphologies such as a bionic elephant
trunk [15]. Baranes and Oudeyer [14] show that for the
learning of inverse models, an exploration of goals in the task

space is faster than an exploration in the motor space. They
use an exploration metric (“measure of interestingness”) in
order to guide the learning by selecting appropriate goals.
Schmerling, Schillaci, and Hafner [16] apply goal babbling
to learn coordinated control of the head and arm of a NAO
robot. They use the Explauto framework [18] as a toolbox
to select the goals in a curiosity-driven manner.

In the context of a reaching task on a simulated robot arm,
Stulp and Oudeyer [19] validated a method of selectively
activating or freezing individual DOF. They report that their
algorithm runs a uniform body babbling procedure before it
starts to freeze individual DOF.

C. Our Approach

Compared to the related works, our approach is more
plausible from the neurobiological point of view. Instead
of motor babbling or goal babbling, our system uses a
constrained exploration of DOF, where each DOF is simply
moved back and forth only once, with one DOF moving at a
time. The benefit of this constrained DOF exploration is the
drastic reduction of the movement space and the number of
training samples. Numerous studies, such as [20], [21], [6],
and [1], provide evidence that constraining the movement
space is a property of the biological motor system in an
early developmental stage. By constraining the movement
space, the training data is reduced and less time is spent to
acquire an early sensory-motor mapping, which in turn can
be refined later on to learn hand-eye coordination. Compared
to [19], our exploration algorithm freezes all DOF except for
an active one, switching from one active DOF to the next
along the kinematic chain. Our action selection algorithm
then bootstraps meaningful behaviour, such as reaching, by
scalable prediction mechanisms. Prediction is known to be
an essential mechanism of the neocortex [22], [23], and it
is beneficial for bootstrapping sensory-motor coordination.
An example for sensory-motor coordination is the reaching
ability, since it requires robustness to temporal occlusions of
the target object and a mechanism to bring the arm tip back
into the robot’s field of view [24].

Our approach is visualized in fig. 1. Compared to sophisti-
cated biologically-inspired control models such as [25], we
make an abstraction in order to use pixels and joint angles
as the only physical quantities. In order to learn hand-eye
coordination, our system uses two PAS modules: one for
head control, and the other for arm control. Whether they
are used for one or the other, both PAS modules operate
in the same manner internally. A PAS does not contain any
Jacobian or (inverse) kinematic model. Instead, it learns the
sensory-motor associations from scratch, based on a simple
constrained DOF exploration. In [5], we have grounded our
PAS model in a cognitive science point of view. Here, we
also ground our PAS model in a neurobiological point of
view. For this purpose, we need to recall that the PAS itself
contains two important sub-modules: the self-motion predic-
tor (SMP), and the task-relevant (visual) feature predictor
(TRFP). Our SMP encodes the predicted effects of the robot’s
own motion (ego-motion or self-motion) on a perceived



visual feature. Encoding of self-motion is also present in the
neocortex [26]. Our TRFP encodes predicted features of an
external object relevant for the robot’s interaction with the
world, for example the position of an object of interest. The
perception of self-motion as well as the perception of object
motion can each be mapped to specific cortical regions [26],
[27]. The SMP and the TRFP both utilize our version of
the multiple timescale recurrent neural network (MTRNN)
for the learning and prediction of spatiotemporal patterns.
We re-implemented the original MTRNN [28] and modified
it to work with sigmoid neurons only, in order to make it
more uniform [29] and thus closer to the neocortex from a
neurobiological point of view. The dorsal premotor cortex
(PMd) is involved in (action) response selection [30]. This
response selection property is modelled by our proposed
action selection algorithm.

II. SYSTEM DESCRIPTION
A. Definitions

We start with the explanations of important terms used to
describe our system.
Sensory-motor pattern: A vector encoding sensory-motor
features (e.g. the perceived position of an object in the
image plane, joint angles) at a particular moment in time. A
sensory-motor pattern X; at time ¢ consists of a visual pattern
vector v; and a proprioceptive pattern vector p;, eq. (1).
x; =[v{ p/] (1

?

The visual pattern encodes the position of a visual feature
of interest in the camera image plane (robot’s field of
view). This can be the position of an external object, or
the position of the robot’s hand, or a desired goal position.
The proprioceptive pattern encodes the DOF positions of a
particular limb, e.g. the head or the arm. The visual feature
positions and DOF positions are normalized such that each
pattern contains values between 0.0 and 1.0. Note that there
are two types of visual patterns: v encoding the feature of
interest, and v, encoding a pre-specified goal.
Sensory-motor sequence: A sequence S, of length m + 1 is
defined as a series of these sensory-motor patterns, i.e. S, =
(X0,X1,X2, ..., Xm). The subscript ¢ denotes the identity
index of a sequence. We term c as context because our
PAS learns sequences by its recurrent neural network, and
each learned sequence can be represented and recalled by the
initial context states of the network. The length m is termed
as prediction length, it determines how many time steps a
sequence is predicted forward. Another term for sequence is
spatiotemporal pattern.

