A Parallel Algebrafor Object Databases

Sandra de F. Mendes Sampaio {

Norman W. Paton }

Paul Watson

Jim Smith 1

tComputer Science Dept., Manchester
University of Manchester, M13 9PL, UK
E-mail: {sampaios, norm}@cs.man.ac.uk

Abstract

This paper describes an algebra for use with paral-
lel object databases, and in particular ODMG compliant
databases with OQL. Although there have been many pro-
posals for parallel relational database systems, there has
been much less work on parallel object databases, and on
parallel query processing for object databases. The parallel
algebra presented in this paper isan extension of an existing
physical algebra for OQL, and has an important role dur-
ing query optimization, and for describing execution plans.
The paper presents not only the algebra, but also itsrolein
the architecture of a parallel database.

1. Introduction

Object databases are becoming fairly well established
for use in a range of applications [5]. Furthermore, the
ODMG standard [3] is providing a greater level of consis-
tency across products than was evident in the early days
of object databases. However, it is still the case that ob-
ject databases are normally associated with advanced appli-
cations with stringent performance requirements, and that
performance issues are likely to slow the uptake of object
databases in certain domains.

One way of achieving higher performance in databases
is by exploiting parallel execution of queries. Most work
on parallelism in databases is concentrated on relational
database systems, e.g. on parallel database system devel-
opment, data partitioning techniques, and parallel join algo-
rithms. Little effort has been focused on object databases,
and the work done so far is limited. For example, the Monet
database system [2] does not exploit inter-operator pipeline
parallelism.

One of the aims of the Polar Project [13] is to build a par-
allel optimizer and query evaluator for an object-oriented
database system, to be run over an ODMG [3] database
server on a low-cost parallel platform based on PCs con-

1Computing Science Dept., Newcastle

University of Newcastle upon Tyne, NE1 7RU, UK
E-mail: {Paul.Watson, Jim.9mith} @newcastle.ac.uk

nected through an ATM network, as well as on a dedicated
parallel database machine [14]. In this paper, we describe
the parallel algebra used in the Polar parallel optimizer.
There are not many parallel algebras in the literature, and
most of them are fairly complex [4], as they introduce spe-
cial constructs and distinguished types of operators with
different functionalities, for expressing parallelism inside
queries. Our parallel algebra is an extension of the physical
algebra proposed by Fegaras in [6] to include a parallelism
related operator and a pointer-based join operator. We chose
to extend this algebra because it is based on the concept of
Monoids [11], which allow uniform treatment for collec-
tions and scalars, and also because the use of this algebra
allows us to build the parallel optimizer over the conven-
tional OQL [3] optimizer implemented by Fegaras [6, 7].
In other words, we are using Fegaras’ work on non-parallel
ODMG query optimization as a starting point, and extend-
ing it with parallel optimization and evaluation capabilities.

The paper is organised as follows. Section 2 describes
the query processing architecture of the Polar parallel opti-
mizer. The parallel algebra is described in Section 3, and
Section 4 concludes.

2. Architecture

Our design approach for building the Polar parallel op-
timizer is to exploit modularity. The parallel optimizer is
an extension of a non-parallel OQL optimizer, which gen-
erates a number of execution plans for a query and selects
the least costly one for execution. We use the non-parallel
optimizer implemented by Fegaras [6] as a starting point,
making a few modifications: the addition of a pointer-based
join that takes advantage of the explicit relationships be-
tween classes; and the keeping of several of the least costly
plans generated during conventional optimization, so that a
range of plans can be considered for parallel optimization.

Two main activities are involved in parallel optimiza-
tion: partitioning the plan into subqueries for parallel ex-
ecution; and assigning the previously identified subqueries

to specific processors. The current version of the par-
allel optimizer partitions the plan where movement of
data must occur. For example, consider a join opera-
tion applied over Enpl oyees and Depart nent s, and
suppose that the join predicate is enpl oyee.city =
department. ci ty. When the join operation is paral-
lelized, the input data to the join operator has to be parti-
tioned over the joining attribute, to ensure that the tuples
that contain objects with the same value for the joining at-
tribute are allocated to the same node of the parallel ma-
chine. In the example, the input tuples containing the ob-
jects of the Enpl oyees and Depar t nent s extents may
be “hashed” on the attribute ci t y. In cases when the in-
put data is already partitioned on the required attributes, no
movement of data is necessary.

