Handling Non-deter ministic Data Availability in Parallel Query
Execution

FlorianWaas

CWiI
P.O.Box94079
1090GB Amstedam
flw@cwi.nl

Abstract

The situation of non-deterministic data
availability, whee it is not knowna priori
which of two or more processewill respond
first, cannotbe handledwith standad tedch-
nigues.Theconsequends sub-optimapro-
cessingoecausef ineficientresouce allo-
cationandunnecessargelays.

In this paper we develop an effec-
tive solution to the problem by extend-
ing thedemand-drivemvaluationparadigm
to the end of using opemators with more
than just one output stream. We show
how inter-processcommunicatiorand non-
deterministic data availability in parallel
queryprocessingeduceo caseghatcanbe
executedeficiently with the new evaluation
paradigm.

1 Introduction

While mary conceptdit smoothlyin the
parallelervironmentsomedont. The one
we addresdereis the questionwhatevalua-
tion paradigmnto usefor thetransporof data
throughouthe queryevaluationplan.

In sequentiabystemsthe demand-driven
paradigmwheredatais generatednly when
needed—&epingthe resourceusagedonvn
and causingalmostno overhead—emeed
asthe defactostandardThe problem,how-

ever, turnsoutto bequitedifferentin thepar
allel case.

The solution proposedin Volcano [1]
seems intuitive but proved not general
enoughto supportvarious kinds of paral-
lelism andthemajorhardwarearchitectures.
The farreachingchangedo the systemsn-
troducedn [3] to overcomesomeof thedefi-
cienciesaddedsizeableoverheadwhich not
only slows down the queryexecutionbut is
also more difficult to allow for in the opti-
mizationphase.

In this paperwe develop an effective so-
lution to this problemin two steps. First,
we shav how the demand-drien evaluation
paradigmcan be extendedby requesthan-
dlesthatallow operatorgo distinguishtheir
callers. Basedon this extensionwe devise
a new evaluation paradigmcalled request-
drivenevaluationparadigmwhich, together
with a query plan transformation,enables
the execution of algebraic operatorswith
morethanonly oneoutputstream.Secondly
we encapsulatbothincomingandoutgoing
inter-procescommunicatiorduringparallel
executionin onesinglerelationalalgebraic
operatorovercomingthe problemsof Vol-
canos exchange operator

2 lterators

Every relationalalgebraicexpressioncan
be denoted as a tree-shapedevaluation



class lterator

{
v0| d open();
Dat aUnit next ();
void cl ose();

}

Figure 1. Iterator interface .

graph,calledqueryplan in the sequelwith
data-flav from theleavesto theroot. An op-
erator i.e. nodeof thetreecanbeabstracted
with aninterfaceconsistingof threecompo-
nentst Figurel shavs a C++ stylelike no-
tation. Therolesareasfollows:

open. Initializes internal structures like
memorybuffersetc. Theoperatoiprop-
agategheopento its childrenwhichin
turn passt ontheir predecessongcur
sively.

next. This procedurémplementgheactual
algebraicoperatorfor a single unit of
data(Dat aUni t ).

close. Theclosecallisthecounterparotfthe
open Temporarydatastructureseces-
saryfor aproperfunctioningof thenext
arereleasedndresourcesrereturned
totheoperatingsystems resourceool.

Theiteratorconcephasprovenaveryro-
bust implementatiorof relationalalgebraic
operators.lts main advantagesarethe eas-
ily achievedextensibilitywith respecto new
operatoraswell asto differentimplementa-
tions for one operator However, mostno-

table is the implicit resourcemanagement:

all datais generatean demand(next call),
i.e. only whenneededor the next process-
ing steps,so,no resourcesreoccupiedary
longerthannecessary

1For a more detailed description, the interested
readeris referredto [2] andthe standarditeratureon
databassystemimplementation

Process 1

Process 2 Process 3

Figure 2. Parallel plan, detail.

3 TheProblem

Amongotherparallelizationschemashat
have beenproposed,cutting an evaluation
planin smallerpartswhich are assignedo
groupsof processorafterwardsis animpor
tantbuilding blockfor parallelexecution[4].

