
1

Modelling Software Components

Stuart Kent, John Howse and Anthony Lauder
School of Computing and Maths,

University of Brighton,
Lewes Road, Brighton, BN2 4GJ, UK

+44 (0) 1273 642494
Stuart.Kent@brighton.ac.uk

Abstract
This paper makes two contributions. (1) it argues that
precise visual modelling techniques are important for
modelling large-scale software components, as they
facilitate the core activities of component-based software
development (CBSD): building, finding, adapting and
assembling components. The paper argues for a carefully
selected set of techniques based on UML, to provide
accessible yet precise component models. (2) it proposes
a high level reference model for CBSD to tease out
exactly what is meant by the terms 'component',
'component adaptation' and 'component assembly'. The
paper illustrates this reference model by giving examples
of components, and the transformations that can be
applied to them, using precise visual models.

1. Introduction
It is widely recognised (so much so that it is built into
low-level implementation technologies for CBSD) that
components should at least come with a description of the
interfaces they support, where an interface is a list of
operations with their signatures. Whilst this may be
sufficient for small-scale components such as GUI
widgets, it does not take much reflection to realise that an
interface as characterised is wholly inadequate for
describing large-scale business components. How can I
tell what the effect of performing operations is on the
component just from the name and signature? (Answer:
"Half the documentation of a program is in its names" –
Boundy, 1991.) How can I search for components, let
alone have a software agent go and do the searching for
me without a more detailed specification? (Perhaps it will
be quicker just to build my own… .) How can I be sure
that the component actually does what is claimed of it in
the marketing hype? (Well, this is all a bit imprecise and
hype is hype, so you should expect it not to fulfil your
expectations… .)

Of course, interfaces are usually accompanied by
informal textual descriptions. Provided these are well

written, accurate and with plenty of examples, these will
definitely help the developer use the component, and may
help her find components. However, without a more
structured and precise description, it is doubtful whether
these can support automatic searching and matching.
And it won’t help tools which automate the process of
component assembly - they’ll need much more precise
descriptions. In addition, without a precise description,
the component provider still has some leeway in
providing component executables that do not quite match
the marketing hype.

What is really missing is a precise description of a
component’s behaviour. If components can not be given a
detailed precise specification and be guaranteed to meet
that specification then little advance will have been
made. Developers will still spend considerable time
honing and customising their components to fit the
requirements imposed by their design, rather than being
able to rely upon and use the specifications when
constructing the design in the first place.

However, precision is not enough on its own. The
description must also be accessible to users of the
component, which also means that it must abstract away
from the internal workings of the component. In
addition, it must be amenable to manipulation by
automated tools if any of the promised searching and
assembly tools are to be realised.

In the software modelling community a range of precise
visual modelling techniques are beginning to emerge that
could fulfil the four requirements of precision,
conciseness, accessibility and automatability.
Specifically, the Unified Modelling Language (UML –
UML Consortium, 1997; Fowler, 1997) has emerged
from the rich history of visual modelling, to become an
OMG standard which promises to become the de facto
industry standard modelling language. With the inclusion
of the Object Constraint Language (OCL), it now looks
like an integrated, precise and suitably expressive subset
of UML can be identified. OCL is a precise assertion

2

language which has borrowed much from the extensive
body of research into Formal Methods (e.g. VDM, Jones
1991, and Z, e.g. Woodcock & Davies, 1996). Added to
this are techniques for composing and specialising visual
models (see e.g. D'Souza and Wills, 1998) and even
richer, yet precise, visual notations (Kent, 1997; Gil &
Kent, 1998; Lauder & Kent, 1998).

The importance of precision and rigour in the context of
CBSD can not be over stressed. The intention is that
software components should be reused again and again,
and that component assembly and adaptation should be
largely automated. The former requires that components
be of a high quality, precisely documented and
rigorously developed and tested. The latter can only
happen if component descriptions are sufficiently
detailed, precise and unambiguous.

Similarly, models must be accessible and abstract, so
they allow users of the components to quickly ascertain
what the component does, how to adapt it and how to
assemble it with other components. They must be
automatable, to support the construction of suitable
CASE tools.

This paper identifies an integrated and precise subset of
UML, and shows how it can be used to model
components. Some UML compliant notations are also
described, which increase the visual expressive power of
the notations, including an ability to visually describe the
processes of component adaptation and assembly.

The terms component, component adaptation and
component assembly, have begun to take on a wide
range of different meanings (Is a component an object, a
class, a framework? Must it always come with an
executable part, i.e. are there pure design components?
What is the difference between grey, white and black
box components? What components are easily adapted
and what are not? What does it mean to assemble
components? Etc.)

A second contribution of this paper is to propose a
reference model for CBSD, in particular discussing the
definition of component, adaptation and assembly. The
model is designed to unify many of the conflicting
definitions, and provide ways of pinning down the
differences between various flavours of CBSD.

The paper is organised as follows. Section 2 describes a
fictitious example illustrating the kinds of activities that
could be involved in CBSD. This example is revisited in
section 5 to examine the utility of precise visual
modelling techniques in CBSD.