B. Input and Output of a Predictive Action Selector

Consider a PAS module: Its input data consists of v, vy,
and the current p;, of the limb to be controlled. Its output
data is p,yt, the updated positions sent to the robot limb.
Both v, and vy are in the robot’s field of view (FOV).

For learning head control, v encodes the perceived position
of an external object of interest, e.g. a cup. The goal v, is
constant and set to [0.5 0.5], representing the middle of

the FOV. For learning arm control, v encodes the perceived
position of the robot’s arm tip. The goal v, is set to be the
position of the target object when attempting to reach.

C. Constrained DOF Exploration

Whichever limb the robot learns to control (i.e. head or
an arm), the constrained DOF exploration phase stays the
same. The content encoded by v is pre-specified such that
v encodes the cup position in case of head control, or the
arm tip position in case of arm control. The robot explores
the DOF of its limb while observing v¢. Only one DOF is
moved at a time, then followed by the next DOF, and so
on until all DOF of the limb are explored. Starting from
the home position &, each DOF is moved to an upper limit
h +1 and back to home position, and then moved to a lower
limit h — [ and finally back to home position. DOF positions
are recorded only when starting from home position, and
then going to either upper or lower limit. Thus, our system
records two simple visuo-proprioceptive sequences for each
DOF separately. One additional sequence is recorded which
is the idle sequence where all DOF of the limb are in home
position. Thus, the number of recorded sequences is 2- N +1
where NV is the number of DOF of the limb to be controlled.
Each DOF is only moved by a few degrees. The explored
range is the same for every DOF of a limb.

D. Improved Prediction Model

For the scope of this paper, we focus on the main algorithm
of the predictive action selector. The PAS algorithm uses the
predicted patterns delivered by the SMP and TRFP. However,
our algorithm presented in [5] needs to be improved regard-
ing its scalability, in order to deal with more than 2 DOF and
to increase its accuracy. Here, we improve the foundations
in [5] without changing the original idea behind it.
Although it would be sufficient for our system to use a
simple recurrent neural network (with one timescale for the
context neurons), we still decided to adopt and modify the
MTRNN [28] because it offers the possibility to learn more
complex spatiotemporal patterns (which may be utilized in
our future work).

1) Predictive Minimization: The PAS minimizes a value
function V' through a process of internal prediction [5].
We explain how this method can be used in two different
scenarios, one is for the control of the head, and the other
is for the control of the arm:

min V(c,m) =min ||[vy 4+ ay - vy + as - Avg(c,m)]| (2)

The scalars ay and a, are called alteration parameters. They
support an integration of multiple sensory input [31] and they
bias the robot’s behaviour, e.g. changing from object tracking
to object evasion [5]. The content of v, and vy depends on
the controlled limb, see section II-B. Note that the pattern v ¢
will not be observable all the time due to occlusions. In such
a case, a prediction of vy is delivered by the TRFP of the
PAS. The difference pattern Av,(c,m) is of key importance:
It describes the predicted change of the visual feature, this
change is caused by self-motion only. In case of head control,



Av, is the predicted change of the external object caused by
the robot’s own head motion. In case of arm control, Av,
is the predicted change of the arm tip marker caused by the
robot’s own arm motion. The difference pattern depends on
the selected sequence c and on the prediction length m, and
it is computed by:

Avg(c,m) = vs(e,m) —vy(c,0) 3)

The pattern vy(c,m) is vy of the sequence c at time step
m. The pattern v (c,0) is v of the sequence c at time step
0. The patterns v(c, m) and vy (c,0) are delivered by the
SMP of the PAS. The biological analogy is that v and Av,
correspond to input from the visual pathway (MST region),
especially Av, describing the predicted perception of self-
motion relative to a feature of interest [26].

2) Processing Steps: We use the method of predictive
minimization as part of our improved action selection al-
gorithm. In contrast to [5], the improvements encompass the
calculation of a new position for each DOF separately and the
automatic adjustment of the prediction length m depending
on the perceived visual error. Benefits are the scalability
regarding the number of DOF and the loss of one model
parameter. By the following processing steps, we model the
response selection property of the dorsal premotor cortex
(PMd) and the computation of motor signals in the primary
motor cortex (M1).

