
30 April 2024

Autonomous table-cleaning from kinesthetic demonstrations using deep learning / Cauli N.; Vicente P.;
Kim J.; Damas B.; Bernardino A.; Cavallo F.; Santos-Victor J.. - ELETTRONICO. - (2018), pp. 26-32.
(Intervento presentato al convegno Joint 8th IEEE International Conference on Development and Learning
and Epigenetic Robotics, ICDL-EpiRob 2018 tenutosi a Waseda University Ono Auditorium, jpn nel 2018)
[10.1109/DEVLRN.2018.8761013].

Original Citation:

Autonomous table-cleaning from kinesthetic demonstrations using
deep learning

Publisher:

Published version:
10.1109/DEVLRN.2018.8761013

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1255037 since: 2022-01-30T23:33:24Z

Institute of Electrical and Electronics Engineers Inc.

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

Autonomous table-cleaning from kinesthetic demonstrations using Deep
Learning

Nino Cauli1, Pedro Vicente1, Jaeseok Kim2, Bruno Damas1,3, Alexandre Bernardino1, Filippo Cavallo2

and José Santos-Victor1

Abstract— We address the problem of teaching a robot how
to autonomously perform table-cleaning tasks in a robust way.
In particular, we focus on wiping and sweeping a table with
a tool (e.g., a sponge). For the training phase, we use a set
of kinestethic demonstrations performed over a table. The
recorded 2D table-space trajectories, together with the images
acquired by the robot, are used to train a deep convolutional
network that automatically learns the parameters of a Gaussian
Mixture Model that represents the hand movement. After the
learning stage, the network is fed with the current image show-
ing the location/shape of the dirt or stain to clean. The robot
is able to perform cleaning arm-movements, obtained through
Gaussian Mixture Regression using the mixture parameters
provided by the network. Invariance to the robot posture is
achieved by applying a plane-projective transformation before
inputting the images to the neural network; robustness to
illumination changes and other disturbances is increased by
considering an augmented data set. This improves the general-
ization properties of the neural network, enabling for instance
its use with the left arm after being trained using trajectories
acquired with the right arm. The system was tested on the
iCub robot generating a cleaning behaviour similar to the one
of human demonstrators.

I. INTRODUCTION

Robots capable of working alongside with humans and
performing simple and mildly complex tasks in a full au-
tonomous way are increasingly becoming a key research
topic in the robotics field [1]. Performing household chores,
like preparing a meal, cleaning a room, or doing the laundry,
is becoming more and more relevant in a robotic context. The
increasing number of human resources required to adequately
support a growing elderly population, could be progressively
complemented by autonomous service robots capable of
responding to such demands. While the social interaction
abilities of such kind of robots are gradually developing into
a mature stage [2], there is still a long way to go with respect
to their physical interaction and manipulation abilities [3].

The main difficulty is still the lack of robustness of
such robots when interacting in real world settings: while
they can succeed in highly controlled environments, the
presence of disturbances or uncertainty can easily degrade
their performance. For instance, slight changes on objects
shapes and positions can drastically lower the manipulation

1Institute for Systems and Robotics, Instituto Superior Tecnico, Univer-
sidade de Lisboa, Portugal {ncauli,pvicente,bdamas,alex,
jasv} @isr.tecnico.ulisboa.pt

2BioRobotics Institute, Scuola Superiore Sant’Anna,
Pisa, Italy. j.kim@sssup.it, filippo.cavallo
@santannapisa.it

3CINAV — Centro de Investigação Naval, Almada, Portugal

Fig. 1. The iCub humanoid robot using a tool to clean a table facing him.

performance of the robot interacting with those objects;
changes in illumination and viewpoint can seriously hinder
the visual recognition and tracking capabilities; and even
when a robot is successful at performing some given task
it is usually difficult to transfer such skill to a robot with
different kinematic and sensor characteristics.