Section 3 describes a high level reference model for

CBSD, using precise visual component models to
illustrate the various concepts introduced. Specific visual
modelling techniques exemplified here are singled out in
Section 5.

Section 4 briefly reflects on the notations introduced so
far, and identifies a number of areas where work still
needs to be done. This also feeds into the analysis of
Section 5.

It becomes clear in Sections 3 – 5 that CBD is not
possible without considerable automated support from
tools which:

• assist with the locating and assembling of
components

• enable the construction of components of
sufficient quality

Tool support is discussed in Section 5. A final section
draws some conclusions and identifies directions for
further research.

2. CBSD in the Future?

This section presents a hypothetical example which aims
to illustrate the effect that CBSD could have on Software
Engineering practice. The example will be returned to in
Section 5 to examine the potential impact of precise
visual modelling techniques.

Big City Finance have a large legacy trading system
which does not work well with their other applications
and which has proven difficult to maintain. They decide
to rewrite their proprietary trading system. They adopt a
strategy of:

Using components to recursively subdivide the
development

From a high level description of the trading system’s
business model, “subject areas” are identified by the
development team. Each subject area is built as a
coarse grained component, with a clearly specified
interface. Similarly, each subject area is typically
broken down into sub-components which can be
worked on by individual members of the subject area
team.

As development progresses management recognise that
they are able to:

Reduce maintenance costs
When redeveloping the trading system special
emphasis is placed on maximising the extendibility of
the application. In particular, great care is taken to
provide “plug points” where new or modified
functionality can be added simply by “plugging in”

3

new or modified components. The result is a huge
saving in maintenance costs.

The development team notice that a significant portion of
the application does not relate to their proprietary
business process logic, but solves a generic problem
likely to be solved by ready-built software components.
Consequently, they decide to:

Reuse existing components in the development project
Searching in a software catalogue, they find a
specification of a component which appears to match
their needs and which is available from XYZ
Software. They adjust their solution design model to
include the specification of this component and other
parts of the application are designed and built. The
code from the XYZ company is installed, and the
whole application works smoothly.

Satisfied with the component from XYZ Software, Big
City Finance decides to buy-in further generic
components. Consequently, they architect their
application to match the interfaces provided by XYZ
Software with the intention of integrating appropriate
components. However, at an industry conference, ABC
Software announce a new range of components. ABC
claim the code is 50% faster and 30% cheaper to lease
than similar components from XYZ Software. Hence, Big
City Finance recognise that they are able to:

Substitute cheaper components
By writing a thin wrapper round components from
ABC the development team are able to replace XYZ
components with ABC components with no knock-on
effects. The business user notices only that response
time improves, and the bank’s bills are smaller.

In addition Big City Finance need to rewrite their Billing
System. The development team realises that it would be
cost-effective to purchase, from a component catalogue, a
large package, designed as a set of interlocking
components, which covers several key business processes.

This package must work alongside Big City’s existing
Settlement system, as well as with other finance
companies. Hence, the need to :

Interface to legacy and external systems
Working at the specification level, for the bought-in
components and for components they will develop
themselves, they produce a model showing how the
various disparate parts of the application suite can
work together. This requires them to write wrappers
for the Settlement system and the systems of other
finance companies. They refine the specification
trading off the thickness of the wrappers against the
requirements of the final system.

A Big City developer is working with a derivatives trader
to prototype and implement a workgroup application to
meet a new business opportunity with a small time-
window for deployment. This time constraint mandates:

Rapid application assembly
Having understood the trader’s description of the
problem domain, the developer browses a business
model catalogue which contains standard process
models, a few of which seem to closely match the new
tasks. The catalogue entry for the first of these tells
her that some standard user interface components
work well with this particular process. She finds
these in the software component catalogue and selects
those that appear relevant. A smart assembly tool then
gathers both the UI and business model component
descriptions indicated by the catalogue entries, and
executes the application with the user. Some
modifications to the functionality are identified,
which the developer enacts by specialising some of
the base components. Later that day, the application
is delivered to the trader. The following day, the
developer adds her extensions to the base components
as new component specifications to the company
catalogue for others to use.

The trader finds that this new application supports his
daily tasks well, but now needs to perform some
additional processing on some data in response to an
unusual problem. Since this is an urgent one-off
requirement he cannot wait for involvement by the
development group and thus must undertake:

Business user smart assembly
He browses a catalogue of business objects to which
he has access, finds a couple which seem to offer the
required additional data and processing and, using a
simple graphical tool, connects the objects together
and routes the results to his desktop spreadsheet
program. The software components underlying the
business objects execute the required processing on
data stored on the spreadsheet and the results are
passed back in the requested format, ready for
manipulation using the standard spreadsheet
facilities.

3. A Reference Model for CBSD
Throughout the example in section 2, four core activities
are involved (adapted from Short, 1997, p19):

• build (and publish)
• find
• adapt
• (re)use

The way we choose to characterise and describe a

4

component is critical to maximising the simplicity and
effectiveness of these activities. Finding, adapting and
reusing components has priority over building them, as a
component, if it is any good, will be found, adapted and
reused many, many more times than it will be built.