Figure 1 illustrates the components of the system and the
main aspects involved in each stage of the optimization.

is mapped into one or more physical algebra operators. The
physical algebra operators are specific algorithms for evalu-
ating the query, and therefore have cost functions associated
with them. Such an algebra is system-specific, meaning that
different systems may implement the same data model and
the same logical algebra, but may use different physical al-
gebras [9]. Table 1 shows the logical and the physical op-
erators used by the conventional optimizer. We describe the
physical algebra operators in more detail in section 3. Each
logical operator can be implemented by at least one physical
operator, and some of the logical operators have more than
one possible mapping into physical operators. The physi-
cal optimizer may perform one or more mappings for each
logical operator, generating a number of physical plans.

Table 1. Logical and physical algebras.

Parallel Optimisation

l OQl Query

Campile Time

Parser
(Main aspects:
The input query is parsed and checked
for type consistency.)

l Calculus Expression

Logical Optimiser
euristic-based
(Main aspects:
Calculus normalization,
calculus-algebra transformation,
join ordering and placement of
selections as early as possible.)

lLogicol Algebra Expressions
I

Physical Optimiser
Heuristic + Cost based
(Main aspects:
M apping of logical plansinto physical plans.)

Logical Physical
operators operators

Get Table_scan
Index_scan

Join Nested_loop
Merge_join

Materialize Materialize

Nest Nest
Groupby

Unnest Unnest
Sort

Reduce Reduce

Union Union

Map Map

The physical algebra outlined in table 1 is similar to the

I
l Physical Algebra Expressions |
I

Parallel Optimiser
Heuristic + Cost based
. (Main aspects:
Identification of moviment of data
etween operators.
Plan fragmentation and
generation of sub-plans

Run Time

Evaluator

Figure 1. Parallel optimizer components.

As shown in figure 1, the internal representations of an
OQL query are mainly algebraic. The calculus expression,
derived from the input OQL query by the Parser, is trans-
lated into a logical algebra expression. At this stage in opti-
mization, the information available to the optimizer relates
to the logical operators that compose the query, and a range
of orders in which the operators could be executed are iden-
tified. During physical optimization, each logical operator

one described in [6]. However, the Materialize operator
[1] has been added to this algebra, providing the execution
engine with an operator capable of “bringing into scope”
objects from another extent and performing a join between
those objects and the input objects, by following the rela-
tionships between the input objects and the objects of the
“hidden” extent. Note that the Sort operator has no corre-
spondent in the logical algebra. Thus, it is purely a physical
operator.

An algebraic query plan is represented as a tree, in which
the internal nodes represent operators, and the leaf nodes
represent database extents. Figure 2 illustrates logical and
physical plans derived from the following OQL query ex-
pression.

sel ect distinct struct(E e.nane,

M e. nanager . nane)
frome in Enployees, d in Departnents
where e.city = d.city;

The query retrieves the names of all employees and their
managers, for those employees who have the same city as

a department. As illustrated in figure 2, the logical oper-
ators Reduce, Materialize, Join and Get can be mapped
into the physical operators Reduce, Materialize, Merge
join with two Sort operators, and Table scan. Consider-
ing the example, the Table scan operators retrieve the ob-
jects from the Enpl oyees and Depart ment s extents,
and output the resulting tuples (tuples carry the informa-
tion between operations in the algebra) to the Sort oper-
ators. The Sort operators sort the input tuples by their
name attributes and output their result to the Merge join
operator. The Merge join operator concatenates the tuples
from its two input streams if they have equal values for their
ci ty attribute. Therefore, the Merge join operator builds
a new tuple type, which results from the combination of the
Enpl oyee tuples and the Depar t nent tuples. Its result-
ing tuples are then sent to the Materialize operator. The
Materialize operator receives its input tuples, follows the
nmanager relationship to retrieve the Enpl oyee instance
who is the manager, and concatenates this Enpl oyee ob-
ject with the input tuple. The resulting tuples are output to
the Reduce operator, which structures the query result by
building a structure composed of a set of names of employ-
ees and the names of their managers.

Rajuce Rajuce
T
Materiaize MateTriaIize
T
Join Merge join
/N VAN
Get Get Sort Sort
Employees Departments T

Table_scan Table_scan
Employees Departments

(a) Logical plan (b) Physical plan

Figure 2. Logical and physical query plans.

