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Behavioral Repertoire via Generative Adversarial Policy Networks

Marija Jegorova1, Stéphane Doncieux2, and Timothy M. Hospedales1

Abstract— Learning algorithms are enabling robots to solve
increasingly challenging real-world tasks. These approaches
often rely on demonstrations and reproduce the behavior
shown. Unexpected changes in the environment may require
using different behaviors to achieve the same effect, for instance
to reach and grasp an object in changing clutter. An emerging
paradigm addressing this robustness issue is to learn a diverse
set of successful behaviors for a given task, from which a robot
can select the most suitable policy when faced with a new
environment. In this paper, we explore a novel realization of
this vision by learning a generative model over policies. Rather
than learning a single policy, or a small fixed repertoire, our
generative model for policies compactly encodes an unbounded
number of policies and allows novel controller variants to be
sampled. Leveraging our generative policy network, a robot can
sample novel behaviors until it finds one that works for a new
environment. We demonstrate this idea with an application of
robust ball-throwing in the presence of obstacles. We show that
this approach achieves a greater diversity of behaviors than an
existing evolutionary approach, while maintaining good efficacy
of sampled behaviors, allowing a Baxter robot to hit targets
more often when ball throwing in the presence of obstacles.

I. INTRODUCTION

Robots are increasingly able to solve challenging tasks
by learning controllers. While reinforcement or imitation
learning approaches can be effective, they typically learn
a single ideal solution to a given control problem, and the
robustness of that solution to challenging situational variants
(e.g., changing obstacles, or damage to the robot) is hard to
guarantee. If a control policy fails due such an unexpected
environmental change, robots can try to adapt their control
policy to a new situation through re-planning [1] or adapting
a learned policy [2]. Beyond such adaptation, when animals
face a challenging environment in which a previously learned
behavior fails, they also draw on an additional capability:
leveraging a suite of other known behaviors that are expected
to solve the task at hand [3]. Exploration within a set of
diverse historical behaviors that solved a task can quickly
lead to a solution that succeeds in a new environment [3].
Such behavioral repertoire-based approaches are emerging as
promising techniques for robustly solving tasks [3], [4], [5].

Existing realizations of this robustness-through-diversity
vision are often based on evolutionary algorithms that train
a diverse set (population) of controllers that solve a given
task [4], [5]. However this approach has several drawbacks:
storing a large database of controllers is not compact, and
there is only as much diversity as is contained in the popu-
lation of controllers. We argue that a preferable instantiation
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of this vision is to learn a generative model over controllers.
Firstly, it is compact – only the parameters of the generative
model rather than a large list of controllers need to be
stored. Secondly, the available diversity is not limited to the
instances in a fixed length list. By sampling a generative
model over controllers, an unlimited number of distinct
controllers can be obtained. And with a sufficiently flexible
generative model, sampled controllers need not be simple
interpolations between controllers used to train the generative
model. Samples could encode novel solutions to the problem
by drawing diverse aspects of multiple training policies.

This approach is coherent with the exploratory behavior
of infants (and other animals) – specifically their ability to
perform a behavior in high variation so there is a distribution
of actions associated with each behavior [6]. Our method
models this distribution. Following the example of other
progressive sequential architectures – [7], [8], we propose a
simple two-staged developmental framework where one first
builds up the initial repertoire of actions (using methods such
as quality-diversity search [9]), and then generalizes beyond
this repertoire via our proposed generative model. Our pro-
gression from a library-based approach to a generative-model
can also be considered a representational re-description [10],
between developmental waves [6].

While conceptually appealing, training generative models
over policies is non-trivial. The space of reasonable policies
likely to solve a given task is a complicated manifold within
the space of all policies, considering actuator redundancy,
non-linearities and so on. We therefore propose to apply
generative adversarial networks (GANs) [11] to model the
distribution over policies that solve a given task using a
neural network, thus defining a generative policy network
(GPN). In our framework the GPN models the distribution
over policy parameters, so that each sample from the GPN
defines a specific robot controller. Multiple samples from the
GPN therefore correspond to different solutions to the task
that the GPN is trained on. To generate training data for the
GPN we exploit quality-diversity (QD) search evolutionary
algorithms [9] to find a diverse set of policies that solve a
task. Once trained, a GPN then provides a compact source
of diverse and novel policies likely to solve variants of that
task. Compared to a conventional GAN, we find it beneficial
to regularize GPN-training by requiring it to generate not
only a controller but the outcome of running that controller
(i.e. to simulate the forward model, or reconstruct the input
goal state), and this is also useful as a way to pick promising
policies (e.g., sample the GPN until a policy is drawn which
is expected to work in the current environment).