For each DOF of a limb, the PAS algorithm does the
following steps 4 to 10:
It first computes the current visual error.

ev = [[vg = vyl “)

Based on this visual error, the algorithm determines the
prediction length m as:

m=|K-ep| ®)

where k is a constant termed prediction length factor. By
using m, the algorithm computes the self-motion effects Av,
and selects the visuo-proprioceptive sequence c,, (winner
sequence) which minimizes V.

min V(e,m) given a set of learned sequences  (6)

The sequences needed for step 6 have been generated by the
constrained DOF exploration before and have been learned
by the SMP. Once the algorithm has determined c,, it
computes the new DOF position by

Ap(cunm) :p(cw7m) —p(cw,O) @)
Dout = Pin + Ap(Cun m) ®)
where p(c,,, m) is the predicted DOF position extracted from
the visuo-proprioceptive winner sequence c,, at length m.
After determining p,.¢, the algorithm updates the visual fea-
ture, in order to consider the predicted change Av(c,,m)
which will occur once p,,; is commanded to the DOF:

V}‘c =vs+ Avg(cy,m) 9)

Finally, the algorithm updates the input visual feature by

ViV (10)

III. EXPERIMENTS
A. Setup

We used a NAO robot to evaluate our system. The NAO
was in sitting position throughout all experiments. We used
a green colour marker for a colour-based detection of the
robot’s arm tip in its FOV. The colour marker was attached
on the NAO’s right arm tip, located between its wrist joint
and its fingers. Besides the colour information, the contour
of the marker in the image frame is extracted and serves
as a distance measure. The smaller the contour size, the
greater the distance of the marker (i.e. the arm tip) with
respect to the top camera frame. Since the NAO does not
support stereo vision, we used the size of the extracted
contours of the arm tip marker and the object in order to
extract the distance information relative to the robot’s top
camera. Figure 2 shows the NAO reaching for an object (a
blue marker attached on a chopstick). The sampling rate of
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a) NAO reaching for a blue object b) Object reached
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Fig. 2. Experimental setup: The left part (a) shows a NAO (in sitting
position). A green marker is attached on its right wrist and serves as the
arm tip feature. A blue marker is attached on a chopstick which is moved
by a human. The blue marker serves as the object feature in case of the
reaching experiment. The right part (b) shows the extraction of the arm tip
and object feature in the robot’s FOV. In contrast to the left part, the camera
image in the right top part shows the best situation possible in case of the
reaching experiment, where the robot has moved its arm tip to the object
as close as possible (corresponding to a normalized visual error of ca. 0.2
in the robot’s FOV).

the joints was 20 Hz, which was also the update rate of a
PAS. During the head DOF exploration phase for learning
head control, our system collected 48 sample vectors in total.
During the arm DOF exploration phase for learning arm
control, our system collected 126 sample vectors in total.
In each case, these sample vectors are the training data for
the SMP of the PAS controlling the particular limb.

B. Neural Network Parameters

We employ an one-to-one mapping, i.e. each dimension
of a normalized pattern vector is mapped to one neuron
of the input-output group of the neural network. In the
MTRNN of the SMP, the first part of input-output neurons
represents vy, while the second part of input-output neurons
represents p. In the MTRNN of the TRFP, the input-output
neurons represent vy. The MTRNN of the SMP was set to
single timescale mode because the sequences gathered during
DOF exploration are short enough. In the single timescale



mode, all context neurons have the same timescale and all
context neurons have connections to input-output neurons
and vice versa, whereas in the multiple timescale mode, the
slow context neurons are disconnected from the input-output
neurons and vice versa. The MTRNN of the TRFP was also
set to single timescale mode. We use the following symbols
for the neural network parameters: N;o, Npc, Nso denote
the number of input-output, fast context, and slow context
neurons, respectively. Parameters 770, Trc, Tsc denote the
timescale of input-output, fast context, and slow context neu-
rons, respectively. Table I summarizes our network parameter
settings for the PAS learning head control and for the PAS
learning arm control. Note that the TRFP of a PAS predicts

TABLE I
NEURAL NETWORK PARAMETER FOR THE PAS LEARNING HEAD
CONTROL AND FOR THE PAS LEARNING ARM CONTROL

[ MTRNN param. [ N;o [ Nrc [ Nsc [ 110 | 7rc | 7sc |

SMP 7 00a 7 5 5 7 20 | 20
TREP 1700q 2 5 5 7 20 | 20
SMP 4,m 8 5 5 7 20 | 20

the motion of an external object. TRFP 4,.,,, was not needed
in the reaching experiment, since the prediction of the arm
tip is already done as part of the action selection process
(see steps 9 and 10 of section II-D.2).