The critical spotsfor the evaluationare
the processboundaries,i.e. the data de-
mandsthat involve interprocesscommuni-
cation. Clearly the iterators next call can
be accommodatedo the special require-
ments of the interprocesscommunication
medium, e.g. shared-memorcommunica-
tion, RPC etc. However, the recursve pro-
ceedings designedor a singlecontrolflow
with deterministicdataavailability. To illus-
tratetheconsequencese focustheexample
in Figure?2.

In a sequentialervironment, operatorA
would requestdatafrom the childrenB and
C oneafteranotheri.e. repeatedlysending
a requestand receving an answer Now,
considera parallel ervironmentwith pro-
cessboundariesasindicated. For maximal
datathroughput,all threeprocesseshould
act as independentlyof eachother as pos-
sible. Thatinvolvestwo steps: on the one
hand,therequestfrom A shouldsimultane-
ouslygoto B andC, andnot wait until the
answerfrom the onewhich hasbeencalled
first is receved. On the other hand, and
this is more difficult to overcome,the re-
sponsedatashouldbe collectedon a first-
come-first-sem basis. This is not only im-
portantfor operatorghat canconsumedata
from everyinputatary timelike theuNIoON,



but alsooperatordike JoIN canbenefitfrom
it by cachinginput datalocally. However,
thedesiredbehaior cannotbeachiezedwith
the bareiterator model. Every next call is
“synchronous’andterminate®nly whenthe
responsealatais provided—in otherwords,
the call hasto anticipatewhich of the chil-
drenwill answerfirst or will wasteprocess-
ing time andresources.

General Model. Consider an operator
pair sPLIT/cOLLECT which distributesdata
amongan arbitrarynumberof branchesand
collectsthe results. Moreover, the assign-
mentof datato brancheds donebasedon
specific propertiesof the data, e.g. value
ranges. This kind of query plan cannotbe
evaluatedwith the crudeiterator model as
thedataavailability is non-deterministid.e.
it is unknavn which way the tuple will be
passedan until the predicateof the spLIT is
evaluated. However, the next call from the
coLLECT will be propagatedo one of the
branchesprior to this evaluation.

In the following we first focus on this
sequential instance of the problem and
presenta solution by extendingthe evalua-
tion paradigm. Finally, we develop an ap-
proachto transferthe newv conceptsto the
original parallelproblem.

4 Request handlesand TNASs

In orderto copewith operatorghat pro-
vide more than just one output streamwe
extend the genericiterator interfacein two
ways(cf. Figure3):

1. All functionsdifferentiatetheir callers
by requesthandles This allows in-
dividual action for differentconsumer
operators.

2. Besidegqualifying tuplesandthe End-
Of-Streamtoken, the next call may
alsoreturna specialTempoarily-Not-
Available (TNA) token, indicatingthat
no qualifying datais available at the

Dat aUnit TNA;

cl ass Request|terator

{

voi d open(Request Hdl &hdl);
Dat aUni t next (

Request Hdl
voi d cl ose(Request Hdl

ghdl,...);
ghdl ) ;

Figure 3. Extended interface .

moment Streamsthat may contain
TNASs are called non-strict otherwise
strict.

To solve theproblemof non-deterministic
dataavailability, we alsoneedto transform
the queryplan. We collapsethe spLIT and
COLLECT operatorsto one single operator
calledHus, asshavn in Figure4. Thenum-
bersillustrate the single phasedor a tuple
thatqualifiesfor theright operator

The extensionand modificationto both
evaluationparadigmandquerygraphadhere
to the basicprinciple of encapsulatiompro-
viding unrestrictedlexibility like the origi-
naliteratorinterface.

5 Making Parallel Query Execution
Work

The new evaluation paradigmas intro-
ducedabore canbe usedasa powerful tool
to tacklethe original parallel problem. All
we have to do is restructurethe original
queryplanin anappropriatevay.

51 Query Plan Design

Given a query plan and its scheduling,
i.e. the assignmenbf operatorsto proces-
sorswe encapsulatall interprocesscom-
municationwith two new operators:N and
ouT. In Figure ??, an example, slightly
more complicatedas the previous ones, is
shavn. In the next step, we collapseall
INs andouTs of a procesdeaving only one



D
C D D
D

a)

“10

JC O
-

b)

Figure 4. Collapsing SPLIT and COLLECT.

singleIN andalsoonesingleouT. At the
sametime we introducerequesthandlesto
identify the streams. The reducedgraph
correspondsiow to the generalmodel for
non-deterministicdata availability. In the
last step we collapsethe intermediatelN
andouT operatorgo a new operatorcalled
coMM, whichformsthehubin thenew plan.
An exampleplanlayoutis givenin Figure5.