We demonstrate our approach through the specific ap-



plication of target-conditional ball-throwing [12], [13] in
the presence of confounding obstacles. Throwing is often
formalized as a contextual policy problem where a movement
primitive for throwing is synthesized conditionally on the
desired target position [12], [13]. In the presence of obstacles
however, the most ‘natural’ way to throw to a given target
may be blocked. Nevertheless, there are multiple throwing
movements that hit a given target. We show that the ability
to model and sample from a distribution of controllers allows
the robot to find throwing controllers that can avoid any given
obstacle.

II. RELATED WORK

Learning Robot Control Typical approaches to learning
robot control include learning by demonstration [14], re-
inforcement learning to maximize some extrinsic reward
[12], or demonstration-based initialization followed by pol-
icy search-based reinforcement learning to fine-tune the
demonstrated policy. Those policy search algorithms in turn
can often be categorized into gradient-based [15], [16] and
gradient-free methods such as Bayesian optimization [17]
and evolutionary search [18]. An advantage of evolutionary
methods is that they often provide a population of policies
as a byproduct, rather than a single best controller.

Where obstacles can impede behavior, a standard robotics
approach is to localise the obstacle and plan a movement that
avoids it [19]. However this requires both (i) accurate 3D
obstacle localisation and (ii) appropriate adaptive planning
capabilities. One or other of these sensing and reasoning
capabilities may not be available at the required efficacy
level at a given developmental stage in an animal or robot.
In contrast generating diverse behaviors and exploring them
until one works has lower prerequisites and hence is suitable
for earlier developmental stages.

Behavioral Diversity in Robot Control For a robot to be
able to deal rapidly with new and unanticipated situations,
a recently proposed approach consists of building a large
repertoire of behaviors in which it should be possible to find
one adapted to a newly arising situation or environment. The
repertoire creation step can be done in a preliminary phase
and a learned repertoire subsequently used to accelerate
the adaptation to an unanticipated situation by relying on
a selection process instead of a full learning process [3].
Promoting behavioral diversity is a key feature of a repertoire
creation process. Driven by research on novelty search [20],
evolutionary approaches have been adapted to generate a be-
haviorally diverse set of solutions instead of converging to a
single solution optimizing a given fitness function [4]. These
algorithms are called Quality Diversity algorithms [21], [22]
and are used here to bootstrap the proposed method. Our
proposed GPN builds on QD-search by leveraging its results
as training data. However, in contrast to the selection-
from-repertoire paradigm of QD, it has several interrelated
benefits: (i) We can more compactly store a large repertoire
by storing instead the parameters of a generative model that
represents that repertoire of behaviors. (ii) Rather than a
fixed size database of behaviors, the generative model can

continue to sample unlimited new behaviors until a suitable
one is found. (iii) Samples drawn from the generative model
of behaviors can discover novelty beyond the initial training
repertoire, by combining aspects from different training
behaviors. (iv) Importantly the GPN approach is better suited
for contextual policies. To solve a contextual policy task like
diverse throwing to different targets, a library-based approach
increases the required data collection and repertoire storage
size dramatically because it would need to keep samples
of many different throwing targets, and for each of those
targets, samples of many different ways to throw there. In
contrast, given a few samples of different throwing targets,
a contextual policy GPN can extrapolate and draw many
different controllers for throwing to any given target.