C. Acquired Head Control: Tracking an Object of Interest

We validated our improved PAS model on the head, espe-
cially to investigate the improvements in accuracy compared
to our earlier model. The parameter settings of the SMP and
TRFP of the head PAS stayed the same as during the learning
phase. A cup was moved in front of the robot and the tracking
skill was validated. The visual goal pattern was constant
and set to vy = [0.5 0.5]7, corresponding to the center
of the robot’s FOV. During this interaction, the cup was
moved behind another object, causing a short-term occlusion.
Compared to our previous work [5], we could observe that
our improved PAS model has at least the same or even a
better accuracy in terms of the remaining visual error. Once
the object comes to rest, the remaining visual error is below
4 -5 %, as reported in [5]. Nevertheless, our improved PAS
model often achieves up to 1 - 2 % remaining visual error.
For the head PAS, we set kK = 15. The improved PAS also
supports object evasion behaviour, like shown in [5]. The
results of the head control are shown in fig. 3.

D. Acquired Arm Control: Reaching for an Object of Interest

We validated whether our improved PAS model has suc-
cessfully learned to control the right arm of the NAO. This
experiment demonstrates the scalability of our model from
2 to 5 DOF. For now, we validated the arm coordination
when the head was in a resting position facing the arm. In
case of arm control, the visual goal pattern was set to be the
object position (blue marker on the chopstick, see fig. 2). For
the arm PAS, we set x = 8. The parameter settings of the
SMP of the arm PAS stayed the same as during the learning
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Fig. 3. Visual error in the robot’s FOV while our PAS is controlling the
head to track an object. At the onset (left purple circle), the object appears
in the corner of the robot’s FOV, causing a large error which the robot
compensates for by moving accordingly. The error is also high between the
time steps 60 and 72 due to an occlusion of the object. Nevertheless, the
robot’s behaviour is still enough robust in terms of a continuous tracking
made possible by using the prediction of the object location. Additional
peaks in the error around time steps 85 and 200 arise from sudden motions
of the cup. Once the cup is only slightly moved or not moved any more
(green circles), the robot fixates its attention on it with a remaining visual
error of 1 - 2 %.

phase. We summarize the results in fig. 4. In this reaching
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Fig. 4. Observed and predicted visual features during the reaching. The left
side shows the target object (blue marker on a chopstick end, represented
by the blue signals) which was moved randomly in front of the robot, with
variations in the distance. The arm tip (green signals) was approaching the
object. The robot reached the object around time step 160. A residual error
remained in the y-position, which is acceptable in this scenario because the
markers of the arm tip and chopstick are physically next to each other. Then
the measured normalized visual error is about 0.2 or less, meaning that the
object is within the robot’s grasp. The right side shows the observed arm
tip feature (green) and its prediction (magenta) during the reaching.

experiment, the visual goal was not predicted, although this is
possible by using the signal delivered by TRFPf7.,4. The arm
PAS predicts the arm tip feature and relies on this predicted
signal when the arm tip is not visible. The best prediction was
150 msec ahead in time. This arm tip prediction is shown
in the right side of fig. 4. The reaching ability shows that
our improved PAS model can deal with more than 2 DOF. In
our conducted reaching experiment, the elbow was the most
active joint which especially compensated for variations in



the distance between object and robot.

IV. CONCLUSION

We presented an improved version of our predictive action
selector (PAS) which can be viewed as a crucial building
block for the construction of architectures for cognitive
development. Our PAS is a neurobiologically-inspired model
for the progressive learning of sensory-motor maps based
on a constrained DOF exploration. Progressive learning is
realized by exploring the DOF of one limb and learning the
mapping, and then repeat this procedure for another limb.
By this approach, one PAS learned to control the head of
the robot. Then, a second PAS learned to control the arm.
Compared to our previous work, we achieved an improve-
ment in the object tracking accuracy (1 - 2 % remaining vi-
sual error as the minimum error measured) when controlling
the head. In case of arm control, we demonstrated the acqui-
sition of an early reaching skill. Our proposed PAS model
can integrate both visual and proprioceptive information in a
very rapid way with considerably less training data compared
to approaches using motor babbling. For the learning of
object tracking via head motions, our system collected 48
sample vectors. For the learning of reaching, our system
collected 126 sample vectors. This relative small amount of
training data was enough to bootstrap tracking and reaching
at an early developmental stage. When predicting the arm
tip position in the field of view, the best prediction achieved
was 150 msec ahead in time at a sampling rate of 20 Hz.
Since the PAS computes predictions milliseconds ahead in
time, potential applications encompass motion correction and
behaviour switching.
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