This section aims to give some definition to the terms
component, component adaptation and component
assembly (plugging). It illustrates this with a running
example expressed as a series of precise visual models.

3.1. Simple components

Figure 1 depicts a simple component. It has one or more
plugs, where a plug comprises an interface and some
behavioural specification of that interface. It has a
revealed behaviour section which may include further
specification of the plugs (e.g. behaviour that relates the
plugs) and any aspects of behaviour that need to be
revealed to assist a developer in adapting the component.
It has a section of hidden behaviour, which will typically
be design and implementation details which are
irrelevant to users of the component. Finally it has an
executable part. It is conceivable that components may be
delivered without any hidden behaviour or any executable
part, in which case the component represents a piece of
reusable modelling.

hidden
behaviour

executable

speci f icat ion of
inter face behaviour

revealed behaviour
for speci f icat ion &

adaptat ion

interface

plug

The shape chosen to represent a component is intended to
give a sense of continuity in the behavioural model and a
sense that as more behaviour is added to the model, the
more constrained the component is in what it can do and
how it is implemented.

To make this characterisation slightly more concrete, let
us presume for the moment that views on a component
are just class diagrams. Then the plugs may share some

classes and some operations on those classes, but they
may also have different classes and different operations.
The revealed section must include the class diagrams for
the plugs, suitably merged. The class diagram
representing the whole model would include the revealed
section as a sub-diagram.

Notice that we are making some assumptions about the
nature of components. They are not (necessarily) single
objects, or even single classes of objects. They are
frameworks of classes which can be used to construct
object configurations, where access to these object
configurations is through objects and operations on those
objects revealed in the appropriate plug. This definition
incorporates the idea that a component can be a single
object, as this corresponds to a framework with a single
class that only allows one object of that class to be
created. It also allows components where, e.g. one class
is singled out as providing the object which initialises
and controls access to all other objects. And we are happy
to accept that there are some sub-categories of
frameworks which are more appropriate than others for
CBSD: some components are better than others.

The component depicted is a grey box component. A
black box component is with no revealed behaviour
except for the plugs. A white box component is one with
no hidden behaviour.

Example

Requester

Request

Requirements

Allocation

*

1

1

*

*

Resource

TimeSlot *
*

*

*

preferred

forbidden

*
*

meets

metBy

1

*

1

Resource
Allocation

0..1

1

fulf i l ledBy

fulf i l ls

*

*

fulf i l ls

Figure 2 is a class diagram describing the single plug of a
generic resource allocation component. The diagram
provides a precise language in which to describe the
behaviour of the operations in the interface of the plug.
For example, one of the operations supported by the
interface is to allocate a resource. Its detailed behavioural
specification is given in terms of pre and post conditions,
which are written below both informally (essential for
accessibility) and precisely in OCL (essential for quality
and for automation).

Figure 1: Simple Component

Figure 2: Resource allocation class diagram

5

ResourceAllocation::
allocate(Resource res, Request req, TimeSlot slot)

pre

slot is one of the preferred timeslots (if there are any)
and not one of the forbidden ones

(req.preferred->includes(slot) or req.preferred->isEmpty)
and not req.forbidden->includes(slot)

res meets the requirements associated with the request
req

and res.meets->includes(req.requirements)

post
if no allocation already exists for req, a new one is
created to fulfil req

(req.fulfilledBy@pre->isEmpty implies
new->includes(req.fulfilledBy))1

the allocation of UHV to UHT in timeslot VORW is recorded

and req.fulfilledBy.resource = res and
req.fulfilledBy.timeslot = slot

The class diagram does not mean that this is how the
class is implemented. Remember, this is a logical not a
physical design. For example the diagram does not
dictate that the implementation of ResourceAllocation
must store a collection of requesters and resources. It may
instead choose to store just the requests, and derive these
two collections by navigating through the Request
objects.

Another technique, UML object diagrams, is also
available to document examples of typical behaviour. For
example, Figure 3 strings two object diagrams in a
sequence to illustrate what happens when an allocate
action is performed.

1 new is shorthand for
OclAny.allInstances–OclAny.allInstances@pre

:Resource
:Requi rements

:T imeslot

:Resource
Al locat ion

:Request

meets

:Requesterreq

res

slot

preferred forbidden

fulfilledBy

:Al location

:Resource
:Requi rements

:T imeslot

:Resource
Al locat ion

:Request

meets

:Requesterreq

res

slot

preferred forbidden

fulfilledBy

Each object diagram depicts a (part of the) state of the
component, showing, at some point in time, to which
objects the component can navigate and how those
objects are interconnected. Putting them in sequence
shows how the depicted state changes as operations are
performed.

A sequence of object diagrams is also sometimes referred
to as a filmstrip, a term coined by D’Souza and Wills
(1998) who first promoted the idea. Typically a filmstrip
would be longer than Figure 3, and would be used to
illustrate scenarios - how a bunch of operations in the
interface are intended to be used together. Scenarios, at
the specification level, may be documented using a
variation on UML sequence diagrams (D’Souza and
Wills, 1998).