3. Paralld algebra

There are two general approaches for parallelizing a
database query execution engine, which are called in [9]
the bracket model and the operator model. In the bracket
model, a generic process template is used by the physical
operators for receiving and sending data. In other words,
network 1/0 is implemented as procedures to be called by
the operators. In the operator model, parallelism related op-
erators are inserted into a sequential plan, transforming it
into a parallel plan. The parallelism related operators have
similar interfaces to the other physical operators, but are

different in functionality, as they provide mechanisms for
parallel query processing. The operator model provides a
simple way of parallelizing an existing sequential operator
plan by inserting parallelism related operators in the plan.
Moreover, as mechanisms for parallelism are encapsulated
in the parallelism related operators, the development and
maintenance of non parallelism related operators is simpli-
fied.

Since we chose to use the operator model approach, we
have inserted a “parallelism” operator into the physical (se-
quential) algebra described in section 2. The parallelizing
operator is the Exchange operator.

The Exchange operator, used in the Volcano system
[8], provides control functionalities to the execution engine,
such as data redistribution and flow control, which are not
provided by the physical operators described previously. It
is not, however, a data manipulation operator, being respon-
sible solely for the mechanics of parallel execution.

The parallel algebra is, therefore, composed of the data
manipulation operators of the sequential physical algebra,
plus the parallelism related operator. The algebra is de-
scribed below:

1. Table_scan(extent, range_variable, predicate)

Creates a stream of tuples from the given extent that satisfy the
predicate, in which the individual tuples are referred to by the
range_variable.

2. Index_scan(extent, range_variable, predicate, index, sort_order)

As with Table_scan, this creates a stream of tuples from the given
extent, but using the given index to deliver the tuples ordered by
sort_order.

3. Nested_loop(left_plan, right_plan, predicate, keep)

Creates a stream of tuples from the join of the tuples from the right
and the left input plans left_plan and right_plan that satisfy predicate.
The last parameter, keep, specifies how the join operation should
behave: if keep = Ieft the join operation behaves as a left_outer_join
operation, otherwise, if keep = right it behaves as a right_outer_join,
and if keep = none it behaves as a regular join.

4. Merge_join(left_plan, right_plan, predicate, keep, left_sort_order,
right_sort_order)

As with Nested_loop, but with the requirement that the left and right
plans are ordered by left_sort_order and right_sort_order, respec-
tively.

5. Materialize(plan, path, predicatel, predicate2)

Concatenates each tuple of the input plan to a tuple containing an
object from another extent to which objects in the input are related
by the given path. predicatel filters the tuples from the input plan,
and predicate? filters the tuples generated from the concatenation
process.

6. Reduce(monoid, plan, variable, head, predicate)

Structures the input plan according to the structure specified by the
monoid. Returns the data that results from applying the expression
head to every tuple in plan that satisfies the predicate.

7. Nest(monoid, plan, variable, head, groupby, nestvars, predicate)

Groups the tuples of the input plan by a set of attributes groupby,
applying head and nesting the attributes nestvars for each resulting
group, and keeping only the groups that satisfy the predicate.

8. Groupby(monoid, plan, range_variable, head, groupby, nestvars,
predicate)

Similar to Nest, but requires that the input plan is ordered by the
variables in groupby.
9. Unnest(plan, variable, path, predicate, keep)

Concatenates each tuple of the input plan (outer collection, bound
to variable) to all possible values of path (inner collection), keeping
only tuples that satisfy predicate. If keep = true, where there are no
values for path or no value satisfies the predicate, the tuple is padded
with nulls.

10. Sort(plan, sort_order)
Sorts the input plan by sort_order.
11. Union(monoid, left_plan, right_plan)

Merges the (union compatible) streams of the input plans (left_plan
and right_plan). The monoid parameter specifies how the result
should be structured.

12. Map(plan, variable, function)

Extends the input stream of plan with the binding of variable to the
result of the application of function to the input tuples.

13. Exchange(plan, variable, destination)
Receives the input tuples of plan from different nodes of a parallel
machine (each tuple bound to variable), and computes the destina-
tion node of each tuple, using the destination parameter, which is a
function applied over the partitioning attribute(s).

