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Abstract—We present an architecture for self-motivated agents
to organize their behaviors according to possibilities of interac-
tions proposed by the environment, and to modify the environ-
ment to construct new possibilities of interactions. The long-
term goal is to design agents that construct their own knowledge
of objects through experience, rather than exploiting pre-coded
knowledge, and exploit this knowledge to generate complex
behaviors that satisfy their intrinsic motivation principles. Self-
motivation is defined here as a tendency, based on inborn behav-
ioral preferences, to experiment and to respond to behavioral
opportunities afforded by the environment. Over time, the agent
integrates, through its experience, relations between interactions
and object affording them in the form of data structures, called
signatures of interaction, which encode the minimal spatial con-
figurations affording an interaction. The agent then exploits these
signatures to recognize distant possibilities of interactions (or
affordances), but also incomplete affordances. These structures
help the agent defining behaviors that can construct affordances
from separated elements. Experiments with a simulated agent
show that they learn to navigate in their environment, reaching,
avoiding and constructing objects according to the valence of the
interactions that they afford.

I. INTRODUCTION

In this paper, we address the problem of generating be-
haviors that can modify the environment in the purpose of
letting affordances emerge, by an artificial agent that ini-
tially ignores elements that compose its environment and
geometrical properties of its environment. Such an agent can
be defined as environment-agnostic [6]. We base our work
on a design principle introduced by Georgeon and Aha,
called Radical Interactionism [4], that intends to account
for cognitive theories suggesting that perception and action
are inseparable (i.e. O’Regan [10], Piaget [12]). Specifically,
interactions are used to model Piaget’s notion of sensorimotor
scheme. In this approach, the agent is given a predefined set of
uninterpreted interactions associated with predefined valences,
and seeks to enact interactions with positive valences and
avoids interactions with negative valences. This motivation
principle is called interaction motivation [5], and relates to
the problem of intrinsic motivation [11]. The agent perceives
its environment by identifying affordances proposed by the
environment rather than recognizing objects on the basis of
predefined features. This approach addresses the knowledge
grounding problem [8] by letting knowledge of objects arise

from experience, and introduces no disconnection between
agent’s experience and representation of objects.

In previous works, we implemented agents that can in-
tegrate and exploit spatial properties and elements of their
environments (static [1] or dynamic [3]) discovered through
experience, enabling emergence of behaviors satisfying agent’s
motivational principles. The mechanisms were robust enough
to be implemented on a robot [2]. However these agents can
only consider affordances that are actually present in their
environment. In this paper, we propose additional structures
and decisional mechanisms to generate behaviors that enable
constructing objects affording interactions without any pre-
conception about objects and spatial properties of space. Such
abilities relate to the problem of tool manipulation based on
affordances [15]. Our approach consists in learning properties
of interactions and relations that emerge between interactions,
without using other structures than interactions: a tool is
recognized as such because it can complete an affordance.
Moreover, our goal is to make an agent able to generate
behaviors satisfying its motivational principle according to
offered possibilities of interaction. We tested our mechanism
in an environment proposing objects that can be moved by the
agent to let new affordances emerge.

II. FORMALIZATION OF RADICAL INTERACTIONISM

A Radical Interactionism (RI) algorithm [4] begins with a
set I of primitive interactions. Each primitive interaction i
is attributed a valence vi that defines the agent’s behavioral
preferences. At step t, the agent selects an intended interaction
it, and is informed, at the end of step t of the interaction et that
was actually enacted. The enaction is a success if it = et, and
a failure otherwise. A RI agent learns to anticipate the results
of its interactions, and tries to enact interactions with high
valences.

However, it is difficult to discover spatial properties of
the environment with a unique enacted interaction. We thus
proposed an extension of the RI model, we called Parallel
Radical Interactionism (PRI) [1][3]. The PRI model differs
from the RI model as it allows to experience simultaneously
more than one enacted interaction as the result of an in-
tended interaction. The intuition comes from living beings
who receive multiple sensory stimuli while they are acting.
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Fig. 1. Diagram of the Parallel Radical Interactionism model. At time t, the
agent tries to enact an intended interaction it, and receives a set of enacted
interactions {ek}t, called enacted context Et. The environment is opaque
and the agent can only experience it through interactions.