5.2 Processesat Work

After thequeryplanis restructureanden-
richedwith comm operatorghesingleparts
of the queryplanareloadedby the separate
processesf theparallelqueryengine.

The comM operatorsarenot only distin-
guishedby beingthe spLIT/COLLECT hub
of the entire query plan of the respectre
processthey are also extendedwith inter
processcommunicationmeans. Moreover,
every input andoutputstreamis assigneda
buffer within the comm. After activating
the processthe comm operatorsendsasyn-
chronousrequeststo all its producerpro-
cesse#t depend®n. Then,aregularrequest
is sentto theprocesstop-mostinternaloper
ator, propagatethroughthelocalqueryplan
eventuallyrequestingdatafrom the comm.

Like with the generaimodel,the comM an-
swerstheserequestsn dependenc of the
callersrequesthandle.

The input and outputbuffer ensuremax-
imal processndependenceTheir sizesare
parametersf thequeryoptimization but for
simplicity canalsobe fixed after calibrating
thesystem.

Oncea comm filled all its outputbuffers
no further internalrequestsare emittedun-
til the processedlatais requestedy a con-
sumeiprocesandoutputbuffer capacitybe-
comesavailable again. By this way an ef-
fective self-regulatory mechanisnis estab-
lishedthat doesnot needinterferencefrom
theconsumetik e the back-pressureoncept
in Volcano. On the other hand,the comm
doesnotsendrequestso otherprocessean-
lessthelocalinput buffersareempty

The interprocess communication can
now be handledinterlearing with the regu-
lar processingf thelocal querygraphwith-
outproblemssinceall arriving datais stored
in the comMm’s buffer pool first. Hence,
the control-flov within the procesgoesnot
needto be corrected—alloperatorghatre-
quiredatathatis inputto this processimply
requesit from thecomm.



Figure 5. Parallel plan with fully encapsulated inter-process comm unication.

6 Summary

In thispaperwe shavedhow thedemand-
driven evaluationparadigmcanbe extended
to suit the advancedrequirementof paral-
lel query execution. In contrastto previ-
ouswork, our new techniquenot only pre-
senesfull encapsulatiorflexibility andeasy
exchangability of implementationsfor re-
lational algebraicoperators,it also offers
an elegant solutionto the problemof non-
deterministic data availability in both se-
gquentialandparallelexecution.

Thequeryplanlayoutwe proposednakes
parallelqgueryexecutiona simpleyet highly
efficient task without additional overhead,
providing a self-rgulatory mechanismof
activationandde-actvation.

The conceptgpresentedhave beenimple-
mentedn aparallelqueryenginefor shared-
nothing workstation clustersand proved a
framework that is easyto implement, en-
ablesextensibility by its uniform interface,
and mostnotableprovidesrun-timeandre-
sourceefficient execution.

Acknowledgments

Thanksare dueto Nikola Dimitrov who
helpedimplementthe prototypeof the exe-
cutionengine.

References

[1] G. Graefe. Encapsulatiorof Parallelismin
the VolcanoQuery Processingsystem. In
Proc. of the ACM SIGMODInt'l. Conf on
Managementof Data, pages749—764,At-
lantic City, NJ,USA, May 1990.

[2] G.Graefe.QueryEvaluationTechniquesor
LargeDatabasesACM ComputingSurve/s
25(2):73-170Junel993.

[3] G. Graefe. Iterators, Schedulers,
and Distributed-memory Parallelism.
Softwae—Pactice & Experience
26(4):427-452Apr. 1996.

[4] W. Hasanand R. Motwani. Optimization
Algorithms for Exploiting the Parallelism-
CommunicatioriTradeof in PipeliningPar
allelism. In Proc. of theInt'l. Conf onVery
Large Data Bases pages36—47, Santiago,
Chile, Sept.1994.



