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Abstract—The ability to learn a model is essential for the
success of autonomous agents. Unfortunately, learning a model
is difficult in partially observable environments, where latent
environmental factors influence what the agent observes. In the
absence of a supervisory training signal, autonomous agents
therefore require a mechanism to autonomously discover these
environmental factors, or sensorimotor contexts.

This paper presents a method to discover sensorimotor con-
texts in partially observable environments, by constructing a
hierarchical transition model. The method is evaluated in a
simulation experiment, in which a robot learns that different
rooms are characterized by different objects that are found in
them.

I. INTRODUCTION

This paper presents parts of our ongoing research to develop
a method to let robots autonomously learn a model of their sen-
sorimotor interaction with the world. Narrowly defined, model
learning can be understood as providing an agent with the
means to internally simulate the world, for example to evaluate
the outcome of a potential action prior to its execution. This
type of model learning is studied in the reinforcement learning
literature, where models are typically used to reduce the time
that is needed to optimize a policy [1]. Most approaches
assume that a suitable state representation of the world is
a priori known to the agent, and focus on the problem of
letting it estimate state transition probabilities and a reward
function through exploration. If however a representation is
not provided in advance, this narrow definition has to be
extended: when learning a model, an agent not only has to
learn the effects of its own actions, it also has to come up
with a compact way to represent the state of its environment.
Large parts of this representation learning certainly constitute
the unsupervised extraction of feature representations from
observed data, to reduce the dimensionality of the input and
to increase the robustness of the system [2]. But beyond
unsupervised feature learning, autonomous agents have to
deal with the problem of ambiguity in their observations and
unobservable environmental influences on their actions.

This work takes inspiration from theories of perception
and cognition in the cognitive science literature [3], [4], to
study the problem a naive agent is facing when trying to
learn a model while having to deal with ambiguity and latent
environmental influences on the outcome of its own actions.
The focus here lies on developing a method that allows an
agent to construct a hierarchical model of its environment, as

a way to discover sensorimotor contexts: situations in which
the outcomes of the agent’s own actions are predictable. Once
the agent is able to recognize such contexts, it can learn to
predict the effect of its own actions for each of the contexts
(the demonstration of which however lies out of the scope of
this paper).

II. DISCOVERING SENSORIMOTOR CONTEXTS TO
MINIMIZE PREDICTION ERROR

Central to our approach, and as argued in more detail
elsewhere [5], is the idea that an agent should try to discover
predictable patterns of interaction in the flux of sensorimotor
observations. In the following, the argument will be briefly
summarized.

In line with so-called “predictive processing” theories of
cognition, which have increasingly received attention in the
recent cognitive science literature [3], [6], [7], we argue that
autonomous agents need to learn to predict immediate and
future sensorimotor observations, to be able to react adaptively.
A central factor driving the learning and exploration of an
agent should therefore be the goal to minimize its error of
prediction. To formalize this, consider an agent interacting
with its environment. We can describe the stream of its
sensorimotor observations as the transition probability

Pr(x′ | x, π, e), (1)

expressing the probability for the agent to observe x′ after
having observed x, while executing the control policy π. Ad-
ditionally, we let the probability distribution depend on a latent
variable e, which represents the current “agent-environment
configuration”: it summarizes all external factors that influence
the outcome of the agent’s actions. For example, imagine a
robot with a control policy to grasp a bottle: executing this
policy will obviously only have a chance of success if there
is a bottle in reach of the robot in the current situation. As
another example, imagine two identical robots, standing in a
corridor in front of two identical looking doors, one leading
to a kitchen, the other leading to a dining room. The sequence
of observations that the two robots would make when opening
and passing through the respective doors would of course be
very different (one would probably see a fridge, while the other
would probably see a dining table). This environmental influ-
ence, or sensorimotor context, is summarized in an abstract
way by the variable e.
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In practice, it is usually the designer of the robot who
ensures that the robot only executes its actions in suitable
contexts. Either this is the case because the robot never leaves a
well-defined environment (such as a laboratory), or the robot is
manually provided with a detection mechanism (for example,
a “bottle detector”, in the case of the first example above).
In both cases, the model learning is implicitly turned into a
supervised learning problem, as the human expert determines
a suitable context e for a task at hand and designs the
robot and/or its environment in such a way as to ensure that
the context remains suitable throughout every task execution.
However, when the aim is to build truly autonomous robots,
this becomes unfeasible. Instead, we require a procedure to
let robots learn in an unsupervised manner (or only depend
on supervision through natural interaction, to the extent that
it is also received by infants from their caregivers).