Generating Diverse Policies Another somewhat related
work [23] covers diverse policy generation in a model-based
framework. DIAYN [23] learns diverse skills (policies),
assessing the diversity by the variety of states they visit in
the process of RL-style unsupervised exploration. The main
difference is that DIYAN tries to learn a small set of very
distinct skills. While our GPN focuses on one skill type, but
learns an infinite smoothly-varying manifold of controllers
covering both all the potential goals (e.g., movement targets)
and ways to achieve those goals. DIYAN also focuses more
on initial exploration (and is thus analogous to QD-search
in our pipeline), while we focus on compactly representing
and exploiting the results of such an exploration process.

Generative Adversarial Networks Generative Adversarial
Networks were proposed [11] to address the challenge of
learning a neural network-based generative model for com-
plex high-dimensional data. The key idea being that genera-
tor training is enabled by a second discriminator network
that is simultaneously adversarially trained to distinguish
true training data and the generator’s synthetic examples. To
improve its ability to fool the discriminator the generator
must generate increasingly realistic synthetic samples. There
have since been numerous extensions including convolutional
GANs [24], conditional GANs [25], [26], and improvements
of GAN training stability with regards to challenges such as
non-convergence and mode-collapse [27], [28].

Generative Adversarial Network Applications The vast
majority of GAN applications are in image generation tasks
[11], [24], [29], [27], [26]. In robotics, GANs have been
applied in robot haptic recognition [30]. Autoencoding VAE-
GAN has been used for visual representation learning to
process visual input in support of vision-based actuation in
control [31]. GANs have also been referenced in an inverse
reinforcement learning context [32], [33] where an analogy
is drawn between the distribution of state-action pairs en-
countered by an expert and the real data which should be
matched by the distribution of state-action pairs encountered
by a student policy and the synthetic data produced by
a generator, for single [32] and multiple experts [33]. To
the best of our knowledge neural network generators have
not previously been applied to sample diverse continuously
distributed control policies, or to the generation of diverse
robot behaviors, as we explore here.



III. METHOD

A. Background: Generative Adversarial Networks

Generative adversarial networks are neural network gen-
erative models for complex high-dimensional data. In this
framework, a generator G is trained to produce samples
representative of a training data distribution pdata(x). G takes
as input a random noise vector z, and for a given noise
distribution p(z), samples x = G(z), z∼ p(z) should follow
the same distribution as the observed data x∼ pdata(x). Such
generative neural networks are challenging to train, but [11]
showed that they can be trained via a min-max game between
the generator and an adversary (the discriminator) D:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)]

+Ez∼p(z)[log(1−D(G(z)))]
(1)

where x stands for a data example, z a random noise
vector, D(x) represents the discriminator’s estimate of the
probability that x came from real data rather than the
generator. and D(G(z)) - a probability that data came from
a generator. GANs can also be extended to model the distri-
bution of data conditional on some observed context vector
[24], in which case both the generator and the discriminator
also take the conditioning data c as input. GANs are most
commonly applied to generate images (e.g., x is a person
image and c is the gender of that person). In the following
we adapt them to generate policies x conditional on goals c.

B. Generative Policy Networks

Unconditional Policies Robot behaviors are defined by a
control policy π operating in some state space S and action
space A . Thus while generative models are conventionally
used to define a distribution p(x) over data instances x, our
GPN defines a distribution p(π) over policies π , which are
themselves functions π : S → A . Given a set of training
policies Dtrain = {πi}, we train our GPN to estimate the
distribution over observed policies. Assuming the policies
in question lie in some parametric family, then each is
identified by some parameter vector (e.g., weights in a
neural network [34], radial basis function (RBF) kernels in a
dynamic movement primitive (DMP) [14], [13]). By training
a generator G to generate such parameters, samples from
the generator are interpretable as controllers. In this case
the discriminator enables the training of the generator by
learning to distinguish between real policies in Dtrain and
generator synthesized policies π = G(z). Once the generator
learns to fool the discriminator, and assuming it does not
mode collapse, then samples from the generator represent
diverse control policies are novel yet statistically indistin-
guishable from the training policies. We denote sampling
policies from the distribution implied by the generator G(z)
under a given noise distribution p(z) as π ∼ pG(π).