Filmstrips only illustrate some aspects of behaviour, so,
typically a collection of them is required to illustrate an
operation or scenario. For example, Figure 3 only
illustrates the case when no previous allocation has been
made to the request.

Precise notation is also useful to place further constraints
on the structures of objects permitted in a component.
These are known as constraint rules in UML, though
perhaps more widely known as invariants. Invariants are
always attached to types (interfaces) or classes. For
example, an invariant on ResourceAllocation would be:
ResourceAllocation

Given any allocated request req in requesters.requests

Figure 3: Filmstrip for allocating resource

6

requesters.requests->forAll (req | req.Unallocated implies

the requirements of req are met by the resource allocated

(req.fulfilledBy.resource.meets->
includes(req.requirements)

and the timeslot is one of the preferred ones - if there are
some, but not one of the forbidden ones

and (req.preferred->includes(req.fulfilledBy.timeslot) or
req.NoPreferredSlots) and
not req.forbidden->includes(req.fulfilledBy.timeslot)))

This invariant assumes that states have been defined for
the type Request, either in a state diagram or using
dynamic subclassing on a class diagram. The state
diagram (minus transitions) is given by Figure 4.

Accompanying this would be additional invariants
relating states to each other and to the associations in the
class diagram. For example, it is the case that a request
can only be unallocated when it is pending, which is not
enforced by the state diagram; and if it is in a state of
NoPreferred then preferred must be empty.

Al located

Unal located

Pendin g

Completed

InPro g ress

HasPreferred
Slots

NoPreferred
Slots

Request

Recently a diagrammatic notation, dubbed constraint
diagrams (Kent 1997), has been developed which can be
used as an approachable alternative or complement to the
textually written constraints. Figure 5 is the constraint
diagram which would be used to replace the first part of
the above invariant, relating requirements of requests and
resources allocated to those requests. This notation is
currently being extended to a 3D modelling notation (Gil
and Kent, 1998), which amongst other things, provides a
clearer visualisation of operations over time.

Allocat ion

Request

Requester

Resource
Al locat ion

Requi rements

Resource

Al located

fulfilledBy

meets

Object diagrams can be used to illustrate typical
snapshots of the state of a component that are allowed
and disallowed by invariants. Indeed for invariants, it
seems to be disallowed states which are more useful.

A related set of snapshots and filmstrips may be referred
to as a specific model, that is a specific example of
behaviour. In contrast, the class diagram, invariants,
operation specifications etc. make up a generic model. In
general, the documentation of interfaces should include a
repository of specific models illustrating typical
behaviour of operations and typical component states.
The repository should also include disallowed behaviour
and disallowed states. Support provided by current CASE
tools in this area is very poor.

These kinds of techniques facilitate far more rigorous
integrity checks, with a corresponding increase in the
overall quality of components. For example, specific
models in the repository can be checked against the
generic models. Do the links on object diagrams obey
cardinality constraints on associations? Do they satisfy
invariants, pre and post conditions? Etc. The integrity of
generic models should also be checked. Do associations
mentioned in invariants, pre and post conditions appear
on the corresponding class diagrams? Are states
mentioned defined on a corresponding state diagram? Do
action specifications preserve invariants?

It may also be possible to make use of the diagrammatic
nature of the notations by pattern matching e.g. between
snapshots and constraint diagrams. Indeed one could
even imagine this being done at run-time, much as
components can be asked dynamically what interfaces
they support. Instead, one could ask “Do you support an
interface that conforms to mine - here are the diagrams to
check against? If so create me an object”.

3.2. Multiple implementations

A component may have multiple "implementations": any

Figure 4: State diagram for request

Figure 5: Constraint diagram for invariant

7

behaviour that is hidden (i.e. the black and grey parts)
will not affect the users of the component; it is entirely up
to the component designer which implementation she
delivers.

3.3. Component assembly – plugging

Figure 6 shows the result of assembling components by
plugging one into another. You will notice that the "A"
component has a plug point which is the same shape as
one of the plugs of the B/C component. The B/C
component plugs into the A component by filling that
plug point and bringing with it revealed and hidden
behaviour and an executable that can be used to fill the
hole beneath the plug point in the A component. In
addition the B/C component has additional plugs and
behaviour which also become part of the component
resulting from this plugging process. In the result
depicted here, the developer has chosen to reveal this
additional behaviour. (S)he could equally choose to
ignore it, in which case it would be hidden and play no
further role in the resulting component, except as far as it
contributes to the implementation of the B part of the
B/C component.

C 1
A1

C 3

C 2

B 2A 2

A 3

B 3

B1

A 1

A 2

A 3

B 1

B 2

B3

C 1

C 2

C 3

plugs
results in

Example
Figure 7 shows a new component (InstructorScheduling)
being constructed by plugging an InstructorQualification
component into an InstructorAllocation component. The
notation used is adapted from Catalysis (D'Souza &
Wills, 1998). A dotted box indicates the boundary of the
model of a component, which may include elements of all
the various notations introduced so far. We have only
shown a relevant subset of the elements. The
"inheritance" arrow indicates that the child is the union
of the two parents. By taking the union, common parts
are merged. In this case the common part between
InstructorQualification and InstructorAllocation is circled.

