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Abstract—An important issue in reinforcement learning sys-
tems for autonomous agents is whether it makes sense to have
separate systems for predicting rewards and punishments. In
robotics, learning and control are typically achieved by a single
controller, with punishments coded as negative rewards. However
in biological systems, some evidence suggests that the brain has
a separate system for punishment. Although this may in part be
due to biological constraints of implementing negative quantities,
it raises the question as to whether there is any computational
rationale for keeping reward and punishment prediction opera-
tionally distinct. Here we outline a basic argument supporting this
idea, based on the proposition that learning best-case predictions
(as in Q-learning) does not always achieve the safest behaviour.
We introduce a modified RL scheme involving a new algorithm
which we call ’MaxPain’ - which back-ups worst-case predictions
in parallel, and then scales the two predictions in a multi-
attribute RL policy. i.e. independently learning ’what to do’ as
well as ’what not to do’ and then combining this information. We
show how this scheme can improve performance in benchmark
RL environments, including a grid-world experiment and a
delayed version of the mountain car experiment. In particular, we
demonstrate how early exploration and learning are substantially
improved, leading to much ’safer’ behaviour. In conclusion,
the results illustrate the importance of independent punishment
prediction in RL, and provide a testable framework for better
understanding punishment (such as pain) and avoidance in
humans, in both health and disease.

I. INTRODUCTION

Humans, animals and robots share the common problem
of inhabiting a complex and dynamic world, in which sur-
vival depends on harvesting rewards in the face of frequent,
occasionally catastrophic, dangers. They therefore share the
requirement for a control system that is effective at widely
exploring and learning about reward, whilst staying safe.
Understanding how this can be achieved effectively is a central
concern of both neuroscience and robotics.

In recent years it has become clear that reinforcement
learning (RL) provides a robust computational basis for un-
derstanding learning and decision-making in the brain, and is
well known as a powerful algorithmic framework for control
in autonomous robots [1], [2]. With respect to staying safe,

RL in robots conventionally treats punishment as negative
reward. However there is evidence that decision-system in
animals have separate systems for rewards and punishments
[3], [4]. This raises the question as to whether there is any
fundamental reason for keeping rewards and punishments
separate. If there is, this would not only offer new insights into
control systems in robots (in which staying safe is becoming
more of a priority, given the cost and human-interaction of
modern robots [5]), but it would provide a theoretical basis
to understand punishment in the brain - both in health and
disease.

In this paper, we first review the architecture of neural
control systems, taking a reinforcement learning perspective,
and focusing on Pavlovian (state-based prediction) and Instru-
mental (action-based control) processes underlying avoidance
learning. In particular, we consider neurobiological evidence
that suggests dissociable processes for punishment prediction
in action (instrumental) systems. We then use these insights to
motivate a new algorithm, which we call MaxPain, that aims
to concurrently balance punishment and reward prediction
within a multi-attribute RL framework. We test the algorithm
on a dangerous grid-world navigational task, and a delayed
version of the mountain car task. These are chosen somewhat
arbitrarily, but represent perhaps the two classic RL tasks
to which RL algorithms have been conventionally applied.
Finally, we consider how the insights these result can be used
to better understand punishment and pain systems in the brain.

Punishment control in animals and humans

Pavlovian learning represents the passive learning of the
predictive value of cues through association [6]. Reward and
punishment are controlled by distinct systems, each associ-
ated with core conditioned responses such as approach and
withdrawal, respectively. Although conditioned responses are
themselves actions [7], they do not generally change the
occurrence of outcome, and as such Pavlovian learning is taken
to reflect the learning of state values. Rodent studies support
a single Pavlovian reward and single Pavlovian punishment



system. This is based, for example, on the observation that
conditioning of a cue to one type of punishment (e.g. electric
shock) will block new learning of the cue to a different
punishment of comparable magnitude (e.g. aversive sound) [8],
[9]. Furthermore, reward and punishment systems are mutually
inhibitory, and omission of a reward can excite the punishment
system, and vice versa. As such ’conditioned inhibitors’ of
reward can block the acquisition of new punishments [10]).