Thus, the agent cannot estimate the above transition prob-
ability when it does not have access to a supervisory signal.
What the agent does observe as it tries to execute a policy π
in a number of unobservable sensorimotor contexts ei, i ∈
{1, 2, . . . , N} is a marginalized version of the probability
distribution

P̂r(x′ | x, π) =
N∑
i=1

Pr(x′ | x, π, ei), (2)

which summarizes the probability of observing x′ after x
while executing the policy π across sensorimotor contexts.

Naturally, the entropy of this marginalized distribution
increases with the number of sensorimotor contexts which
influence the outcome of the agent’s executed actions. This
in turn means that the agent’s prediction error rate would
increase, were it to make predictions of future observations
solely based on an estimate of this distribution. By implica-
tion, this means that the agent can minimize its prediction
error by demarginalizing the observed transition probability
distribution. The entropy would be minimal were the agent to
achieve a distribution that corresponded to the actual values
of the latent variable e: as this variable represents all external
factors that influence the outcome of the agent’s actions, any
remaining stochasticity would be intrinsic to the agent’s own
policy.

One might be inclined to think of the variable e as the
set of all possible states of the entire universe. But this
would of course be entirely misleading: instead, it is helpful
to conceive of it as the most compact way to encode all
qualitatively different situations the agent can face, given
its sensorimotor apparatus. This is related to the concept of
“sensorimotor contingency” from the theory of perception
proposed by O’Regan and Noë [4].

Assuming that an agent has successfully demarginalized the
transition probability distribution by constructing an internal
model, it can estimate the current state e by tracking the
likelihood of individual hypotheses over time: making predic-
tions about future observations when assuming certain states,
and comparing the predictions with actual observations, to

update likelihoods correspondingly. Importantly, this implies
that the distinguishing property on which the agent relies to
decide whether two observations belong to the same senso-
rimotor context or not is temporal adjacency: given a high
likelihood of a certain context e, the agent assumes that the
next observation will also correspond to the same context.
Furthermore, the agent can test whether two observations are
part of the same sensorimotor context by trying to produce the
one observation after having seen the other, by means of its
own actions. If the agent can reliably transition between two
observations whenever it believes that a certain sensorimotor
context has a high likelihood, the agent can safely assume that
both observations are part of the same sensorimotor context
and can update its model accordingly. On the contrary, if the
agent cannot produce some observation, it can be inferred that
this observation does not belong to the current sensorimotor
context.

To summarize, we can say that observations that belong to
the same sensorimotor context share the property that the agent
can transition between them using its own actions, or in other
words, they are “reachable” from one another for the agent.
In contrast, observations that are not reachable in this sense
do not belong to the same sensorimotor context. The task to
discover sensorimotor contexts within the flux of sensorimotor
observations can thus be reformulated as one of finding sets of
observations, for which the agent observes a high probability
of transitioning within the set, but observing transitions out of
the set only with a low probability.

A. Mathematical Formalization

We can formalize this by calling Tπ the transition prob-
ability matrix corresponding to the probability distribution
defined in Eq. 2, which when interpreted as an adjacency
matrix defines a graph of observations, with edges representing
the probability of transitioning between observations when
the agent is executing the policy π. The task of finding
sensorimotor contexts is thus related to the problem of finding
clusters of densely connected nodes in this graph. This can
be approximately achieved through spectral clustering [8],
using the method suggested by Ng and colleagues [9], in the
following way.

We first solve the eigenvalue problem for the transi-
tion probability matrix Tπ to find the k largest eigenvalues
λ1, λ2, . . . , λk and associated eigenvectors u1, u2, . . . , uk, and
form the matrix

U = [u1 u2 . . . uk] ∈ Rm×k (3)

where m, is the number of discrete sensorimotor states that
the agent can observe. The matrix U is then normalized such
that each row has unit length, resulting in the matrix V with
entries

Vi,j =
Ui,j√∑
l U

2
i,l

. (4)

Since V is computed from the observation transition proba-
bility matrix Tπ , each row still corresponds to one observation



room world state transition 
probability matrix

states mapped into spectral space 
(3-dimensional projection)

Fig. 1. The result of mapping the set of states from the room environment
shown on the left into a 4-dimensional spectral space (projected into three
dimensions for visualization), based on the observed state transition proba-
bilities (as shown by their transition probability matrix). See text for more
details.

x. By treating each row in V as a vector in Rk, we can thus
map the observations into a k-dimensional “spectral space”.
As we will see below, this mapping has the property that
two observations sharing strong transition probabilities tend
to lie close together, whereas observations with low transition
probabilities between them lie further apart. This property
can be exploited to discover sets of observations that tend
to co-occur by clustering the points in this spectral space, for
example using K-means.