For example, an animal can move forward, and experience the
optical flow resulting from this movement. We thus propose
that the agent can experience additional stimuli, in addition
to the enacted interaction. However, these stimuli cannot be
considered without the movement produced by the enacted
interaction. As an example, the optic flow on a retina can
only carry a spatial information if it is considered with the
movement that generates it. We thus propose to construct new
interactions by associating an interaction and an additional
stimulus. We call primary interaction an indivisible association
between an action and a perception, and secondary inter-
action an indivisible association between an interaction and
an additional perception. A primary interaction thus consists
of a couple ip = (action, perception), and a secondary
interaction, a couple is = (i{p,s}, perception), with i{p,s} the
associated interaction of is.

Formally, the parallel RI model is similar to the RI model.
The difference is that, at the end of step t, the agent experi-
ences a set of enacted interactions {ek}t, containing a unique
primary interaction and a set of enacted secondary interactions
associated with this primary interaction. A secondary interac-
tion i, like a primary interaction, successes when i ∈ Et.
We however consider that a secondary interaction i fails
when the associated movement is produced (i.e. the associated
interaction of i is in Et), but the additional perception is not
observed (i.e. i /∈ Et). Figure 1 illustrates this formalism.

III. THE SPACE MEMORY

The space memory is a structure dedicated to the integration
and exploitation of the environmental properties observed
through enaction of interactions. This section formalizes con-
cepts and principles used to implement the space memory:
signatures of interactions and object instances, that were
introduced in previous work [1][3], and proto-objects and
mobile objects defined to address the problem of affordance
construction.

A. Signatures of Interactions

This structure is based on the assumption that the result of
enacting an interaction depends on a limited spatial context of
elements in the environment. We expect such contexts to define
objects with which the agent can interact. This definition of
objects relates to the concept of affordances proposed by J.J.
Gibson [7]. An object is thus defined as a specific spatial
configuration of elements affording an interaction and does
not require a priori knowledge.

A RI agent can only perceive its environment by experienc-
ing it through interactions. We formalize a signature Si of an
interaction i as a function Si : P(I) → [−1; 1], where P(I)
denotes the partition of I (possible interactionnal contexts) that
gives a numerical value in [−1, 1] that reflects the possibility of
successfully enacting i in an interactional context E. Si(E)=1
means an absolute certainty of success and Si(E) = −1 an
absolute certainty of failure. Si is learned and reinforced when
i succeeds or fails to generate accurate predictions. A signature
must be reversible: it must be possible to define a function
Ŝi : {1;−1} → P(P(I)) that can provide minimum contexts
(i.e. 6 ∃E1,E2 ∈ Ŝi(x), x ∈ {1;−1}/E1 ⊂ E2) affording
i (Ŝi(1)) and preventing enaction of i (Ŝi(−1)). We use
signature Si to predict the enaction result of i and Ŝi to extract
and exploit information about the object affording i.

Defining objects by learning to recognize affordances they
provide is abundant in literature [9][14]. Signatures differs by
the use of interactions, which allows implicit relations between
interactions to be discovered, and recognition and localization
of distant affordances in space in terms of interactions. See [1]
and [3] for more details and examples of implementations.

B. Object Instances

A signature Si of an interaction i characterizes a context at
a certain position relative to the agent, in the form of sets of
interactions {jk} ∈ Ŝi(1). However, each interaction jk has
its own signature, and each context El = {jk} is composed of
interactions related to the same primary interaction j. We thus
propose to backmove a signature Si through a primary inter-
action j using the following procedure: we note Ŝσ0

i = Ŝi(1),
where σ0 is an empty sequence of interactions, and construct:
Ŝ

[j,σ0]
i =

⋃
∀El∈Ŝ

σ0
i /j∈El{E ∈ P(I)/∀jk ∈ El, Sjk(E)> 0},

which characterizes contexts that can afford i after enacting j.
As this process can be repeated by considering σa+1 = [j, σa],
we can backmove a signature Si by a sequence of interactions
σ, to obtain a predecessor of i, noted Sσi . A predecessor
characterizes a context that, if moved through the enaction of
the sequence of interactions σ, affords i. We consider that an
instance of the object affording i is present at position σ with
a certitude of Sσi (Et) > 0. We thus characterize a position in
space as sequences of interaction, which relates to the notion
of Representative Space of Poincaré, for whom localizing an
object in space means considering the movement needed to
reach it [13].

C. Proto-object

We define a proto-object of an interaction i as a part of the
context affording i. We define a partial backmoved signature
Sσ∗i of i as a structure Ŝσ∗i ⊂ Ŝσi , Ŝσ∗i 6=∅. A proto-object of i is
detected at position σ when ∃Sσ∗i /Sσ∗i (Et)>0∧Sσi (Et)≤0.