We propose an approach to improve the robustness with
respect to the aforementioned issues, using a cleaning task
to demonstrate the validity of this procedure. Cleaning tasks
have received some attention by the robotics community:
Okada et al. apply an inverse kinematics based programming
approach to compute whole-body motions for the tasks of
dish washing, sweeping and vacuuming the floor using a
humanoid robot [4]; a simulation-based approach using a
temporal projection system is applied to a table sponge
wiping task [5]; In [6] an efficient approach based on null-
space optimization is used to generate cleaning trajectories;
and a path planning algorithm based on task decomposition
is used for wiping tasks in [7], to name just a few examples.

A different approach, based on adaptive behavior, can
in principle present some robustness to disturbances and
uncertainty: Cruz et al., for instance, use a reinforcement
learning (RL) framework and contextual affordances to learn
how to perform a cleaning task [8]. To overcome the typical
slow convergence rate of RL schemes, the Learning from
Demonstration (LfD) paradigm can be used to provide a
good starting point to the RL iterations: it is critical in non-
simulated scenarios to avoid the initial random exploration
phase. Some works use LfD to perform cleaning tasks by
kinesthetic teaching [9]: however, without further learning
these pure imitation learning schemes are not robust to un-
certainties, being able to mimic previously seen movements

2018 Joint IEEE 8th International Conference on Development and Learning
and Epigenetic Robotics (ICDL-EpiRob)
Waseda University, Tokyo, Japan, Sept. 16-20, 2018

978-1-5386-6110-9/18/$31.00 ©2018 IEEE 26

Fig. 2. System Architecture. Images from robot’s right camera are transformed to virtual bird-view images. The virtual images are passed to a CNN that
predicts µ and Σ of 5 gaussians. From those the expected hand’s trajectory is computed using the GMR algorithm.

only. To overcome this issue a task-parameterized Gaus-
sian mixture model framework is proposed that is able to
generalize to unseen movements, characterized by different
reference frames defined by the locations of the objects that
serve as markers [10], [11], using kinesthetic teaching to
demonstrate how to perform a dust sweeping task.

In [12] the need to use markers of any kind to signal
the task reference frames in [10], [11] is removed, using
a convolutional neural network (CNN) architecture [13] that
directly learns the start, intermediate and final frames that
implicitly define the trajectory to perform from the raw
images and human demonstrations. This allows the robot to
perform the cleaning task autonomously, without the physical
presence of such markers or any human intervention. This
paper builds upon the previous work presented in [12] and
tries to simplify the learning process while, at the same
time, introduces some additional mechanisms that improve
the robustness of the approach. In this paper a CNN is
used to directly learn a Gaussian Mixture Model (GMM)
that represents the task space trajectory to perform from
the image data and human demonstrations. This eliminates
an intermediate learning phase present in [12], where an
Expectation-Maximization procedure was used to fit a mix-
ture of Gaussians to the demonstrated task space trajectories;
after the learning phase a task was performed by marginal-
izing the mixture model with respect to mixture components
and frames of reference, as provided by the CNN from the
raw images. In this work such reference frames are no longer
needed, as the CNN directly provides a GMM describing
the trajectory to be performed from the camera images that
hopefully will succeed at the cleaning task.

In this work we apply some techniques that improve
the applicability of our method to different scenarios and
robots. First, a plane-projective transformation is applied to
the acquired images before presenting them to the CNN.
This transformation corresponds to creating a virtual camera
pointed downward and placed above the robot working area,
and helps achieving invariance in the acquired images with
respect to perspective changes due to robot different postures
relatively to the working area. Additionally, a data augmen-
tation is performed using Perlin noise [14] and additive ran-

dom noise: this improves the CNN generalization abilities,
achieving a better robustness to illumination changes, and
also helps reduce the number of collected demonstrations
required for training the CNN. Overall, all these improve-
ments enhance the robustness of the previous architecture to
disturbances and we demonstrate this feature by using the left
arm of iCub, the robot used in the experiments, to perform
sweeping and wiping movements using the CNN learned
using its right arm. This is a very simple case of transfer
learning [15], but the use of such perspective transformation
can in principle make possible the transfer of the learned
model to a different robot. The acquired dataset with all the
demonstrations will be publicly available1.