The idea to use graph clustering methods to partition a
state graph has already been suggested in the reinforcement
learning literature [10], [11], but with a different motivation:
the aim of these works is to discover “subgoals”, to speed
up learning convergence in reinforcement learning (see also
[12]). The idea is that “bottlenecks” (such as doorways in a
navigation task) are important subgoals when discovering a
policy, and they can be characterized as state transitions with
low probability between two clusters of densely connected
states. In contrast, here we are interested in discovering
densely connected clusters, with the aim to demarginalize the
transition probability and to discover sensorimotor contexts.

B. Example: Four room world, fully observable case

To exemplify the mapping of observations into the spectral
space, consider the “room world” depicted in Figure 1, in
which an agent is placed that is able to move up, down, left,
and right. In this example, we consider the fully observable
case, meaning that the agent makes a unique observation in
each position, allowing the agent to unambiguously recognize
whenever it reaches the same position. Environments similar
to this one are often studied in the reinforcement learning
literature.

As the agent explores its environment by executing an
exploratory policy π (for example a random walk), it can
record the transition probabilities between observations in
a transition probability matrix Tπ to estimate the marginal
probability distribution in Equation 2. The resulting transition
probability matrix for the policy in which each of the agent’s
four actions have equal probability to be selected is shown in
Figure 1.

observation transition 
probability matrix

observations mapped into spectral space 
(3-dimensional projection)

Fig. 2. The result of mapping the set of observations from the room
environment shown in Figure 1 into a 4-dimensional spectral space (projected
into three dimensions for visualization), based on the observed observation
transition probabilities (as shown by their transition probability matrix). See
text for more details.

If we map the 104 unique observations (corresponding
to the 104 unique positions that the agent can be in) into
a 4-dimensional spectral space using the method described
above, we obtain a distribution of observations as shown in
the figure (projected into three dimensions for visualization).
We clearly see four dense clusters, each composed of all the
observations belonging to one room. In between the clusters
lie the four “doorway” states, through which the agent passes
when moving from one room into another.

C. Example: Four room world, partially observable case

Now consider the same case in which the agent is not able
to directly observe its position in the world. Instead, we equip
it with a sensor to see only the cells surrounding its current
position. This agent will not be able to distinguish between any
positions in which it makes the same observation, for example
the upper left corners of all four rooms seem identical to it.
However, to be able to predict the outcome of its own actions,
it needs to know in which room it is located: moving down
from the upper left corner of the bottom right room results in
seeing the room’s left door, whereas moving down from the
upper left corner of the upper left room results in seeing a
wall.

Observations are ambiguous in this partially observable
case. The agent’s actions can lead to different transitions
between observations, depending on the current sensorimotor
context (here: which room the agent currently is in). This
ambiguity also manifests itself in the mapping into the spectral
space of the observation transition probability matrix: while
some of the observations lie closer together than others
(because for example corners tend to transition to walls, but
never to other corners), the fact that the world consists of four
separate rooms is not recognizable based on the distribution
in this space (in contrast to the fully observable case).

D. Dealing with partial observability by means of hierarchy

To overcome the difficulty of partial observability, we make
use of the following intuition: while a single observation can
be ambiguous, there will always be a sequence of observations
that will unambiguously identify any event, given the sequence
is sufficiently long. For example, a single frame from a



2nd level1st level
sensorimotor 
observations

model hierarchy,
temporal abstraction

Fig. 3. How a model composed of a hierarchy of observation transitions
extends the temporal horizon across levels and provides an agent with a form
of memory (see text for details).

video of a ball rolling along a plane would not allow a
viewer to determine in which direction the ball is rolling. Two
consecutive frames from the same video however are sufficient
to determine the direction of the ball’s movement.