Contextual Policies We aim to go beyond simple fixed
behaviors to work with contextual policies that are parame-
terized by a goal condition to achieve [12], [14]. For a goal
directed policy such as our intended application of robot
throwing, we need not just a controller (e.g., a throwing

movement), but a conditioning mechanism that generates
a controller that achieves the right goal (e.g., a throwing
movement that hits a specific target). As described above,
if the training set Dtrain consists of controllers throwing
to multiple different locations, then sampled policies π ∼
pG(π) will throw to new locations within the distribution of
training targets. If the training set Dtrain consists of multiple
controllers that throw in different ways to the same location,
then π ∼ pG(π) will sample novel policies that throw to that
same location. In the contextual policy case we want a policy
that achieves a specifiable goal. Thus we define a conditional
generator π =G(z,c), π ∼ pG(c)(π) to sample policies π that
target a specific landing point c. Thus we can both throw at
a specified target (set the generator condition), and also find
multiple ways to throw there (sample the generator).

C. Application to Throwing

For application to throwing, we assume a set of training
policies, and denote sampling these as π ∼ pdata(π) and
π,c∼ pdata(π,c). We then train a conditional generator net-
work G(z,c) as below. The third term is an added regularizer
that requires the generator to reconstruct the landing point of
the policy that it just sampled. Here G(z,c)T means sample
the policy and its target point and take only the target point
term, and G(z,c)¬T means the opposite.

min
G

max
D

V (G,D) = Eπ,c∼pdata(π,c)[logD(π,c)]

+Ez∼p(z),c∼pdata(c)[log(1−D(G(z,c)¬T ))]

+‖G(z,c)T − c‖2]

(2)

Policy Representation We have applied our framework suc-
cessfully to many different policy representations including
sampling the RBF parameters of the forcing term of a DMP,
but we found the following simple representation effective
and easy to tune. For our Baxter robot arm, we represent the
π as a 15D vector defining a high-level open-loop controller
in terms of the ball release time, and effector position and
velocity at release. Specifically π = [θθθ tT , θ̇θθ tT , tT ], where θθθ tT
and θ̇θθ tT are 7D robot arm joint angles and joint velocities at
launch time, and tT is the launch time. The goal condition c
is a 2-dimensional Cartesian coordinate of the ball landing
point. There are multiple launch configurations as described
above, that result in the same landing point c, and the trained
GPN will sample this space of configurations.

Policy Execution With the policy definition above, samples
from our GPN constitute a high-level action plan of how to
launch the ball. To actually actuate this we map the high-level
action into an open loop controller for low-level actuation via
the following third-order polynomial function of time:

θθθ ti = α4

(
ti
tT

)3

+α3

(
ti
tT

)2

+α2

(
ti
tT

)
+α1 (3)

with θ̇θθ ti =
dθθθ ti
dti

and θ̈θθ ti =
dθθθ ti
dti

, and parameters:

vti =
1
tT

(
3α4

(
ti
tT

)2

+2α3

(
ti
tT

)
+α2

)
, α1 = θθθ t0 ,

α2 = θ̇θθ t0tT , α3 = 3θθθ tT − θ̇θθ tT tT −2α2−3α1,
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α4 = θθθ tT −α1−α2−α3,
where θθθ ti , θ̇θθ ti , θ̈θθ ti are the positions, velocities and accelera-
tions of joints at time t; θθθ t0 and θ̇θθ t0 are initial positions and
velocities at time t0 and tT is the time of launch. We assume
the starting robot arm configuration is the same for each trial.
Baxter is then actuated by sending the above joint position,
velocity and acceleration plan to a ROS control node.

IV. EXPERIMENTS

A. Training data and settings

We apply our GPN to enable a Baxter robot to robustly
throw a ball in different environmental obstacle conditions.

Training Data We first describe the collection of data
used to train our GPN. Training data is collected by using
evolutionary Quality Diversity search [9] to find a set of
genotypes (high level policies π) that have diverse behavior-
space effects (e.g., arm trajectories and landing positions)
when actuated. The data collection roughly follows the pro-
cedure described in [35], using a realistic Baxter simulation
(Gazebo) to obtain around 15,000 throwing episodes. Each
training episode records the arm trajectory, ball trajectory,
and ball landing point. Since the Baxter arm has 7 joints,
there are 15 parameters for any policy (Eq. 3) – position
and velocity for each joint and the launch time. The training
data is illustrated in Figure 1 in terms of a heat map of
ball landings at different positions on the floor around the
robot (left), and some example episodes’ arm trajectory, ball
trajectory and landing point (right).