Good experimental evidence supports the fact that Pavlovian
rewards and punishments are learned using a reinforcement
learning like process, and temporal difference models have
provided a good fit to neurophysiological data (including
BOLD fMRI an EEG) during the dynamic acquisition of value
[11], [12]. For instance, studies of Pavlovian conditioning to
rewards as pleasant tasting juice, reward prediction errors are
observed in brain (fMRI BOLD) responses in the striatum [13].
And in studies of Pavlovian conditioning to pain, punishment
prediction errors are observed, also in the striatum [14].
Interestingly, many classic studies of financial reward and
loss have identified purely reward prediction errors, with loss
coded as negative reward and no positive representation of
punishment, suggesting that in some cases the full range of
positive and negative outcomes is coded in a single scale
within the reward system [15]–[17]. But various experimental
manipulations have since shown that this appears to be due to a
sort of positive framing effect, given that it is difficult to probe
real financial loss in experimental volunteers. In experiments
in which financial loss is more meaningful, it is possible to
identify simultaneous coding of oppositely signed reward and
punishment [17]. In these studies, therefore, what is observed
is consistent with parallel mirror opponent systems [18], in
which the same value quantity is simultaneously coded with
opposite sign in reward and punishment systems.

Pavlovian systems don’t themselves provide a mechanism
for the flexible control of action. The nature of the learning
rules that govern action learning (i.e. instrumental, or operant
conditioning) for rewards are relatively well understood [19].
Again, there is good evidence for reinforcement learning like
processes, inferred from both choice behaviour and observed
in neurophsyiological responses across species [20], [21].

The underlying structure of systems mediating control over
punishments, in particular avoidance, has been more difficult
to dissect. A long-standing theory, called two-factor theory,
proposes that avoidance reflects the learning of the action
to escape from the acquired Pavlovian fear of punishment
[22]. That is, first a Pavlovian value is learned, followed by
instrumental learning of an action to escape from it. Relatedly,
subsequent experiments have illustrated how the avoided state
acting as a safety state, with a reward-like representation
derived from the fact that it signals the absence of punishment
(i.e. a conditioned inhibitor) [23]. In this way, control is
provided both from escape from fear of punishment and
reinforcement by safety, and avoidance can be maintained [24],
[25].

The fact that avoidance can be learned and maintained
without any precipitating cue, as in free-operant (Sidman)

designs [26], causes problems for a simple signalled avoidance
model (although it is possible to involve various complex
internal timing mechanisms). This has led to expectancy-based
models [27], in which explicit representations of the values and
outcomes of actions can be acquired and executed according
to knowledge of the outcomes, a concept which has resonance
with model-based RL algorithms.

Early fMRI studies into avoidance have shown that action
learning is well fit by simple temporal difference action-
learning models [28], with robustly observed prediction errors
seen in dorsal regions of striatum [16], although punishment
(i.e. the oppositely signed response pattern) prediction errors
have sometimes been seen in different brain regions (such
as the insula cortex), co-occuring with and with opposite
sign to reward [29] . Subsequent mixed reward-punishment
designs, in which the outcome probabilities are independent
of each other, have attempted to identify convergence of values
related to avoidance and reward acquisition. Such models
rely on simultaneously optimising two quantities - minimising
pain and maximising reward, and are effectively modeled as
a multi-attribute Q-learning problem, with a scaling factor
reflecting the balance of incentive values of punishment and
reward [3]. Notably, pharmacological manipulation selectively
modulates reward values, not punishment values, suggesting
that the construction of values is at least partly dissociable.
Evidence in rodents has also shown that equally strong avoid-
ance and reward actions seem to have a distinct underlying
neural basis, with dopamine manipulations enhancing reward
but not avoidance actions [30].