This corresponds to the plug/plug-point.
InstructorAl locat ion

Course

InstructorAdminist rat ion

Instructor qual i f ied

InstructorQual i f icat ion

Course
qualif iedFor =
passed.exam.
course

Instructor
qual i f ied

qual i f iedFor

E x a m

TimeSlo t

*
*

*

* 1

*

passed *

1

*

*
1

ExamSi t t ing

1

1

*
qual i f iedFor*

Instructor
Qual i f icat ion

3.4. Component adaptation

rebadge

extend

Components may be adapted in at least two ways:
through specialisation and through wrapping.

Figure 8 shows how a component can be adapted through
specialisation. In this case, the adaptation is very simple:
the component is extended with a new plug and with new
behaviour, and some parts of it are rebadged. By
rebadging we mean that e.g. some classes and operations

Figure 6: Component plugging

Figure 7: Plugging for instructor qualification

Figure 8: Adaptation through specialisation

8

are given different names in the new component. There
are variations on this. For example, specialisation may
not involve adding any new plugs, it may just involve
adding more to the revealed behaviour section. It also
may be a more sophisticated affair: for example, the
resulting component in Figure 8 is actually an adaptation
of the A component, an adaptation that has been
constructed by plugging in another component.

Although specialisation can be a powerful technique
where one has some control over the both the definition
of a component's plugs, it is highly unlikely that a third
party catalogue will contain a precise match for the
intended plug point. Thus we need a way of moulding the
“best fit” component from a catalogue into a “perfect fit”
component.

In the words of Shaw and Garlan: “Existing module
interconnection systems typically require considerable
prior agreement between the developers of different
modules. To build truly composable systems, we must
allow flexible, high-level connections between existing
systems in ways not foreseen by their original
developers.” (Shaw and Garlan 1996).

One way to achieve the desired result is through
wrapping (Bosch, 1992) Adapting a component by
wrapping, essentially involves giving that component
new plugs. Wrapping is actually a form of component
plugging. Looking again at Figure 6, the B/C component
is adapted by wrapping it with the A component.

The key to wrapping is to recognise that precision in
specification is not the same as rigidity. Indeed, one of
the major advantages of precise specification is that it
enables adaptation of both the API and semantics of a
component without fear of unknown (i.e. unspecified)
side-effects. The idea is that we take precise
specifications and manipulate them to exactly match our
own requirements.

Example
Figure 9 uses the same Catalysis notation to show how
the resource allocation component can be specialised.
The dotted arrows between the models stipulate how
elements of the parent are mapped into elements of the
child. The mapping determines that resources are
instructors, the requirements are courses, and an
instructor meeting a requirement corresponds to the
instructor being qualified for a course. Not all the
mappings have been shown.

The child will obtain all elements of the parent,
appropriately mapped, together with all specified
behaviours, constraints etc. The child may, of course, add
additional behaviour.

ResourceAl locat ion

Requi rements

InstructorAl location

Resource
metBy

Resource
Al locat ion

meets

CourseInstructor

qual i f ied

Instructor
Al locat ion

qual i f iedFor

Further elements (e.g. invariants, new classes, new
operations, strengthened operation contracts, etc.) may be
added in the child component model provided
behavioural conformance of child to parent is
maintained.

3.5. Components as "model networks"

We mentioned earlier that it would be desirable for the
behavioural model of a component to be continuous. A
discontinuous model is one where some form of
translation is required to go from one part of the model to
another. For example, a model in which the component
plugs are specified using an object-oriented techniques,
say, yet the rest of the model is described using a
relational database would be regarded as discontinuous:
there is a significant translation step from one part of the
model into the other. Removing discontinuities makes it
much easier to describe behaviour and permits a more
flexible and finer-grained regime for defining
overlapping views on the model, as required to define
plugs and revealed behaviour.

To handle discontinuities we propose instead to allow
components to be characterised as a network of related
models (Figure 10). Models in the network are related by
projection mappings. A projection mapping is essentially
a mapping between the interfaces (the edges of the plugs)
of the two models: the interface of the more abstract
model is a projection of the interface of the more concrete
one. A model is more concrete if the granularity of the
interface is finer than its more abstract counterpart. For
example, a model for a rental component with an

Figure 9: Specialising Resource Allocation

9

interface that had a single operation abstracting the
whole cycle of renting some item, would be more abstract
that the a model which broke down that cycle into
reserve, checkOut, checkIn, etc. operations. The
projection mapping would have to show how various
combinations of the more concrete operations mapped to
the single rent operation.

Models may also be constructed from different
technologies (e.g. UML versus a relational database
model), in which case the projection mapping maps
between those technologies.

project ion

project ion

project ion

project ion

UML->Java
Model

Relat ional DB
Model

high level
UML->Java

Model

abstract

concrete

4. Improving Modelling Techniques
Before relating the techniques and concepts described
back to the example of Section 2, we identify some
advances in PVM that still need to be made to support
CBSD.