D. Mobile object

We consider that an object is mobile when the same instance
of this object, experienced through a set of interaction E ∈ Et,
is detected at positions [σ0] and [σ0, i, σm], with σm the move-
ment of the object relative to the agent (possibly an empty



sequence), i.e. ∃t∈N, E⊂Et, σ0,σm/E∈ Ŝσ0
i ∧E∈ Ŝ

[σ0,i,σm]
i .

This means that the agent can move toward the object by
enacting sequence σ0, interacting with the object (i), then
moving according to σm and interacting again with the object.
When the object affording i is considered as mobile, the space
memory gathers properties related to the manipulation of this
object. Our model requires two types of properties:

- positions that allow to interact with the same mobile
object (i.e. defined by the same context). Indeed, changing the
position from which the agent will interact with an object does
not change the distance from this object to other proto-objects.
A sequence σ1 is integrated as a manipulation sequence of i
if ∃t ∈ N, E ⊂ Et, σ0/E ∈ Ŝσ0

i ∧ E ∈ Ŝ
[σ0,σ1]
i , with σ1 not

containing i.
- sequences of interactions that allow to interact with

the constructed object. Sequence σ2 is a post-construction
sequence of mobile object affording i that enables enaction
of j once object is constructed if : ∃t ∈ N, E ⊂ Et, σ0/E ∈
Ŝσ0
i ∧ E ∈ Ŝ

[σ0,σ2]∗
j .

IV. SELECTION MECHANISM

We propose three decisional mechanisms that can work
in parallel to select the next intended interaction it+1. Each
of these mechanisms adds a utility value to the valence of
interactions, which influences the selection of the next in-
tended interaction. The two first mechanisms were introduced
in previous work [1][2][3] while the third, called Construction
Mechanism was developped to address the problem defined in
this paper.

The exploration mechanism allows testing and reinforcing
signatures when the certainty of prediction of an interaction
or the reliability of the signature are low. Defining the utility
value relies on the implementation of signatures. Section V-B
gives rules used in the current implementation of the space
memory. The exploration utility value uλi is computed for each
primary interaction i. Utility values of secondary interactions
are added to the utility values of their associated primary
interaction.

The exploitation mechanism helps to generate behaviors that
satisfy the agent’s motivational principles at the short and
medium terms. This mechanism adds a positive utility value
to interactions that enable moving closer to object instances
affording interactions with high valence, and a negative value
when the object instances afford interactions with low va-
lences. The utility value is weighted by the distance of object
instances so that far object instances have a lower influence. As
we define positions with sequences of interaction, the distance
is given by the length of sequences and the interaction that
allows to move closer is the first element of sequences. The
exploitation utility value ueic is computed for each candidate
(i.e. predicted as a success) primary interaction ic as:

ueic =
∑

oj∈Oic
νj × f(doj ) (1)

Where Oic is the set of object instances that can be moved
closer by enacting ic, oj is an object instance affording

interaction j, νj is the valence of j, doj is the distance of
oj , and f : R+ →]0; 1] is a function that characterizes
object influence according to their relative distance. In our
implementations, we use the function f : x → e−γ×x where
γ is a coefficient that characterizes the decreasing of object
influence depending on their distance.

The construction mechanism measures variation of distance
between proto-objects composing the same object that the
enaction of an interaction afforded by a mobile object can
produce. The utility values are computed as:

- for each detected mobile object instance oim affording
im including a proto-object pj affording j (i.e. ∃S∗j /Ŝ∗j ⊂
Ŝi), we define a list of couples of possible sequences σ′ =
[σ0, σ1] and σ′′ = [σ0, im, σm, σ1], where σ0 is the position
of oim , σ1 is a manipulation sequences (which can be an empty
sequence) and σm the movement of the mobile object when
interacted (Section III-D). σ′ characterizes a position of oim
before moving it, and σ′′ a position of oim after moving it.

- for each proto-object pj included in the mobile object
instance oim , we detect positions of complementary proto-
objects pj,k of pj , defined as {pj,k}k = oj − pj . We consider
proto-objects for which the position can be considered both
with sequences under the form [σ′, σ∆1 , σ3] and [σ′′, σ∆2 , σ4],
where σ3 and σ4 are post-construction sequences (possibly
the same) of im that allow to enact j. Thus, σ∆1

characterize
the distance between proto-objects pj and pj,k before moving
the object instance oim and σ∆2

the distance after moving
oim . We can then estimate the variation of distance between
proto-objects produced by enacting im from position σ0 by
comparing length l∆1

of σ∆1
and length l∆2

of σ∆2
.