More recently, it has been shown that when modelling
behaviour during avoidance learning task, using TD-learning
models, it is possible to distinguish dissociable punishment
(pain) and punishment omission learning rates. Furthermore,
it is possible to show individual differences in the propensity
to learn from punishment versus its omission [4], and impor-
tantly, people who learn primarily from omission outcomes
show a reward-signed prediction error in striatal brain re-
sponses, whereas those driven by punishment outcomes show
punishment-signed (aversive) prediction error response. This
suggests quite directly that there may be separate action-value
signals for reward and punishment, that compete to control
behaviour, which converge on the striatum.

These considerations lead to the hypothesis that having
dissociable systems for learning action values for reward and
punishment may confer some sort of computational advantage
over single-system architectures. In particular, it may offer a
mechanism to enhance safety during learning. We therefore set
out to test this using a novel RL algorithm, outlined below,
inspired by the neural data.

II. METHOD

We consider a standard RL [1] setting. In each time step t,
the agent observes a state s and selects an action a according to
its stochastic policy πt(s, a) (i.e., the probability of selecting
action at = a in state st = s). The environment then makes a
transition from the current state s to the next state s′ and the



agent receives a scalar reward R. The action-value function
Qπ(s, a) is the expected accumulated discounted reward for
selecting action a in state s and thereafter following policy π:

Qπ(s, a) = Eπ

[ ∞∑
k=0

γkRt+k|st = s, at = a

]
, (1)

where γ is the discount factors for future reward. The optimal
action-value function is defined as Q∗(s, a) = maxπ Q

π(s, a).
In the MaxPain algorithm, the standard reward R is sepa-

rated into two parts, the positive reward r ≥ 0:

r = max(R, 0), (2)

and the pain (or punishment) p ≥ 0:

p = −min(R, 0). (3)

The MaxPain algorithm learns estimates of two action-value
functions: Qr and Qp, which try to maximize the accumulated
discounted positive reward and the accumulated discounted
pain, respectively. To combine the two action-value functions
into a single objective, Qw, we consider the linear combination
of Qr and −Qp.

Qw(s, a) = wQr(s, a)− (1−w)Qp(s, a). (4)

Here, 0 ≤ w ≤ 1 is the weight that controls the trade-
off between maximising the received positive reward and
minimising the experienced pain. The two action-values are
updated according to

Qr(s, a)← Qr(s, a) + αrδr, (5)

Qp(s, a)← Qp(s, a) + αpδp, (6)

where αr and αp are learning rates. To compute the TD-error
for the Qr-values, δr, we use either the off-policy Q-learning
algorithm:

δr ← r + γrQr(s
′, argmax

a′
(Qw(s

′, a′))−Qr(s, a), (7)

or the on-policy Sarsa [31] algorithm:

δr ← r + γrQr(s
′, a′)−Qr(s, a). (8)

To be able to learn an estimate of the policy that maximises the
accumulated discounted pain while following a policy derived
from Qw, which tries to achieve the opposite outcome, we
only use the off-policy Q-learning algorithm to compute the
TD-error, δp, for the Qp-values:

δp ← p+ γpQp(s
′, argmin

a′
(Qw(s

′, a′))−Qp(s, a). (9)

Our approach is related to single-policy multi-objective
RL [32], in particular the linear version of the framework
for scalarised single-policy multi-objective RL algorithms pro-
posed by Moffaert et al. [33]. The main difference is that
they only consider objectives that maximize their accumulated
discounted rewards.

We use softmax action selection with a Boltzmann distri-
bution. The probability to select action a in state s is given
by

π(a|s) = exp(Qw(s, a)/τ)∑
b exp(Qw(s, b)/τ)

, (10)

where τ is the temperature that controls the trade-off between
exploration and exploitation. We use hyperbolic annealing of
the temperature, where the temperature decreases after every
episode i:

τ(i) =
τ0

1 + τki
. (11)

Here, τ0 is the initial temperature and τk controls the rate of
annealing.

Algorithm 1 shows the pseudo-code for the MaxPain algo-
rithm using Q-learning of the Qr-values.