4.1. Describing Frameworks

We have already said that a framework, as understood in
the OO literature, may be thought of as a component in
our reference model. The latter has already distinguished
between plugs, which detail how they may be used from
without, and the revealed behaviour section detailing how
the component should be specialised.

In our examples, we carefully avoided distinguishing
plugs from revealed behaviour. This is because there is
currently little support for managing this distinction. For
example, the UML concept of packages is inadequate
here, as it does not permit any overlapping. There is also
no clear way of distinguishing between operations

invoked from components outside the framework, and
operations there solely for use within the framework. In
our own modelling we have attempted to make this
distinction using UML's public and protected
declarations, but this is not ideal.

There are also few facilities for assisting with description
of the revealed behaviour section. In particular, UML
provides no way of highlighting "plug-points". For
example, rather than reveal all the code for a white box
component, all that needs to be revealed is a specification
of a supporting method which encapsulates the single
piece of special code required. Then the component
would only list those operations, with their specifications,
for which code needs to be written, possibly with a high
level diagrammatic design indicating how those
operations fit into the “big picture”.

4.2. Outerfaces

Another form of plug point is an outerface: something
that identifies what components require from other
components. For example, in Figure 7, the class diagram
fragment shown for InstructorAllocation is an outerface or
plugpoint. When implementing InstructorAllocation it
will be assumed that the functionality represented by this
outerface will be implemented by plugging in another
component. UML provides no facilities for highlighting
outerfaces.

D’Souza and Wills (1998) introduce the notion of ports
as a way of providing this information. They introduce
two genders of port: input ports (which include interfaces
as described here) and output ports, which essentially
replace associations. Connections are made by linking
compatible ports of opposite gender. It may be that these
ideas will (a) provide much finer control over connecting
component objects at runtime, and (b) improve the
description of frameworks, in the sense that it will be
much clearer how components are intended to work
together.

4.3. Quality

The documentation techniques clearly improve the
quality of descriptions at the specification level, and, for
white box components, at the design and implementation
levels. One aspect that has not been addressed is the
quality of components, in as far as the delivered design/
implementation or executable meets the “contract” with
the user, as laid down by the precise specifications.

The approaches that could be taken to resolve this
include, but are not limited to:

• Delivery of a test harness with a component, so that
the user can run tests herself.

Figure 10: Components as model networks

10

• A collection of pre-fabricated tests to run through the
test harness, with supporting documentation
explaining why these particular tests have been
chosen.

• A certificate indicating the level to which the
correctness of the design and implementation against
the specification has been established.

There are refinement techniques available that can
increase confidence of correctness up to “proven
mathematically” (see e.g. Woodcock, 1991; D’Souza and
Wills, 1998). It is likely that these techniques can be used
to prove the correctness of certain refinement patterns,
that, if followed, will guarantee correctness of the code
against the specification.

In some safety-critical industries certification processes
have been established, and perhaps these could be used as
a model. However, a note of warning: these are usually of
the form “formal methods must have been used”, not
“these specific techniques must have been used following
these patterns”.

It might be possible to develop a system of dynamic
certification, similar to the certification system now being
used for transferring information over the Web and
implemented in popular Web software such as Netscape
Communicator.

5. Enabling CBD
The techniques described have been motivated by a need
for precise, accessible, and automatable models of
components, which was in turn motivated by raising
questions about how the activities of building, finding,
adapting and (re)using components could be supported.
These questions were loosely based on an evolving
scenario set out via an example in Section 2. In this
subsection we conduct a more detailed analysis of how
the specific techniques described could help enable CBD
as envisaged in that example:

Using components to recursively subdivide the
development

Precise descriptions of the behaviour supported by
components provided by each development team, and by
each member of the development team, will help to
clearly identify the boundaries of responsibilities and
where there might be overlap. With appropriate CASE
tool support, component assembly may be prototyped at
the specification level using framework assembly
techniques, and, because of the detailed and precise
behavioural specifications, conflicts and interactions
may be identified and dealt with early in the
development process rather than be discovered only
when coding begins.

Reduce maintenance costs
By using framework components, the application has
built in flexibility for future adaptation through
specialisation, in particular by providing points at which
specialised sub-components may be attached (plug-
points). Dynamic instantiation of plug points would be
possible, where a framework is constructed so that some
of these plug points could accept black box components.

Reuse existing components in the development project
A precise description of the behaviour of components in
catalogues helps the development team considerably cut
down the choice of potential components which match
the precise and detailed specification of what they
require. If all they had to go on was a list of operations,
then the search would be entirely dependent on key word
searches on names of operations and on reading the
informal description that may accompany the
component.

Precise, detailed descriptions could also mean that some
sophisticated software agents could automate much of
the searching and matching process, e.g. by matching on
patterns in the diagrams or using automated reasoning
techniques.

The certificate that comes with the component, backed up
by trusted refinement and integrity checking, means that
when the component is installed, it really does work as
claimed.

Substitute cheaper components
Enabled by the same catalogue browsing and selection
techniques detailed above.