The presence of parallelizing operators in the execution
engine of a database and the use of an underlying parallel
architecture allows parallelism to be exploited in the execu-
tion of a query plan. To obtain a parallel query plan from
a sequential query plan (the output of a conventional op-
timizer), exploiting intra-operator and inter-operator paral-
lelism, it is necessary to partition the plan and assign a set
of processors for each partition. Since the Exchange oper-
ator is associated with data communication among different
nodes of a parallel machine, the insertion of this operator in
a conventional query plan divides the plan into different sets
of operators. Figure 3 illustrates two alternative ways of in-
serting the parallelism related operator in the plan shown in
figure 2(b). There are many possible ways of partitioning a
query plan and, therefore, many possible placements for the
Exchange operators. [12] distinguishes attribute sensitive
operators and attribute insensitive operators. An attribute
sensitive operator is an operator partitionable only for par-
titionings that use a distinguished attribute. On the other
hand, an attribute insensitive operator is partitionable for all
partitionings (they may be partitioned by any attribute). An
Exchange operator must be placed before an attribute sen-
sitive operator if any of its child operators use different par-
titioning attributes, so that the data is partitioned by the re-
quired attributes. Grouping operators and valued-based join
operators such as Nested loop are examples of attribute
sensitive operators, as they require partitioning by the join-
ing and grouping attributes, respectively. Operations such
as Union and Unnest are attribute insensitive, as they usu-
ally don’t require a distinguished partitioning. Table 2 clas-
sifies the parallel algebra operators as attribute sensitive or
attribute insensitive operators.

Table 2. Operators classification.

| | Attr. Sensitive | Attr. Insensitive
Table_scan
Index_scan
Reduce IV
Nested_loop v
Merge_join v
Materialize v
Sort Vi
Unnest N
Nest v
Groupby v
Union N
Map v
Exchange N
e]
j”’E’xaﬁTan’g’e 77777777 Exchange |
3 Materialize | 3 Materialize 3
3 Merge_join 3 3 Mergijoin §
(”’éx’c’h%ng,e’"’ (”E’x’chi;g;e’"" L,T;r; ,,,,,,,,, sqrft,l
: Sort 3 ot 3 ("’E’x’caf’ng;""'; T"E;éhf’n[,é ””” !
Table_scan 3 | Table_scan 3 3 Table_scan ‘ 3 Table_scan 3
Employees : , Deparfmenfq Employees 1 1Departments !
(a (b)

Figure 3. Parallel query plan.

The reason why Exchange operators are placed before
the Sort operators (which are attribute insensitive) and not
before the Merge join (attribute sensitive operator) in the
plan in figure 3(b) is to avoid the possibility of deadlock, as
the plan in figure 3(a) is not guaranteed to be deadlock-free
in all situations (see [9] for an explanation). For cases in
which a parallel sort operation (either a single sort operator
executed in parallel, or more than one sort operator feeding
the same consumer operator) is followed by an operator that
depends on ordering (as the Merge join operator in figure
3) and that is executed in parallel, the partitioning of data
step should be performed before the sorting of data to avoid
any possibility of deadlock.

The operators Table scan and Index scan are usually
parallelized based on the partitioning of the data being read.
Thus, even if an attribute sensitive predicate is specified in
any of these scan operations, no Exchange operator is re-
quired to do data repartitioning. The operator Reduce is
considered as attribute insensitive, as its role is simply to
structure the results of a query. However, an Exchange
operator may be necessary to channel data from different

nodes to the node that hosts the Reduce operator, so that
aggregations are performed and duplicates are removed.

Depending on the number of processors in a parallel ma-
chine, there may be many possible ways of assigning a set
of processors to execute each partition of a plan. A compile-
time parallel optimizer does not consider runtime informa-
tion such as current load on processors when assigning pro-
cessors to subqueries. Thus, such optimizers have to rely on
other criteria to make their decisions. Some of the decisions
a compile-time optimizer could make are: (a) Allocate scan
operations based on data location and data distribution in-
formation, so that only the processors with relevant data are
assigned to execute the scan operations. (b) Try to partition
the other (non-scan) operators over the processors, in such
a way that the processors receive approximately the same
load. In this case, the load resulting from other running
tasks is not taken into account. (c) One of the processors
should be assigned for the execution of the Reduce opera-
tor, when performing aggregations. (d) Try to use the same
set of processors when data repartitioning is required, in-
creasing the chance of a number of tuples (output from the
producer operators) not having to be moved across nodes
(to the consumer operators) and, therefore, saving commu-
nication costs.