What sequence length is necessary to disambiguate obser-
vations differs of course from situation to situation – it is
not possible to fix it a priori. Instead, the agent should be
able to flexibly extend the sequence length if necessary (i.e.
when it is facing ambiguous observations). We can achieve
such a behavior by constructing a model which consists of
a hierarchy of transitions: in such a model, each successive
level increases the temporal horizon of representation. New
representational levels can be constructed by first grouping
together “similar” transitions on the respective lower level
(ones that frequently co-occur, determined using the spectral
method described above), and subsequently determining which
transitions between these groups of transitions are observed.

To make this idea more clear, consider the example shown in
Figure 3: On the left of the figure, an abstract example of two
sensorimotor contexts is depicted, one shown in yellow, the
other shown in blue. Each context consists of five observations
(shown as black dots), most of which unambiguously belong
to only one of the two contexts. Only the observation in the
center, at the “intersection” of the two contexts (shown in
green), can belong to either the one or the other context.
Whenever the agent makes this observation, it thus cannot
determine based on the observation alone what the current
context is. In this example, a single transition is sufficient
to disambiguate contexts – if the agent transitions from the
central observation “vertically”, it currently is in the blue
context; otherwise, if it transitions “horizontally”, it is in the
yellow context. The first level of the model (shown on the
right of the figure) represents transitions between observations.
The agent can further create a second layer to discover the
actual latent structure of the environment, by first grouping
together “similar” transitions (ones that frequently co-occur;
shown as dashed boxes), and subsequently determining which
transitions between these groups of transitions it can observe.
The second level thus represents higher-order transitions, each
one corresponding to four simple transitions.

Indeed, as illustrated by this example, the construction of
such a hierarchical model can be used to demarginalize the

Fig. 4. Examples for the two types of rooms that were generated in the
simulation experiment: an s-room on the left, and a y-room on the right. The
room types differ in that they each have a unique set of “objects” placed
inside them. A simulated robot navigates the room environment my moving
up, down, to the left, or to the right. It observes only the fields immediately
neighboring its current position, as a binary vector with nine entries, as shown
on the right.

transition probability distribution: by constructing an internal
hierarchical model, the agent can estimate the latent structure
of the environment and obtain an internal representation of
sensorimotor contexts e. In the next section, this will be
demonstrated by means of a simulation experiment.

III. SIMULATION EXPERIMENT

A. The simulated world

The simulation experiment should emulate the experience of
a robot that explores different rooms, without having any prior
knowledge whatsoever about the nature of rooms (neither that
there exist different kinds of rooms, nor that rooms consist of
walls, that there are objects inside rooms, etc.). We define
two room types: y-rooms and s-rooms, each characterized
by having a unique set of “objects” that are placed inside
them. A simulated robot is placed in the room environment,
and can navigate along a discrete grid of positions, with
the four primitive actions of moving up, down, to the left,
and to the right. At each position, the robot observes its
environment in the form of a binary occupancy vector of length
9, measuring only the grid positions that are immediately
surrounding its current position. Figure 4 shows a visualization
of the simulation.

The robot explores its environment using a simple policy:
at each time step, it selects any of its valid actions (ones
leading to an unoccupied grid position) with equal probability.
To let the robot experience different instances of each room,
a randomization mechanism is implemented in the simulation,
in the following way. Each room has a door in its south
wall, leading to a corridor. Whenever the robot leaves a room
through this door, a new room is randomly generated, either
an s-room or a y-room with equal probability. Rooms have
a size of 50 × 50 tiles including walls, and 20 objects from
the room’s set are randomly placed in the room, ensuring that
they are not overlapping or directly adjacent to one another or
to a wall.

B. Simulation results

The robot explores its environment for a total of 10,000,000
time steps. In its environment, the robot encounters 46 unique



1st level:
20 obs.

120 trans.

2nd level:
18 obs.

137 trans.

3rd level:
16 obs.

127 trans.

4th level:
14 obs.

94 trans.

5th level:
12 obs.

69 trans.

6th level:
10 obs.

49 trans.

7th level:
8 obs.

35 trans.

8th level:
6 obs.

19 trans.

9th level:
4 obs

8 trans.

10th level:
2 obs

0th level:
46 unique observations
376 unique transitions

Fig. 5. Summary of the results of the simulation experiment. On the left (0th level), simple transitions between observations are shown. Some of these
transitions are between room features (marked in yellow, for example moving from a corner to a wall). Others are specific to one of the objects (y-type objects
marked in blue, s-type objects marked in green). The result of applying the method for constructing a hierarchical transition model is shown by visualizing for
some nodes, where in the test rooms the agent observes the encoded transitions. The higher the hierarchical level, the larger the temporal abstraction of the
encoded transitions is. Intermediary nodes encode experiences such as “entering a room from the corridor”, while the two nodes on the highest hierarchical
level encode the experiences “being in a y-type room” and “being in an s-type room”, respectively.

observations, some of which correspond to room features
(walls and corners), while others correspond to object parts.