II. PROPOSED APPROACH

To train the CNN used in this architecture, a dataset of
659 examples was created guiding the right hand of the robot
while cleaning a table from marker scribbles and clusters of
lentils. In order to perform the task a sponge was attached
to the right hand of the robot. The data recorded during
each demonstration was: right camera images showing the
initial state of the table, encoders values of all robot joints
during the entire movement, 2D trajectory of the right hand
calculated by the iCub cartesian solver [16]. After training,
to perform a cleaning trajectory by the robot arm that is
independent from the robot posture and the height of the
table, first the raw images are pre-processed as follows:
encoders data q, camera’s intrinsic parameters matrix K and
table height ht are used to calculate a transformation matrix
H between the camera images and a virtual bird-view camera
placed in a fixed position in front of the robot. The virtual
images obtained by applying this transformation to the raw
images are then passed as input to the GMM. This network
outputs the parameters (means and covariance matrices)
of a Gaussian Mixture Model (GMM) with 5 components
encoding the desired 2D trajectory of the robot hand over
the table. Using this model a 2D trajectory over time can be
generated by Gaussian mixture regression (GMR): this will

1The dataset will be released on the VisLab webpage: http://
vislab.isr.ist.utl.pt/datasets/

27

be fed to the robot inverse kinematics solver to generate the
final movement of the arm. The system is depicted in Fig.2.

A. Virtual camera

A plane-projective transformation (homography) is applied
to the right camera images in order to map those images to a
virtual camera placed in a fixed position in front of the robot,
at a fixed height from the table. The trasformation between
the robot reference frame O and the virtual camera is known
precisely. Fig.3 shows coordinate frames involved in this
realignment of views to a canonical position (virtual camera,
robot and table). The virtual camera points downward to a
1 by 4/3 meters rectangle in the table plane Π. To generate
the virtual camera images from the robot right camera we
define a homography matrix H such as:

z

 xv
yv
1

 = H

 xr
yr
1

 (1)

where Xr = (xr, yr) and Xv = (xv, yv) are pixel co-
ordinates in the right camera frame and virtual camera
frame respectively and z is an arbitrary, non-zero scale
factor. This transformation assumes that all the points in
the images are co-planar and located at the same height
ht with respect to the table. To calculate the parameters
of H, we use equation 1 and the coordinates of four 3D
points (X(i) = (x(i), y(i), ht), i = 1, . . . , 4) lying on the
table plane Π and their projections on the iCub right camera
frame (Xr(i) = (xr(i), yr(i))) and on the virtual camera
frame (Xv(i) = (xv(i), yv(i))) respectively. The projections
on the right camera frame Xr(i) are obtained using the iCub
forward kinematics and the camera intrinsic parameters K
through the function:

z

 xr(i)
yr(i)

1

 = K[I|0] · τeyeO (q) ·


x(i)
y(i)
ht
1

 (2)

where τeyeO (q) denotes the Denavit-Hartenberg matrix from
the robot reference frame O to the right camera reference
frame, I is a 3x3 identity matrix and 0 is a 3x1 vector of 0s.
To calculate the projections on the virtual camera Xv(i) we
use the following function relating the robot reference frame
O and the virtual camera image frame:

Xv(i) = ((y(i) + 2/3)h, (x(i) + 1)h) (3)

where h is a scaling factor from pixel to meters that corre-
spond to the height of the virtual camera image expressed
in pixels. All points in 3D space are expressed on the iCub
reference frame O placed near the hips of the robot.

Transformation matrix H is correct only assuming perfect
sensory measurements, but on the real robot we have several
sources of errors. Specifically we have:
• Camera calibration errors (small errors in the intrinsic

matrix K)
• Forward kinematic errors (differences between the kine-

matics model and the real robot)

Fig. 3. The workspace used in our experiments. The iCub robot is placed
in front of a table at an height of ht from the robot reference frame O. A
bird-view virtual camera is placed on top of the table.