Evolutionary Baseline We use QD search to generate
training data for our GPN as described above, and will
exploit our trained GPN to solve a robust throwing task later.
A conventional evolutionary-style approach to exploiting
this data for robust throwing would be to treat the dataset
as a large library (repertoire), and then solve a new task
by selection from the repertoire [3], [4], [5]. To throw
to a specific target, the closest memorized landing point
is recalled, and the associated policy is executed. If an
environmental change (e.g., an obstacle) causes that known
solution to fail, a lookup can be performed to find and
execute some other policy with approximately the same
landing point, but potentially different arm/ball trajectory.
The problem is that this scales badly: although a large
number of throwing episodes (15,000) covers the space of
landing points reasonably well, it is not enough to cover

many diverse ways to throw to each individual landing point.
So the lookup-based approach may fail to effectively find
diverse ways to throw to a specific point.

Settings Our GPN is built upon DCGAN framework [24],
and has a 4-layer RELU-activated convolutional architec-
ture that maps a 100-dimensional noise vector z to a 15-
dimensional output vector representing π . It is trained using
15000 episodes of data using learning rate 0.0002 and 1000
epochs with batch size 250. We used 20 generator updates for
each discriminator update. Both QD and GPN use the same
policy representation π , and underlying actuation strategy.

B. Experiment 1: Conditional throwing

Setup We aim to achieve robust throwing by learning to hit
a target in diverse ways. We therefore first evaluate the ability
of our GPN and QD alternative to: (i) accurately throw to a
given position, and simultaneously (ii) find diverse ways of
throwing to each position around the robot. For this purpose
we grid the floor space around the robot into a 5×5 grid
(25 target landing points). We experiment both in simulation
(Gazebo Baxter) where we attempt to throw to each of those
points 10 times, and then corroborate those results on the real
Baxter where we throw to each coordinate 3 times, tracking
the ball using an OptiTrack system. For each target point, we
compute: RMSE between the target and actual landing point
for all the trials; Diversity of the trials by taking the ball tra-
jectory, computing equidistant waypoints along it, and then
using these to compute a standard deviation of all trajectories
towards a given target; Harmonic Mean between accuracy
(1−RMSE) and diversity (standard deviation) in order to
provide a single quantitative measure of performance. We
compare results from our GPN with the standard evolutionary
strategy that treats the GPN-training set as a repertoire library
(Sec. IV-A).

Results The results in Figure 2 plot the landing error
and diversity metrics at each grid point on the floor around
the robot. The first two columns compare QD/Library-based
approach with our GPN in simulation; the third column
evaluates our GPN results on the real Baxter robot. From
the results of this experiment we make the following obser-
vations: (i) In general QD search has higher accuracy. This
is expected as it is simply recalling previously memorized
movements and replaying them exactly, which unsurprisingly
leads to very similar outcomes, and hence high accuracy.
In contrast our GPN is a predictive model that must infer
the right policy to throw to any given target point, so its
slightly lower accuracy is understandable. (ii) However, GPN
has much higher diversity. It models the distribution of
policies that throw to a conditioning target, and samples that
distribution for each trial. (iii) Aggregating these metrics via
harmonic mean, we see that our GPN performs favorably
compared to QD. (iv) When executing our GPN-sampled
controllers on the physical Baxter robot, the results are
comparable to the simulated case (third vs second column).
Note that the grey areas to the left of the map on the results
of the real robot are because of walls in the physical Baxter
environment preventing data collection there.
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These results are summarized over all the spatial coordi-
nates in Figure 3 (top), where GPN significantly outperforms
QD in terms of harmonic mean. To be as fair as possible to
the QD search alternative, we also considered boosting its
diversity by adding Gaussian noise to the executed policies
at each trial. The result in Figure 3 (bottom) shows that noise
can improve QD performance. However it must be carefully
tuned as too much noise quickly degrades QD’s accuracy.
Overall this result is understandable as uniformly adding
noise to known throwing behaviors can quickly move off the
manifold of good throwing policies. In contrast GPN learns
the distribution over good throwing policies so it can sample
novel throwing controllers from within that distribution.
Finally we mention that, as per common safety practice,
all our movement plans are checked for self-collision before
execution. We also note that despite lacking a model of robot
kinematics, the vast majority (98.4%) of the diverse plans