- The construction utility ucic of each candidate primary in-
teraction ic considers the maximum utility for each interaction
im afforded by a mobile object that can construct an object
affording an interaction j:

ucic =
∑
im

max
σ′,σ′′,pj ,pj,k

νj×(l∆1
−l∆2

)×f ′(l∆1)×f(dσ0
) (2)

Where f ′ is a function that characterizes the influence
of the distance between proto-objects and f is the same
function than for (1). In our implementations, we use the
function f ′ : x → e−γ

′×x where γ′ is a coefficient that
characterizes the decreasing of object influence depending on
distance between proto-objects.

The mechanism then selects, among candidates ic, the
interaction with the greatest global valence v′ic defined as :

v′ic = vic + λ× uλic + β × ueic + δ × ucic (3)

where λ, β, δ ∈ R are influence coefficients of the memory.
There are no separated learning and exploitation periods.

V. IMPLEMENTATION ON ARTIFICIAL AGENTS

We designed a minimalist experiment to test our mech-
anisms. This experiment is inspired by the sokoban game,
that consists in moving boxes on specific tiles without being
stucked, in a discrete 2D top-view environment. We simplified



Fig. 2. Environment of the simulated agent. The trace (black line) shows
the last 30 steps. The agent is represented as a grey shark, boxes as yellow
squares, tiles as red squares and food as blue preys. Enaction of interaction
push and bump are represented with yellow and red discs.

this principle: when the agent moves a box on a specific tile,
the box opens and releases a piece of food. Such an environ-
ment seems relevant to test our mechanisms as it requires to
move elements in order to make objects affording high valence
interaction appear. The simplicity of this environment allows to
quickly obtain accurate signatures of interactions from which
the agent can extract information required by the construction
mechanism.

These agents have a predefined list of six primary interac-
tions, listed below (valences are in parentheses):

- move forward by one step (1)
- P push a mobile element (5)
- bump in a solid element (-5)
- eat something edible (200)
- turn right by 90◦ (-1)
- turn left by 90◦ (-1)
We add a set of secondary interactions provided by the

agent’s visual system, that can detect colors among {red,
green, blue, yellow}, and measure distances. Like a sokoban
player, the agent can perceive its whole environment (although
the visual system is ego-centric rather than geo-centric). This
simplification dispenses the use of structures learning object
permanence [1] that would require a long learning period
while not being related to the problems addressed in this
paper. Visual interactions consist in seeing a red, green, blue
or yellow element while enacting a primary interaction, at a
certain position of space. We discretize the visual field as a
regular grid of 25 × 25 positions centered on the agents that
matches the grid of the environment. These interactions have
a predefined valence of zero. We thus define 6×4×25×25 =
15000 possible secondary interactions.

A. Environment

The environment is designed to afford spatial regularities
that the agent can discover through its interactions. We defined
four types of elements characterized by a color that makes
them recognizable with visual interactions:

- wall (green), affording bump.
- box (yellow), affording push. If a box is in front of a wall

preventing it from being pushed, it affords bump.
- food (blue), affording eat. When the agent eats a piece of

food, it becomes a tile.
- tiles (red), affording move forward, as well as empty

spaces. However, boxes and tiles can be combined to get a

piece of food.
The environment’s contents can be edited during the exper-

imental run. Figure 2 gives an example of environment.

B. Implementation of signatures

We propose a new implementation of signatures of inter-
actions that is more efficient in discrete environment than an
implementation based on formal neurons [2][3] (although it
is less robust), as it enables obtaining reliable and accurate
signatures after a shorter period. This implementation is based
on the construction of minimal contexts that characterize
objects affording interactions. We define a context c as a
set of interactions that can be observed simultaneously. c
is considered as active when c ⊂ Et. Each interaction is
attributed two nodes, the first predicting a success and the
second predicting a failure. When the prediction of a node is
observed as wrong, the signature integrates the context Et as
a context that would have inhibited the node. When adding the
new context, the signature mechanism first looks for existing
contexts ck for which Et ∩ ck 6= ∅. If such contexts exist,
then the context for which Card(Et ∩ ck) is maximum is
removed and replaced by c′k = Et∩ ck. This principle ensures
that contexts are quickly reduced to the minimum context
affording or forbidding an interaction (basically 3 to 8 tests).
While each node collects contexts that inhibit its prediction,
it produces less errors. We propose that when a node gives
100 consecutive correct predictions, it can inhibit the other
node. If the node predicting a success is inhibited, the signature
can be interpreted as “interaction will fail except if a context
inhibiting node predicting failure is active”, and vice-versa.
In case of complex objects, a context c can also make errors
in prediction. When a context makes an error, it constructs
contexts that can inhibit it. Contexts are considered as wrong
and removed after 10 errors.