Camera calibration errors are independent from the robot
pose and joint configurations. Errors on the forward kine-
matics are composed by a variable term, dependent on
joint positions q, and a constant term, the same for every
robot configuration. Assuming that the variable term is small
enough to be neglected, we focus on the correction of
constant errors. Camera calibration and constant kinematics
errors can be corrected applying a second transformation
matrix G:

z

 x′v
y′v
1

 = GH

 xr
yr
1

 (4)

where X′v(i) = (x′v(i), y′v(i)) are the pixel coordinates of the
corrected virtual camera images. To calculate G, 4 markers
are placed on the table in specific 3D positions (X′(i)),
measured placing the robot right hand on top of them and
reading the kinematic solver solution. Their pixel coordinates
on the right camera image (Xv(i) = (xv(i), yv(i))) are
extracted and their expected position in the corrected virtual
camera image (X′v(i)) are calculated using equation 3. G
matrix is calculated only once because errors taken into
account are constant and independent from the joint positions
q. In Fig. 5 it is possible to see some example of virtual
camera images obtained using equation 4. An alternative
approach to correct all the kinematic errors (both variable
and constant) is to perform a markerless visual servoing,
correcting online the hand pose using camera images [17].

B. Convolutional neural network

Once the virtual camera image is created, it is passed
as input to the CNN to predict the cleaning trajectory
to be performed by the robot’s hand. The output of the
network are the parameters (mean vectors µ and covariance
matrices Σ) of a 5 components GMM that represents the
cleaning trajectory (see subsection II-C for more details).
To ensure that the network returns covariance matrices Σ
positive-semidefinite and symmetric, we represent Σ using
the Cholesky decomposition Σ = LL∗, where L is a lower

28

triangular matrix with real and positive diagonal entries, and
L∗ denotes the conjugate transpose of L.

Since each mixture component is a 3-dimensional Gaus-
sian (xy coordinates in the table plane and time), the network
has a total of 45 outputs: the first 15 correspond to the
mixture components means, while the last 30 are the lower
triangular and diagonal values of L for each mixture com-
ponent. The output neurons corresponding to the diagonal
values of L are forced positive using their exponential instead
of the real values.

The network architecture is divided in two parts (see
Fig.2): a convolution part based on AlexNet architecture [13]
to perform a feature extraction from images, and two fully
connected layer to predict the GMM parameters from the
features latent layer. The 320x240 virtual camera images pass
through 5 convolution layers that generate a latent layer with
4096 neurons. The latent layer is then fully connected to the
45 output neurons.

C. Gaussian mixture model and Gaussian mixture regression

Cleaning trajectories are represented as a time indexed 2-
dimensional vector:

T(n) = (n, x(n), y(n)), n = 0, . . . , N − 1 , (5)

where N is the number of points that form the trajectory,
Tn(n) = n is a time variable and Txy(n) = (x(n), y(n))
are the coordinates on the table plane Π. Using a GMM to
encode a trajectory allows taking into account the variability
of the human demonstrations used to train the network [18].
The GMM probability density function is given by

p(T(n)) =

K∑
k=1

p(k)p(T(n)|k) (6)

where p(k) = 1/K is a uniform prior and p(T(n)|k) =
N (T(n);µ(k),Σ(k)) is the Gaussian probability density
function for T(n) given the kth mixture component. To
generate a trajectory the density function in Eq. 5 is con-
ditioned on time n: this is known as Gaussian Mixture
Regression (GMR), resulting in a conditional mean T̂xy

and a conditional covariance T̂Σ,xy for each point n in the
trajectory.