Algorithm 1 MaxPain
Initialize Qr and Qp arbitrarily
for each episode do

Get initial state s
while s is not terminal do

% Qw is computed by (4)
Select a in s based on policy derived from Qw
Take a, observe r, p, and s′

δr ← r −Qr(s, a)
δp ← p−Qp(s, a)
if s’ is not terminal then
δr ← δr + γrQr (s, argmaxa′ Qw(s

′, a′))
δp ← δp + γpQp (s, argmina′ Qw(s

′, a′))
end if
Qr(s, a)← Qr(s, a) + αrδr
Qp(s, a)← Qp(s, a) + αpδp
s← s′

end while
end for

III. EXPERIMENTS

A. Grid-world

First, we consider a painful grid-world navigation task (see
the illustrations in Fig. 2). The goal is to navigate from the
starting position in the southwest corner (green square) to the
goal in the northeast corner (red square), while avoiding hitting
the inner and the outer walls. The agent receives a positive
reward of 1 for reaching the goal, and a pain of 0.1 (a negative
reward of −0.1 in the case of standard RL) for hitting a wall.
There are four actions that moves the agent one step north,
south, east, or west. If the agent hit a wall then it remains in
its current position. We tested MaxPain with w set to 0.1, 0.5,
and 0.9, using Q-learning to learn the Qr-values (see (7) and
Algorithm 1), and we compared the performance with standard
Q-learning. We ran 100 separate runs of 1000 episodes for
each algorithm and setting of w, and we used the same settings
of the meta-parameters in all experiments: α = 0.1, γ = 0.99,
τ0 = 0.5, and τk = 0.05.



Fig. 1. Average learning curves over 100 separate runs in the grid-world navigation task for MaxPain with w set to 0.1, 0.5, and 0.9, and for Q-learning. The
figure shows the number of steps to goal for the first 500 episodes (a) and the final 500 episodes (b) (shown separately for the sake of clarity), the cumulative
number of steps to goal (c), and the cumulative number of wall hits (d).

Fig. 2. The top row shows the average number state visits and the middle row shows the average final state values, Vw(s) = maxa Qw(s, a), for
MaxPain with w set to 0.1, 0.5, and 0.9 in the grid-world task. The bottom row shows the average number of state visits and the average final state values,
V (s) = maxa Q(s, a), for Q-learning. The average values were computed over 100 separate runs.



Fig. 3. Average learning curves over 100 separate runs in the mountain car task for MaxPain with w set to 0.1, 0.5, and 0.9, and for Q-learning. The figure
shows the number of steps to goal for the first 100 episodes (a) and the final 400 episodes (b) (shown separately for the sake of clarity), and the cumulative
number of steps to goal (c).

The experimental results (see Fig. 1) show that MaxPain
could achieve fast initial learning speed, safe exploration, and
near-optimal final performance. Compared with Q-learning,
MaxPain with w = 0.5 reduced the average total number of
steps to goal over the 1000 episodes by 75 % (from 4,928,982
to 1,236,884 steps), reduced the average total number of wall
hits by 62 % (from 191,483 to 72,141 hits), and it reached a
final average performance of 64.75 steps to goal (64.02 for
Q-learning), which is close to the shortest path to the goal of
64 steps. The setting of w = 0.5 provided a good trade-off
between safe exploration and final performance. With w = 0.1,
the MaxPain agent achieved fast initial learning while hitting
the walls the fewest times of any of the agents, but it needed
92.30 steps on average to reach the goal at the end of learning.
With w = 0.9, the MaxPain agent reached a near-optimal final
average performance of 64.70 steps to goal, but it hit the walls
close to as many times as the Q-learning agent and it used
almost twice as many steps in total to reach the goal as the
other two MaxPain agents.