After the robot has completed its exploration, a hierarchical
transition model is constructed using the learning method
described above, in the following way (see also Figure 5).
First, each unique transition between observations (376 in
total) is represented on the “0th level”, and a 376 × 376
transition probability matrix is constructed based on the obser-
vation sequence. The mapping into its 3-dimensional spectral
space is computed, and spectral clustering in this space is
performed using agglomerative clustering, to find 20 clusters
of transitions. Each of the clusters is then treated as a “meta-
observation” for the construction of the next hierarchical level.

This procedure (finding all unique transitions between ob-
servations on the respective lower level, constructing a transi-
tion probability matrix, performing spectral clustering) is then
repeated to form a total of 10 hierarchical levels, where the
number of clusters is decreased by 2 on each consecutive level,
giving 18, 16, . . . , 4, 2 clusters, respectively.

To visualize the outcome of the training, two “test rooms”
(one for each room type) are created (the ones shown in
Figure 4). The robot is then allowed to explore each of the
two test rooms for 500,000 time steps (a duration long enough
to achieve a close to uniform distribution over the positions of
the robot). A “heat-map” is used to visualize what experiences

the units across the representational hierarchy come to encode:
it shows the probability of the robot being in a certain position
whenever a transition sequence is observed that is encoded by
a given unit, up until the observation of the next transition
sequence.

As seen in the Figure 5, lower levels of the representational
hierarchy encode experiences that are of short duration and
specific, whereas higher levels encode experiences that have
longer durations and become more abstract. In particular, on
the first levels of the hierarchy, experiences of the robot as
running into a corner or moving along a wall are represented.
Also experiences that are specific to objects are encoded by
some units, as for example seen in the case of a unit on the
second level, which represents the experience of approaching
two of the y-type objects from the top. On the third level, we
already find units representing more abstract experiences, such
as “entering a room from the corridor”. One of the units on
the fourth level seems to have already captured the experience
of roaming the s-type room, but is not yet entirely selective:
the transition sequences that it represents are also observed in
the lower part of the y-type test room. On the last hierarchical
level, the two units have finally separated the experience of
being in either one of the two room types.



IV. DISCUSSION

The simulation experiment shows that the agent can dis-
cover sensorimotor contexts: by exploring its environment, it
learns to distinguish the two different room types. For the
agent’s policy, the observed transition probabilities of course
depend on the room in which it currently is (for example,
it will never move from a wall to a y-type object in an s-
type room). Therefore, the agent would not have been able
to learn a good predictive model directly from the sequence
of observations that it made during its exploration. Given
the learned hierarchical transition model however, it could
now separate experiences belonging to either one of the two
room types. This way, the agent has constructed an internal
representation of sensorimotor contexts, which it can use to
demarginalize the observed transition probability, and thus can
reduce its prediction error when learning a predictive model.

The work presented in this paper still leaves a number of
open questions unaddressed. For example, in the simulation
experiment, the number of clusters for each hierarchical level
was manually selected. It would be desirable to find a method
to automatically determine a good number of clusters for
the construction of each new level, for example by using an
Entropy-based measure. Furthermore, from an external point
of view it makes sense to distinguish two contexts in the
simulated environment: one for each room type. Consequently,
having a representational hierarchy with two states at the
top level is a suitable choice. Generally however, it seems
like a mechanism is required to determine when a good
demarginalization has been already achieved, such that no
further hierarchical levels might be needed to represent the
environment.

In the simulation experiment described in this paper, the
agent’s observation and action spaces were discrete. It should
however be noted that the presented method can also deal with
continuous inputs, by introducing a first step of discretization.
For example, observations lying in a continuous space could

be discretized using K-means (cf. [5]).
In future work, the presented learning method for hierar-

chical transition models will be combined with the training
of predictive models. In such a setting, the method presented
here can be used to discover sensorimotor contexts, such
that subsequently a predictive model can be learned for each
individual sensorimotor context. This way, an agent could
learn predictive models for its own actions also in partially
observable environments, where latent environmental factors
influence the outcome of the agent’s actions.
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