D. Loss Function

The loss function minimized during training is:

L =

N−1∑
n=0

e(n)T T̂−1
Σ,xy(n)e(n) + γ

N−1∑
n=0

(T̂Σ,xy)2(n)

N
, (7)

with e(n) = (Txy(n)− T̂xy(n)). The sum at the right side
of equation 7 is divided in 2 terms. The first term is the
squared error between the spatial component of the kines-
thetic trajectory Txy and its GMR expectation T̂xy , weighted
by the inverse of the conditional covariance matrices of each
trajectory point T̂Σ,xy . The conditional covariance matrices
T̂Σ,xy can be seen as a confidence measure of the conditional
expectation T̂xy . Weighting the error e with the inverse of

(a) (b) (c)

Fig. 4. Elements extracted from the dataset. The trajectories are plotted
on top of the images in green. (a): original dataset element (b): shifted,
different illumination and uniform color background element (c): shifted,
different illumination and perlin noise background element.

T̂Σ,xy gives more importance to the expectations on which
we are more confident. Minimizing only the first term of the
loss function can result in a growth of the elements of T̂Σ,xy

without reducing the actual error e. To solve this problem we
introduced the second term: the mean of the squared sum of
the elements of each covariance T̂Σ,xy(n) multiplied by a
gain factor γ.

III. EXPERIMENTAL SETUP

In this section, we will explain the experimental setup
used on the preparation of this manuscript. We introduce
the robotic platform used (the iCub), explain the procedure
to collect the dataset, how is the system initialized and the
evaluation metrics used during tests on a robotic platform.

A. iCub description

The iCub humanoid robot [19] was developed in the
context of the EU project RobotCub (2004-2010) and sub-
sequently adopted by more than 35 laboratories worldwide.
It has 53 motors that move the hands, arms, head, waist
and legs and it has the average size of a 3-year-old child. Its
degrees of freedom and human-like appearance are important
characteristics that enable the study of human-robot interac-
tion and autonomy in humanoid robots. The stereo vision
system (cameras in the eyeballs), proprioception (motor
encoders and torque sensors), touch (tactile fingertips and
artificial skin) and vestibular sensing (IMU on top of the
head) are major features that allow the implementation of
the proposed methodology.

B. Collecting the Dataset

We created a dataset consisting on virtual camera images
of a dirty table and robot 2D hand trajectories performed to
clean it. To collect the dataset we placed a table with size
50x50 cm in front of the iCub at an height ht of -1 cm from
the iCub reference frame O. We recorded 659 trials during
which we placed a dirt spot on the table (marker scribbles or
clusters of lentils) and guided the robot right hand in order
to clean the spot. During the trials a sponge was fixed to
the hand of the robot. The robot arm was running using a
zero torque controller2 that permitted to easily move it by
hand. The humans were instructed to perform a different

2We used the ”Force Control” iCub module. The code can be found
at https://github.com/robotology/icub-basic-demos/
tree/master/demoForceControl

29

r = 1 r = 2 r = 3 r = 4 r = 5 final result

Fig. 5. Testing examples on the real robot. In blue it is possible to see the output trajectory and in green the trajectory performed by the robot (according
with its forward kinematics). Left Column: markers scribbles; Right Column: lentils.

cleaning movement for different kind of dirt: pass on top
of marker scribbles and drag to the bottom-right corner of
the table the lentils. During the beginning of each trial, the
virtual camera image was constructed and the hand trajectory
was stored. The hand trajectories were re-sized to 200 points
each. During the recording the torso of the iCub was fixed
(due to limitation of the zero torque controller) resulting in a
limited cleaning area. The dataset was augmented in order to
make it more robust to real world scenarios. First the position
of both images and trajectories was randomly shifted to
augment the cleaning area, second the illumination intensity
and color was artificially modified, and third the background
around the dirty spots was substituted with random perlin
noise or a random uniform color. These changes resulted in
a dataset 21 times bigger than the original (13839 elements).
Fig. 4 shows an example of 3 images from the dataset.

50 100 150 200 250

of Epochs

0

5

10

15

20

25

30

35

40

45

50

L
o

s
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(m
e

te
rs

)

Training Loss

Test Loss

Training MAE

Test MAE

Fig. 6. Loss value evolution during 250 epochs for training and test (blue
solid and dashed lines, left y axis). Mean absolute Error (MAE) evolution
during 250 epochs for training and test (orange solid and dashed lines, right
y axis).