The learning of the Qp-values was complementary to the
learning of the Qr-values, as shown in the heat maps of the
final average state values (Vw(s) = maxaQw(s, a)) in Fig. 2.
The learned Qp-values created a potential field with larger
values the further away the MaxPain agents were from the
goal, which helped to steer them towards the goal during
exploration. This explains the faster learning speeds of the
MaxPain agents compared with the Q-learning agent, and also
the slower learning speed for w = 0.9 compared with the two
lower settings of w. The heat maps of the average number of
state visits in Fig. 2 show the safer learning of the MaxPain
agents with w = 0.1 and w = 0.5, achieved by concentrating
their exploration to the safest states (i.e., states with at least 2
steps from any wall).

B. Mountain car

Second, we consider a more difficult, delayed-reward, ver-
sion of the mountain car benchmark task. In the mountain car
task, the agent has to drive an under-powered car up a steep
mountain slope. Since the car’s engine is weak, the agent has to
back up the opposite slope and then start to accelerate forward
to gain enough momentum to be able to drive to the top of the

mountain. The car moves according to the simplified physics
defined in [34]. The car’s position xt and velocity ẋt is updated
by

xt+1 = bound[xt + ẋt+1], (12)
xt+1 = bound[ẋt + 0.001at − 0.0025 cos(3xt)], (13)

where the bound operations enforce −1.2 ≤ xt+1 ≤ 0.5 and
−0.07 ≤ ẋt+1 ≤ 0.07. If xt+1 hits the left bound then ẋt+1

is reset to zero. An episode ends when xt+1 hits the right
bound and the goal is reached. To increase the difficulty of
the exploration, we add two actions at, half throttle forward
(+0.5) and half throttle reverse (−0.5), to the standard three
actions, full throttle forward (+1), full throttle reverse (−1),
and zero throttle (0).

Instead of the standard setting where the agent receives a
negative reward of −1 in each time step until the car reaches
the goal, we use a delayed-reward setting where the agent
receives a reward of +1 for reaching the goal. Each episode
starts with the car standing still (ẋ0 = 0) in the bottom of the
valley (x0 = −π/6). To be able to test the MaxPain algorithm
in this setting, we introduce a pain of 0.1 (a negative reward
of −0.1 in the case of standard RL) when the car is stuck
close to the bottom of valley at low speeds:

−0.01− π/6 < xt+1 < 0.01− π/6, (14)
−0.005 < ẋt+1 < 0.005. (15)

Otherwise, the agent receives a zero reward.
We tested MaxPain with w set to 0.1, 0.5, and 0.9, using

Sarsa(λ) to learn the Qr-values, and we compared the perfor-
mance with standard Sarsa(λ). We used radial basis function
(RBF) networks to approximate all action-value functions,
using 16 equidistant Gaussian basis functions, φi, in each of
the two state space dimensions. The approximate action-value
function Q(s, a|θ) with network weights θ is computed by

Q(s, a|θ) =
∑
i

θaiφi(s), (16)

φi(s) = exp

(
−‖s− ci‖

2

2σ2
i

)
. (17)

Here, θai is the network weight connecting basis function φi
and the output Q-value unit for action a, and ci is the centre



Fig. 4. The top row shows the average final state values, Vw(s) = maxa Qw(s, a), for MaxPain with w set to 0.1, 0.5, and 0.9 in the mountain car task.
The bottom row shows the average final state values, V (s) = maxa Q(s, a), for Q-learning. The average values were computed over 100 separate runs.

of φi with width σi. The Sarsa(λ) update of the network
parameters is given by

e ← γλe+∇θQ(s, a|θ), (18)
θ ← θ + αδe, (19)

where e is the eligibility traces (e0 = 0), λ is the trace-decay
rate, ∇θaiQ(s, a|θ) = φi(s), and δ is computed as in (8).
We ran 100 separate runs of 500 episodes for each algorithm
and setting of w, and we used the same settings of the meta-
parameters in all experiments: α = 0.1, γ = 0.995, λ = 0.8,
τ0 = 1, and τk = 1.