We define the reliability of a context c in interactional
context Et as the number of consecutive correct predictions
(bounded by 10). The reliability of a signature is defined as the
maximum number of consecutive correct predictions among
the two nodes, added with the minimum reliability among
contexts ck for which Et ∩ ck 6= ∅.

VI. EXPERIMENTS AND OBSERVATIONS

As the construction mechanism is very CPU consuming,
we first tested the exploration and exploitation mechanisms
to obtain accurate signatures. We then tested the exploitation
and construction mechanisms, using signatures obtained in
the first part of the experiment. Testing the construction
mechanism separately is not problematic as this mechanism
is not functional until a large amount of signatures become
reliable. Results described in this section use the following
coefficients: λ = 1, β = 1, δ = 2, γ = 0.5, γ′ = 0.001.

A. Signature Learning

We let the agent move in its environment and observe
evolution of signatures. Signatures of primary interactions
stabilize after 4000 to 8000 simulation steps, depending on
interactional opportunities offered by the environment. These
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Fig. 3. Signature of interaction eat at decision cycle 8000. The interaction is
considered as a failure, except when one of the above context (each column) is
experienced. To make context easier to read by an external observer, secondary
interactions are represented, for each context of Ŝeat, with colored squares
for which color and position correspond to properties of the considered
interaction, and primary interaction with a green square. Interactions are
gathered according to their associated primary interaction. All contexts are
similar and characterize the presence of a blue object in front of the agent
(position of the agent is displayed with a orange triangle). We can however
observe that there is no contexts related to bump (third group). Indeed, it is
not possible to enact eat after bumping as the agent stays in front of a wall.
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Fig. 4. Sample of signatures. We only represent contexts related to primary
interaction move forward, as other context are similar (as in Figure 3). a) Move
forward is predicted as a success except if a yellow, green or blue object is in
front of the agent. b) Push is predicted as a failure except if a yellow element
is present in front of the agent. These contexts can be inhibited if a green
object is present behind the yellow element. c) Bump is predicted as a failure
except if a green element is present in front of the agent, or if a yellow element
with a green element behind are present. d) The visual interaction consisting
of seeing a blue element in front of the agent while pushing is afforded by the
presence of a yellow element in front of the agent and a red element behind
the yellow element. This signature thus characterizes the fact that pushing in
such a configuration generates a blue element. e) A visual interaction that
consist in seeing a red element ahead the agent (position indicated with a
orange square) while turning left. We observe that this signature designates a
red element at the left side of the agent and thus characterizes a geometrical
property of space.

signatures successfully integrated contexts that afford primary
interactions, as shown in Figures 3 and 4.

Signatures of visual interactions show an interesting struc-
ture: they designate contexts containing visual interactions
related to seeing an element of the same color at a position
that characterizes the movement produced by the associated
primary interaction, characterizing spatial properties of the
environment (Figure 4). Signature of seeing a blue element
in front of the agent while pushing is also interesting: it
designates a context composed of a yellow box in front of
the agent and a red tile behind the box. Indeed, enacting push
in this context will construct a food element. This signature
thus integrated a way to construct the affordance of eat.

While signatures of interactions becomes reliable, influence
of the exploration mechanism decreases, while influence of

P

P

P

P

P

P

P

Fig. 5. Properties discovered about mobile object affording push (we do not
display redundant sequences). Top left: two manipulation sequences. Enacting
one of these sequences does not change the distance between proto-objects.
Top middle and top right: post-construction sequences. Interaction bump can
be directly enacted after constructing the affordance, and three sequences lead
to the enaction of eat after constructing the affordance. Bottom: interpretation
of above sequences by an external observer.

exploitation mechanism increases as the agent becomes able
to detect distant object instances. The agent thus moves toward
objects affording interactions with high valence (food and
boxes), but neglects red tiles.