Interface to legacy and external systems
Precise and detailed documentation allows much of the
investigative work to be done at the specification level,
avoiding the expense of building a complete system
based on intuition and lucky guesses, only to find that it
doesn’t work. The sophisticated CASE tool support
enabling integrity checks and simulation/animation of
the specification gives the team a high level of
confidence in the results of their investigation and allows
experimentation with alternative solutions. All this can
be done before spending money on buying in an
expensive package.

Rapid application assembly
The effort put into specifying the components in terms
familiar to the business domain expert, and the
repository of specific models showing typical behaviour,
allows the developer and business user to quickly
ascertain whether the components match their
requirements. Snapshots and filmstrips in this repository

11

come packaged with a visualisation scheme which plugs
into the assembly tool allowing the examples to be
viewed through a mock up user interface consisting of
forms, fields etc. This scheme is also used as the basis for
a test harness which allows the components to be
experimented with.

The components actually come as part of a whole
framework with clearly identified plug points, so the
developer knows immediately which parts need to be
adapted and which do not. She is also given considerable
guidance into how to perform the adaptations. The
framework is delivered with a number of different
implementations, each of which is designed to work with
different UI frameworks with implementations on
different platforms. The developer selects the
implementation and UI framework that suits her
particular circumstance. The assembly tool depends
heavily on the precise specifications of the components,
and its built-in support for framework composition means
that the developer’s adaptations of the business and UI
frameworks may be assembled quite rapidly to produce
the desired application.

Unfortunately the certification process for components
means that the developer may only submit an addendum
to the component catalogue to indicate that her
adaptations exist, but have not been certified or assessed
for their reuse potential. This is noted by the catalogue
maintainers who identify some potential in her extensions
and contact her with a view to initiating the certification
process.

Business user smart assembly
The components available in the catalogue are all black
box and not intended to be specialised. Their
specifications have been carefully crafted to be phrased
in business terms and come with a substantial specific
model repository to illustrate examples of use. This
means the business user can be quite confident in his
choice of components.

The desktop spreadsheet program has been designed to
allow components from this particular catalogue to be
plugged in dynamically as add-ons. They come with an
electronic certificate guaranteeing this, so the assembly
tool is able to validate the proposed extension by
checking the certificates and matching the interfaces of
these components with the ones that the spreadsheet
program indicates it can accept. The certification
scheme is supported by a rigorous process based on
precise and detailed descriptions of the interfaces and
component implementations.

Interestingly, the last point corresponds most closely to
what is feasible today, mainly because no specialisation is

required. This means use of black box components only,
which are supported quite well by current
implementation technologies, and require little expertise
(for man or tools) to assemble, provided the component is
certified to work with the proposed application.
Examples are plug-ins in Web browsers such as
Netscape’s Navigator, connection of applications via
OLE in Windows (e.g. the use of an external drawing
editor or spreadsheet on objects in a document as it is
being processed by a word processor), etc.

6. CASE Tools: Are they up to the job?
In Section 2, four basic processes for CBSD were
identified: build, find, adapt, (re)use. For CBSD to be
successful considerable and sophisticated tool support is
required. Many CASE tool vendors (particularly OO
CASE tool vendors such as Rational and Select) are
repackaging their modelling and design tools as CBD
tools.

However, the extensions to support CBD seem to be
focused on providing management tools to assist with
archiving and retrieval of components, i.e. the find
process.

In the previous section we argued that the quality,
precision and detail of component descriptions needs to
be significantly increased to support all CBD activities.
From the analysis conducted in Section 4.6. it is quite
clear that some scenarios will be pure fiction without
sophisticated CASE tool support for these descriptions.
Thus the kinds of extensions currently proposed by
commercial CASE tool vendors will only provide limited
support for CBD.

The real technical challenge to be faced is the provision
of CASE tool support required to enable the step
increase in the quality of components and component
specifications envisaged. Here are some examples of
what is needed:

• In current tools, cross checking between models is
poor. For example, checking a sequence diagram
against a state diagram. Yet in some circumstances
they are far too constraining, e.g. allowing only one
sequence diagram per operation.

• Facilities for documenting specific models, snapshots,
filmstrips etc. is extremely limited. One tool we’ve
used doesn’t even allow UML instance diagrams to be
drawn. We would like a repository of specific models
partitioned appropriately (e.g. filmstrips for a
particular sequence diagram). We would also like to
store counter examples, to show what behaviour is not
allowed. There should be facilities for checking the
integrity of instance diagrams and filmstrips against

12

the model, for example that links between objects
obey cardinality annotations on the class diagrams.

• Connection to the code is very loose. You can
generate outline code, but the process is really only
one way. For example, if I change and/or add to the
code, the changes are lost when the model is altered
and the code is regenerated.

 More generally, it would be better to move to a
situation where the CASE tool supported multiple
levels of description as suggested by the "component
as network" model in Section 3. Such a tool would
need to support projection mappings, including an
ability to maintain integrity between the different
levels. Some CASE tools (though not UML
compliant) can do this to some extent: the
Bridegpoint tool from Project Technologies
implements the Schlaer-Mellor method and generates
all code from the model like a high level compiler;
EiffelCASE from ISE implements Eiffel/BON,
though this is largely achieved by making the
projection mappings as close to identity as possible;
COOL:Gen from Sterling (formerly Composer from
TI), which implements IEF, supports two different
levels of modelling, specification and design, as well
as 100% code generation. Rational Rose claims to
support round trip engineering, though this claim
does not seem to stand up to close scrutiny (O’Brien,
1997) and certainly not for cases where the visual
model is a high level abstraction of the code.