The experimental results are similar to the grid-world task
(see Fig. 3). MaxPain with w = 0.5 achieved fast initial
learning speed and high final performance. Compared with
Sarsa(λ), it reduced the average total number of steps to
the goal by 62 % (from 1,652,862 to 632,343 steps) and it
reached the best average final performance of 116.8 steps to
goal (135.9 for Sarsa(λ)). With w = 0.1, the MaxPain agent
achieved fast initial learning speed but it needed 160.2 steps on
average to reach the goal at the end of learning. With w = 0.9,
the MaxPain achieved high average final performance of 118.9
steps to goal but the initial learning speed was slower than for
the two lower settings of w. The heat maps in Fig. 4 of the
average final state-values show that the learning of the two
action-value functions in MaxPain was complementary. The
learning of the Qp-values steered the car away from the bottom
of the valley while the learning of the Qr-values directed the
car towards the goal. However, in the case of the lowest setting
of w = 0.1 there was almost no guidance towards to goal,
which explains the worse final performance.

IV. DISCUSSION

The results demonstrate the advantage gained by learning
separate reward and punishment action values. It allows sig-
nificantly safer exploration, as well as effective learning and
near-optimal long-term performance. The Maxpain algorithm
achieves this by appropriately combining values to balance the
relative incentives to harvest rewards and avoid punishment.
This is demonstrated across two very different, but classic
learning problems - dangerous gridworld and the delayed
mountain car problem.

The results have significance for our understanding of learn-
ing and decision-making in the brain. In particular, the fact that
many real-word environments are both potentially dangerous,
and novel or dynamic, places precedence on an algorithmic
strategy that achieves rapid but safe learning, over one that
might have a slightly better payoff in the extreme long-run.
This provides an important insight into our understanding of
avoidance learning, since the notion that avoidance incorpo-
rates an action-specific punishment prediction has not been
widely considered. There are several reasons for this. First,
attention has been drawn into the debate on the reinforcing role
of the safety state, and how this is evoked in different situations
(signalled versus unsignalled avoidance) [23]. But this has
always assumed a single positively reinforcing action learning
process, and not an inhibitory effect from an aversive action
memory. However, learning ’what to do’ and learning ’what
not to do’ are not perfectly reciprocal, especially when the
action space is large. Second, most experiments consider only
one-step avoidance, and not the multi-step sequential decision-
making problems well studied in robotics, which are more
similar to real-world problems. But it is multi-step problems



that MaxPain provides the key advantage, as it then that a
single channel reward pathway fails to back up the specific
memory of what not to do.

There are other potential ways of achieving safe, early ex-
ploration, including implementing non-linear utility functions
and overtly risk-averse value functions (e.g. mean-variance
model) [5], [35]–[37]. But these all incorporate their cautious-
ness into a single value function, unlike Maxpain. From a
biological perspective, another method that might approximate
some features of MaxPain would be to have a robust Pavlovian
memory for punishment, and then use this to bias actions
using behavioural phenomena such as Pavlovian-instrumental
transfer (such as conditioned suppression [38]). Although to
our knowledge this has not been demonstrated in higher-order
settings, it may well be possible. However, differentiating
Pavlovian from instrumental values can be experimentally
difficult, as they are often correlated, a point which has
confounded animal learning-theoretic experiments for decades.

A key aspect of the MaxPain model is the scaling parameter
in the multi-attribute policy, which determines the relative
weight applied to reward and punishment. Not only does
offer potential insight into behavioural phenomena in normal
individuals, such as the framing effect [39], [40], but it also
might be an important parameter in certain psychiatric dis-
eases. For instance, it might encourage compulsive avoidance
in Obsessive Compulsive disorder [41], or excessive avoidance
in the fear-avoidance model of chronic pain [42]. Or it might
simply convey excessively negative behaviour in disorders
such as depression and anxiety disorder.

Finally, the results also illustrate how biologically inspired
learning architectures have the capacity to inform control sys-
tems for autonomous robots. This may be useful for robotics
applications that involve expensive or delicate robots, for
instance in which repeated wall-strikes might cause substantial
damage.
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