B. Construction of affordances

We tested the agent equipped with the exploitation and
construction mechanism, using signatures obtained previously
(Section VI-A) after 42000 decision cycles. We observed the
behavior of the agent in several environmental configurations
where a box and a tile are present. When the box and the tile
are close enough to make influence of construction mechanism
greater than other mechanisms (eq. 3) (typically less than 4-5
grid units with current parameters), the agent moves around
the box and pushes it toward the tile, changing direction when
needed, until the box is in front of the tile. Then, the agent
pushes the box to construct the food and eats it. Otherwise,
the agent only pushes the box, as push has a positive valence.
Figure 5 lists discovered properties of mobile object affording
push: the same object instance can be interacted from two
additional positions, after pushing a box toward a green
wall, the interaction bump can be immediately enacted, and
after pushing a box near a tile, three configurations appear,
according to the relative position of the tile.

Figure 7 lists object instances and proto-objects that have
the greatest influence on the behavior, at each step, in the
environmental configuration described in Figure 6. We observe
that, at step 4, the exploitation mechanism proposes turn
left to interact with the box. When the agent is only driven
by the exploitation mechanism, as in the case of previous
agents [1][3], the agent effectively turns left and pushes the
box (Figure 6a). However, the construction mechanism detects
an interesting configuration: after enacting sequence [ ],
the proto-objects that enable construction of eat affordance are
separated by sequence [ ] of length 5. After pushing
the box (here, sequence [P ]), the two object instances are
separated by sequence [ ], which is shorter (length=4).
Pushing the object instance from position [ ] is thus
interesting as it can gather proto-objects affording eat. the
construction mechanism thus propose move forward with a
high utility, related to the high valence of eat.

Configurations given in Figure 8 show that the agent consid-
ers every elements of its environment: when a wall is added,
the agent interacts with the box from another position, as the
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Fig. 6. Behavior of the agent in presence of mobile objects and proto-object
affording eat. a) the agent is equipped with the exploitation mechanism, such
as agents introduced in previous work [2][3]. At step 4, the agent turns left
and interact with the object affording push, as push has a positive valence.
b), c) and d) the agent is equipped with both exploitation and construction
mechanisms. We observe that the agent goes behind the box and push it
toward the tile. At step 10, the agent changes its position to not overpass the
tile, and complete pushing the box to construct the affordance of eat (step
17). Object instances and proto-object influencing the behavior of the agent
are listed in Figure 7.
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Fig. 7. Utility values given by decisional mechanisms, in configuration
showed in Figure 6. From left to right: enacted interaction at each step t, most
influent object instances (with their position σ), and their utility values, most
influent construction sequence given by the construction mechanism. Positions
of the mobile objects are in red, manipulation sequences are in green. The
sequence that enables interaction with the constructed object is in blue. The
middle sub-sequence characterizes the distance between the two proto-objects
required to construct eat affordance. We display distance of proto-objects
before (top sequence) and after (bottom sequence) manipulating the mobile
object, and the construction utility value. At step 4, we observe that mecha-
nisms diverge: construction mechanism propose turn left, and directly interact
with the box to experience valence of push, while construction mechanism
proposes move forward to construct a eat affordance. Influence coefficients
can influence either the agent prefers immediate or future satisfaction.

previous position would construct object affording bump. The
agent can thus construct the object affording eat using another
sequence of interactions.

VII. CONCLUSION

This work proposes a model that enable an agent to modify
its environment to construct possibilities of interaction that
are not present at first. Our implementation in artificial agent
shows how this model can extract and integrate object prop-
erties from signatures of interactions and its own experience
of the environment, and exploit these properties to construct
objects affording interactions with high valence and thus
satisfy agent’s motivational principles.

This model does not rely on plan construction, but increase
attractiveness of object instances with which interacting will
change the distance between elements that compose the needed
object. This model is thus similar to the exploitation mech-
anism developed in previous works [1], but that is applied
between two proto-objects rather than between the agent and
an object instance.

Fig. 8. The agent considers every element of its environment: if a wall
block is added (right), the agent will push the box from another side to avoid
constructing an affordance of bump.

In future works, we will implement this model on more
sophisticated RI implementations, such as agent in continuous
and dynamic environment, or even on robots, and using
variable valences and coefficients that rely on internal states
of the agent (such as hunger or tiredness), which can instantly
change attractiveness of objects and global behavior of the
agent. We also intend to extend the model: in the model
presented in this paper, we only consider object instances
and proto-objects that are accessible. A possible extension
of this model could consider a non-enactable path leading to
an object instance as an object that may be constructed. A
agent equipped with such a model could construct or modify
a path that lead to an object, or construct an object that require
several steps to be constructed, which constitutes the bases of
an abstract construction plan.
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