 Having a more systematic, rigorous and, in some
cases, proven connection between different levels of
modelling is essential for underpinning a certification
system as discussed earlier.

• Animation or execution of all models. The execution
could be visualised in terms of the snapshots and
filmstrips, or visualisations of those. This is an
extension of the idea of a specific model repository:
animation effectively allows specific models to be
generated dynamically.

• Better support for grey box components, including the
ability to allow multiple, possibly overlapping views
of the same model.

• Support for matching components and checking that
one component conforms to the behaviour of another.
This will at least require advanced pattern matching
techniques on the various diagrammatic notations
employed, and, to guarantee complete behavioural
conformance, probably sophisticated model checking
and automated reasoning techniques (e.g., Roscoe et
al., 1996; Martin et al. 1994; Jackson, 1994).

• To assist with management and delivery of

components, the documentation must be supplied
with any executables as a self-describing, self-
unpacking package. Indeed it may be necessary to
supply two forms of a component: one for use when
assembling components into a system, which would
have all the documentation as described; a second
delivering the executables and plugs required (e.g.
that which is currently supplied in a COM
component) for the component to be used as part of a
running application.

7. Conclusions
The paper has made two contributions. It has described a
reference model for CBSD, and illustrated this with
examples of precise, visual models. It has shown how
precise visual modelling techniques can be usefully
employed in the description of components.

Future work is likely to focus on adding more substance
to these ideas. This is likely to involve:

• Further work on defining an integrated notation set
based on a subset of UML tailored to the specific
needs of CBSD.

• Work on implementing a prototype CASE tool
taking account some of the observations made in
Section 6.

• Refinement of the CBSD reference model, including
the construction of a mathematical model.

• The application of the techniques to modelling real
systems, in order to provide some evaluation of what
we are proposing and to inform the ongoing
development of ideas. Currently we are collaborating
with two companies, both concerned with the
migration of legacy enterprise systems to component-
based ones.

8. Acknowledgements
The authors acknowledge support of the UK EPSRC
grant nos. GR/K67304, GR/M02606.

9. References
Bosch J. (1997) Adapting object-oriented components. In
2nd International Workshop on Component-Oriented
Programming, pp. 13-21.

Boundy D. (1991) A taxonomy of programmers. Software
Engineering Notes, 16(4):23-30, October.

Cook S. and Daniels J. (1994) Designing Object Systems:
Object-Oriented Modelling with Syntropy, Prentice Hall.

D’Souza D. and Wills A. (1998) Objects, Components
and Frameworks with UML: The Catalysis Approach,
Addison-Wesley, to appear 1998, draft and other related

13

material available at http://www.trireme.com/catalysis.

Fowler M. with Scott K. (1997) UML Distilled, Addison-
Wesley.

Gil Y. and Kent S. (1998) Three Dimensional Software
Modelling, to appear in Procs. ICSE98.

Jackson D. (1994) Abstract Model Checking of Infinite
Specifications, Proceedings of Formal Methods Europe
(FME’94), LNCS 873.

Jones C. (1991) Systematic Software Development with
VDM, Prentice Hall.

Kent S. (1997) Constraint Diagrams: Visualising
Invariants in Object-Oriented Models, in Procs.
OOPSLA97, ACM Press.

Lauder A. and Kent S. (1998) Precise Visual
Specification of Design Patterns, to appear in Procs.
ECOOP98, Springer Verlag.

Martin A., Gardiner P.H.B. and Woodcock J.C.P. (1996)
Tactic semantics and reasoning, FACS, 8(4), pp479–489.

O’Brien L. (1997) Review of Rational Rose 4.0 for C++,
Software Development Magazine, June.

Pree W. (1995) Design Patterns for Object-Oriented
Software Development, Addison-Wesley.

Reenskaug T. with Wold P. and Lehne O. (1996)
Working with Objects, Prentice Hall.

Roscoe A.W., Woodcock J.C.P. and Wulf L. (1996) Non-
interference through determinism, Journal of Computer
Security 4 (1996), pp. 27–53, IOS Press.

Shaw M. and Garlan D. (1996) Software Architecture:
Perspectives On an Emerging Discipline, Prentice-Hall.

Short K. (1997) Component Based Development and
Object Modeling, available from
http://www.cool.sterling.com/cbd.

UML Consortium (1997) The Unified Modeling
Language Version 1.1, available from
http://www.rational.com.

Woodcock J.C.P. (1991) The refinement calculus, Procs.
VDM Symposium 91, Delft, The Netherlands, Springer-
Verlag LNCS 552.

Woodcock J.C.P. & Davies J., Using Z—specification,
refinement & proof, Prentice Hall, 1996.