generated by GPN are collision free. This indicates that GPN
has also learned about the manifold of reasonable controllers
in the sense of non-colliding as well as ability to hit a target.

C. Experiment 2: Throwing with obstacles: GPN vs QD

Setup Our motivating scenario was to use the learned
conditional distribution over controllers to achieve robust
throwing in the presence of obstacles. In this experiment, we
evaluate this quantitatively using Gazebo Baxter simulator.
Specifically, we consider a 5× 5 grid of floor targets as
before, and we throw to each of these targets with 10 diverse
sampled controllers as before. For each of those throws,
we simulate obstacles and calculate whether an attempted
throwing trajectory fails due to robot or ball collision with
the obstacle. We consider a throwing trial as a success if the
ball lands within radius τ of the intended target. Our metric
is SuccessesProportion(k,τ): how many of the target coordi-
nates does the ball hit successfully (within τ radius), at least k
out of 10 times. The idea is that even if obstacles block some
particular throws, a model that can generate multiple diverse
behaviors that all solve the task (i.e., throwing trajectories
that hit the same target) should be able to find at least some
(i.e., k) successful solutions. To systematically explore these
issues we run the simulation for k = 1 . . .9, τ = 0,0.1, . . . ,1.0,
and repeat for different occlusion rates = 1%, . . . ,8%. For
simplicity we model occlusions as a randomly selected set of
inaccessible floor areas, where the total proportion of blocked
floor area is the specified occlusion rate. We compute results
averaging over a 5×5 target grid, 10 throws per target, and
1000 random obstacle maps.

Results Figure 4 (right) shows the Gazebo simulation
of Baxter attempting to throw to a specific target in the
presence of randomly generated obstacles. Figure 4 (left)
shows heat-maps of SuccessesProportion(k,τ = 0.2) for
various occlusion rates and minimum hit requirements k.
From these we can make the following observations: (i)
Both QD and GPN methods have higher success rate in
the easier bottom left (low occlusion, low hit ratio required
for success), and vice-versa in the harder top right. (ii)
The GPN result is much higher than that of QD for low
k values (e.g., k = 1). This means that the GPN can often
find at least one way to hit the target, for this whole range
of occlusion rates. (iii) At very high minimum hit (e.g.,
k = 9) QD performance is slightly better than GPN. This is
because GPNs slightly lower accuracy means that it’s rarely
the case that as many as 9 out of 10 attempts hit the target.
However, at this stringent hit rate requirement, we note that
the success rate of QD in absolute terms is also very low
(around 10%). Finally, Figure 4 (middle) shows the success
rate averaged over occlusion rates as a function of different
hit-radius requirements. We see that for a stringent accuracy
requirement (τ < 0.1), neither method succeeds. While for
all larger values of τ , GPN consistently outperforms QD in
success rate. Overall the results validate the outcome we
aimed to achieve: GPN can throw accurately enough that
it often hits the target, but crucially it does so in diverse
enough ways that at least one way can usually be found to
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dodge any given obstacle configuration.

D. Experiment 3: Throwing with obstacles comparison

Setup In this experiment, we compare two further alter-
native approaches to obstacle-robust throwing. KDE: As a
non-parametric alternative to our GPN, we define a target-
conditional Kernel Density Estimation [36] model over the
same QD-based training set used by our GPN, so p(π|c) is
a Gaussian mixture model. We can then sample this mixture
instead of our GPN. BayesOpt: Bayesian Optimisation [37]
is an established approach to adaptive behaviors in robotics
[17]. We use the the best QD-trajectory as the starting
condition, and then perform Bayesian optimization for 10
trials for direct comparison to the diversity based models.