C. System initialization

To test the system we use a scenario similar to the one
depicted in Fig. 3. The 50x50 cm table was placed in front
of the robot at 3 different heights: -5 cm, -10 cm and -15
cm. In order to demonstrate the robustness of our system to
different conditions, we performed the tests using the iCub
left hand. The homography matrix for the virtual camera
was re-calibrated using the left arm due to different errors

in left and right kinematics chains. For each table height
we predefined the z position of the hand during the cleaning
movement. The network was trained using 70% of the dataset
as training set and the remaining 30% as test set. We stopped
the training process after 250 epochs. We used the Adam
optimizer to minimize the loss function. The batch size
during training was of 200 elements. In order to prevent
overfitting, we applied a dropout with ratio 0.5 to the first
two fully connected layers of the networks. The networks
were implemented using PyTorch3. The loss function gain
value γ was set equal to 100.

D. Error metrics

To test the system we placed a dirt spot (marker or lentils)
on the table and let the robot clean it in 5 repetitions without
human intervention. Two different metrics were defined to
evaluate the performances of the system. In case of marker
scribbles, the percentage of dirty area m1(r) after each
repetition was calculated:

m1(r) =
A(r)

A(1)
100, r = 1, . . . , Nr (8)

where A(r) is the dirty area in pixel at repetition r, and
Nr = 5 is the number of repetitions.

For the lentils example, the performance metric is the
distance m2(r) between the centroid of the cluster and the
bottom-right corner of the table:

m2(r) =
√

(c(r)− o)T (c(r)− o) (9)

where c(r) is the centroid of the cluster at repetition r and
o is the bottom-right corner of the table both expressed in
the robot reference frame (meters).

To evaluate the dirty area and lentils centroids in the
images, we used a color (RGB)-based segmentation.

IV. RESULTS

A. Test set results

Fig. 6 shows the performance of the network on training
and test set during 250 epochs. On the left y axis, in blue,

3http://pytorch.org

30

Fig. 7. Mean and standard deviation for 15 Marker Experiments with 3
different table height.

Fig. 8. Comparison between the Top-4 marker experiments with the human
demonstrations

is represented the loss function L, while on the right y axis,
in orange, is represented the Mean Absolute Error (MAE)
between the expected trajectory T̂xy and the kinesthetic
demonstration Txy . The figure shows how minimizing the
loss function L results in minimizing the MAE between T̂xy

and Txy . The MAE on the training set after 250 epochs
converge to 3 cm while the test MAE converge to 7 cm.
The higher error on the test set is due to the high variance
in the human demonstrations, making impossible to replicate
the exact trajectory position. Nonetheless the network is able
to extract general features like dirt position and trajectory
direction. Fig. 5 shows how the network is able to create
successful trajectories from unseen scenarios.

B. Robot experiments

The proposed architecture was tested on a real scenario
using the iCub left arm4. In Fig. 5, one can see two trials on
the real robot over 5 repetitions without human intervention.
In the top row one can find the marker scribbles example,
and in the bottom row the lentils. The output trajectory (T̂xy)
from the network is in blue and the trajectory performed by
the robot according with its forward kinematics is in green
. As can be seen in the bottom row of Fig. 5 example r =
3, although the trajectory is on top of the lentils, the robot
could not move them in the desired direction, which can be
correlated with kinematic errors present in the arm. Indeed,
we are learning from demonstration with the right arm and

4A video demonstration of the system can be found at the url: https:
//youtu.be/RfeIseZO_ng

Fig. 9. Mean and standard deviation for 15 Lentils Experiments with 3
different table height

Fig. 10. Comparison between the top-4 Lentils experiments with the human
demonstrations

adapting the learning to the left one and they have distinct
kinematic errors. Nevertheless, as explained in Section III,
we are performing a kinematic correction from the right arm
to the left which is sufficient in most of the cases.