4. Conclusions

In this paper, we have described the architecture of the
parallel optimizer of the Polar project, which extends an
existing OQL query optimizer [6] with a parallel optimizer
module. The parallelization process has two main aspects:
deciding how to partition a query plan into a number of
subqueries, and deciding a processor assignment for each
partition of the plan. A parallel algebra has been provided
whose operators are data manipulation operators (the se-
quential physical algebra) and a parallelism related opera-
tor that is responsible for providing mechanisms for parallel
query processing.

The combination of data manipulation operators and the
parallelism related operator provide the execution engine
with the necessary operations to allow the parallel execu-
tion of queries. When transferring data between different
nodes of the parallel machine, the Exchange operator is
used, so that remote communication is performed. When
movement of data is not required, the data manipulation op-
erators execute independently on each node.

By distributing data over the nodes of the machine and
by implementing the parallel operators in a data-flow exe-
cution mode, for example using the Iterators model [10], it
is possible to exploit the partitioned (intra-operator paral-
lelism) and the pipeline (inter-operator parallelism) paral-
lelisms.

The current status of the Polar optimizer is that the fea-

tures described in this paper have been implemented, al-
though with straightforward algorithms for both query par-
titioning and processor allocation. The first prototype of
Polar is expected to be completed in the summer of 1999.
Acknowledgement: This work is supported by the Engineering
and Physical Sciences Research Council (EPSRC), whose support
we are pleased to acknowledge. We are also grateful for the input
of our industrial partners Phil Broughton and Nic Holt of ICL.

References

[1] J. A. Blakeley, W. J. McKenna, and G. Graefe. Experiences
building the Open OODB query optimizer. In Proceedings
of the ACM S GMOD, pages 287-296, Washington, DC,

USA, 1993.

[2] P.Boncz, F. Kwakkel, and M. L. Kersten. High performance
support for OO traversals in Monet. In British National Con-
ference on Databases, pages 152-169, Edinburgh, UK, July
1996.

[3] R. Cattel and D. Barry, editors. The Object Database Stan-
dard: ODMG 2.0. Morgan Kaufman, 1997.

[4] C. Chachaty, P. Borla-Salamet, and M. Ward. A composi-
tional approach for the design of a parallel query processing
language. In D. Etiemble and J.-C. Syre, editors, PARLE ' 92,
Parallel Architectures and Languages Europe, volume 605

of LNCS pages 825-840. Springer-Verlag, Berlin, 1992.

[5] A. Chaudhri and M. Loomis. Object Databasesin Practice.
Prentice Hall, 1998.

[6] L. Fegaras. An experimental optimizer for OQL. Techni-
cal Report TR-CSE-97-007, CSE, University of Texas at Ar-
lington, 1997.

[7] L. Fegaras. Query unnesting in object-oriented databases. In
Proceedings of the ACM SGMOD International Conference
on Management of Data, Seattle, Washington, June 1998.

[8] G. Graefe. Encapsulation of parallelism in the Volcano
query processing system. In Proceedings of the ACM SG-
MOD International Conference on Management of Data,
pages 102-111, 1990.

[9] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2):73-170, June 1993.

[10] G. Graefe. lIterators, schedulers, and distributed-memory
parallelism. Software-Practice and Experience, 26(4):427—
452, April 1996.

[11] T. Grust, J. Kroger, D. Gluche, A. Heuer, and M. H. Scholl.
Query evaluation in CROQUE - calculus and algebra coin-
cidence. In 15th British National Conference on Databases,
volume 1271 of Lecture Notes in Computer Science, pages
84-100. Springer, 1997.

[12] W. Hasan and R. Motwani. Coloring away communication
in parallel query optimization. In Proceedings of the 21th
VLDB Conference, pages 239-250, 1995.

[13] P. Watson. The design of an ODMG compatible parallel
object database server. In \Vec Par’ 98, Porto, Portugal, June

1998. Lecture Notes in Computer Science.
[14] P. Watson and G. W. Catlow. Architecture of the ICL

Goldrush MegaServer. In British National Conference on
Databases, volume 940 of Lecture Notes in Computer Sci-
ence, pages 249-262, Manchester, 1995. Springer-Verlag.