Results We use a simulated setup where there is a wall
randomly placed between Baxter and the target (see sup-
plementary video and Section IV-E). The results in Fig-
ure 5 average over four random goal/wall positions and
compare the different methods in terms of error, diversity,
collision rate and SuccessesProportion(k = 3,τ = 0.2). We
see that while GPN is not the most accurate model, its
success rate is best overall. This is because (i) it has good
diversity enabling it to dodge obstacles more often, (ii)
it has learned the manifold of reasonable policies, so it
usually also avoids self-colliding or unsafe movements. In
contrast, KDE and BayesOpt often generate self-colliding
movements or hit the obstacle. KDE suffers from being an
inefficient/inaccurate model of relatively high-dimensional
(15D) policies. BayesOpt purposefully adapts the movement
to avoid the obstacle, but cannot succeed in the relatively
small number (10) of available trials.

Fig. 6. Two examples of obstacle robust throwing behaviors obtained by
sampling our learned distribution over policies. The GPN is conditioned
on the target location, and samples controllers for throwing there until
samples are drawn that generate neither robot nor ball collisions. For
a video of this experiment please refer to the supplementary material:
https://youtu.be/2LCnaa89erM

E. Experiment 4: Physical Baxter robust conditional throw-
ing with obstacles

We finally demonstrate our framework enabling physical
Baxter robot to avoid an obstacle when throwing at a specific
target. The required target coordinate is given in the previous
experiments, but many typical routes to throwing to this
target are blocked by the obstacle. In this case the obstacle’s
position means that a successful throw needs to go over and
above the obstacle, or (slightly awkwardly for a right-handed
throw) to the left of the obstacle. However for this configura-
tion, every trajectory in the training library collides with the
obstacle. Therefore the standard QD/lookup-based approach



fails to find any successful solution. To test our method,
we sample the conditional GPN ten times to generate ten
diverse controllers that should throw to the required point.
We simulate them to check for collisions with the obstacle,
and found three of these avoided collision and landed into the
basket in simulation. This validates that the GPN has indeed
learned to generalize and samples novel behaviors. Figure 6
shows the successful execution of two of these controllers.
We can see that the ability to generate diverse trajectories
enables the robot to successfully hit the target with the ball
while dodging the obstacle.

V. CONCLUSION

We introduced the idea of generative policy networks, for
defining a generative model over policies. We showed that
our generative policy network provides a way to compactly
encode a large set of known behaviors, and that sampling the
GPN provides a way to draw unlimited novel controllers that
are related-to but different-from known training behaviors.
We showed how to apply this novel idea to robustly solving
tasks, with a specific example in the form of obstacle-robust
throwing. In future work we intend to explore applying the
proposed generative policy network framework for generat-
ing closed-loop rather than open-loop controllers, application
to different kinds of tasks besides throwing, and exploiting
the generator online for optimal training data collection
rather than relying on a fixed training set.
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Based Multi-Task Manipulation for Inexpensive Robots Using End-
To-End Learning from Demonstration,” in ICRA, 2018.

[32] J. Ho and S. Ermon, “Generative Adversarial Imitation Learning,” in
NIPS, 2016.

[33] Y. Li, J. Song, and S. Ermon, “Infogail: Interpretable imitation
learning from visual demonstrations,” in Advances in Neural
Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 3812–
3822. [Online]. Available: http://papers.nips.cc/paper/6971-infogail-
interpretable-imitation-learning-from-visual-demonstrations.pdf

[34] C. Zhao, T. M. Hospedales, F. Stulp, and O. Sigaud, “Knowledge
Transfer Across Skill Categories for Robot Control,” IJCAI, 2017.

[35] S. Kim and S. Doncieux, “Learning highly diverse robot throwing
movements through quality diversity search,” GECCO, 2017.

[36] M. Rosenblatt, “Remarks on Some Nonparametric Estimates of a
Density Function,” Ann. Math. Statist., vol. 27, no. 3, 1956.

[37] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient Global
Optimization of Expensive Black-Box Functions,” J. of Global Op-
timization, vol. 13, no. 4, pp. 455–492, dec 1998.