In a more quantitative analysis, and using the error metric
defined on Section III-D., we perform 15 experiments on
marker scribbles setting the table at 3 different heights, and
the results over the 5 repetitions can be seen in Fig. 7. We
reduced the dirt in almost 80% of its initial area with a
standard deviation of 15%. Comparing, in Fig. 8, the top-4
experiments performed by the robot (i.e, those achieving the
lower percentage of area to be cleaned) with the kinesthetic
teaching examples, it is possible to see that the robot is
cleaning with a similar behaviour. Indeed, it is learning the
cleaning motion demonstrated by the human.

In the lentils case, the mean error and standard deviation
of 15 experiments with the table at 3 different heights can be
seen in Fig. 9. The distance from the bottom right corner of
the table (the target point when cleaning lentils) was reduced
until 0.115 m with a standard deviation of 0.05 m. The top-
4 examples (i.e, those achieving the smallest distance from
the target point) were compared in Fig. 10 with the demon-
stration examples performed during the kinesthetic teaching.
One can see a small difference between the initial center of
mass of the lentils cluster in the two sets. Indeed, and since
the robot torso was fixed during the human demonstrations,
the arm-reachable space was shorter in the former case than
in the robot normal operation. However, the slope of both
plots are similar, and we conjecture that the robot is learning

31

(a) Example 1 (b) Example 2

Fig. 11. Showing Robustness of the algorithm to external objects. (a) a
human with a red shirt; (b) a whiteboard eraser.

a cleaning motion resembling the ones demonstrated while
performing them on a wider space, achieving the final goal
with a few iterations more. Regarding the robustness of the
algorithm, we incorporate external object on the scene. In
Fig. 11, a human with a red shirt (a) and a whiteboard eraser
(b) were on the top of the table. The network was able to
ignore them and to produce a trajectory (in blue) which was
performed by the robot (in green) being able to clean the
table from a marker scribble.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel approach for autonomous robotic
cleaning tasks, based on a deep learning architecture, that
learns how to generate 2D cleaning trajectories over a
table from a set of human kinesthetic demonstrations. Data
augmentation techniques have been used to increase the
robustness of the network to disturbances and environmental
changes. A plane-projective transformation was successfully
used to make the system invariant to the robot posture.
We have shown that, after training the CNN, the robot
is able to successfully generate cleaning trajectories with
its arm. We also show that the knowledge acquired from
the kinesthetic demonstrations using the right arm can be
straightforwardly transferred to the left one. Experiments
with the iCub were presented and discussed. We argue that
our work can be easily extended to different types of cleaning
motion describable by 2D hand trajectories (e.g., spread a
cleaning product on a table). New cleaning behaviours can
be learned by the system simply adding new kinesthetic
demonstration to the training set. In future work, we intend
to expand the number of cleaning movements and further
investigate if such learned skills can be transferred to other
types of robots.

ACKNOWLEDGMENTS

This work was partially supported by Fundação para a
Ciência e a Tecnologia (project UID/EEA/50009/2013 and
Grant PD/BD/135115/2017) and the RBCog-Lab research
infrastructure. We acknowledge the support of NVIDIA
Corporation with the donation of the GPU used for this
research.

REFERENCES

[1] F. Cavallo, R. Limosani, A. Manzi, M. Bonaccorsi, R. Esposito,
M. Di Rocco, F. Pecora, G. Teti, A. Saffiotti, and P. Dario, “De-
velopment of a socially believable multi-robot solution from town to
home,” Cognitive Computation, vol. 6, no. 4, pp. 954–967, 2014.

[2] D. McColl, A. Hong, N. Hatakeyama, G. Nejat, and B. Benhabib,
“A survey of autonomous human affect detection methods for social
robots engaged in natural hri,” Journal of Intelligent & Robotic
Systems, vol. 82, no. 1, pp. 101–133, 2016.

[3] G. Ferri, A. Manzi, P. Salvini, B. Mazzolai, C. Laschi, and P. Dario,
“Dustcart, an autonomous robot for door-to-door garbage collection:
From dustbot project to the experimentation in the small town of pec-
cioli,” in Robotics and Automation (ICRA), 2011 IEEE International
Conference on. IEEE, 2011, pp. 655–660.

[4] K. Okada, T. Ogura, A. Haneda, J. Fujimoto, F. Gravot, and M. Inaba,
“Humanoid motion generation system on hrp2-jsk for daily life envi-
ronment,” in Mechatronics and Automation, 2005 IEEE International
Conference, vol. 4. IEEE, 2005, pp. 1772–1777.

[5] L. Kunze, M. E. Dolha, E. Guzman, and M. Beetz, “Simulation-
based temporal projection of everyday robot object manipulation,”
in International Conference on Autonomous Agents and Multiagent
Systems-Volume 1. International Foundation for Autonomous Agents
and Multiagent Systems, 2011, pp. 107–114.

[6] J. Hess, G. D. Tipaldi, and W. Burgard, “Null space optimization for
effective coverage of 3d surfaces using redundant manipulators,” in
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2012, pp. 1923–1928.

[7] D. Leidner, W. Bejjani, A. Albu-Schäffer, and M. Beetz, “Robotic
agents representing, reasoning, and executing wiping tasks for daily
household chores,” in Proceedings of the 2016 International Confer-
ence on Autonomous Agents & Multiagent Systems. International
Foundation for Autonomous Agents and Multiagent Systems, 2016,
pp. 1006–1014.

[8] F. Cruz, S. Magg, C. Weber, and S. Wermter, “Training agents with
interactive reinforcement learning and contextual affordances,” IEEE
Transactions on Cognitive and Developmental Systems, vol. 8, no. 4,
pp. 271–284, 2016.

[9] P. Kormushev, D. N. Nenchev, S. Calinon, and D. G. Caldwell, “Upper-
body kinesthetic teaching of a free-standing humanoid robot,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 3970–3975.

[10] S. Calinon, T. Alizadeh, and D. G. Caldwell, “On improving the
extrapolation capability of task-parameterized movement models,” in
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on. IEEE, 2013, pp. 610–616.

[11] T. Alizadeh, S. Calinon, and D. G. Caldwell, “Learning from demon-
strations with partially observable task parameters,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on. IEEE,
2014, pp. 3309–3314.

[12] J. Kim, N. Cauli, P. Vicente, B. Damas, F. Cavallo, and J. Santos-
Victor, ““iCub, clean the table!” A robot learning from demonstration
approach using Deep Neural Networks,” in IEEE International Con-
ference on Autonomous Robot Systems and Competitions (ICARSC),
2018.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[14] K. Perlin, “An image synthesizer,” ACM Siggraph Computer Graphics,
vol. 19, no. 3, pp. 287–296, 1985.

[15] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G. Zhang, “Transfer
learning using computational intelligence: a survey,” Knowledge-Based
Systems, vol. 80, pp. 14–23, 2015.

[16] U. Pattacini, “Modular cartesian controllers for humanoid robots:
Design and implementation on the icub,” Ph.D. dissertation, Italian
Institute of Technology, 2011.

[17] P. Vicente, L. Jamone, and A. Bernardino, “Towards markerless visual
servoing of grasping tasks for humanoid robots,” in IEEE International
Conference on Robotics and Automation (ICRA), May 2017, pp. 3811–
3816.

[18] S. Calinon, F. Guenter, and A. Billard, “On learning, representing,
and generalizing a task in a humanoid robot,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 2,
pp. 286–298, 2007.

[19] G. Metta and L. Natale and F. Nori and G. Sandini and D. Vernon
and L. Fadiga and C. von Hofsten and K. Rosander and M. Lopes
and J. Santos-Victor and A. Bernardino and L. Montesano, “The iCub
humanoid robot: an open-systems platform for research in cognitive
development,” Neural Networks, vol. 23, 2010.

32

