
Handling Non-deterministic Data Availability in Parallel Query
Execution

FlorianWaas

CWI
P.O.Box94079

1090GBAmsterdam
flw@cwi.nl

Abstract

The situation of non-deterministic data
availability, where it is not knowna priori
which of twoor moreprocesseswill respond
first, cannotbehandledwith standard tech-
niques.Theconsequenceis sub-optimalpro-
cessingbecauseof inefficient resource allo-
cationandunnecessarydelays.

In this paper we develop an effec-
tive solution to the problem by extend-
ing thedemand-drivenevaluationparadigm
to the end of using operators with more
than just one output stream. We show
how inter-processcommunicationand non-
deterministic data availability in parallel
queryprocessingreduceto casesthatcanbe
executedefficiently with the new evaluation
paradigm.

1 Introduction

While many conceptsfit smoothlyin the
parallel environmentsomedon’t. The one
weaddresshereis thequestionwhatevalua-
tion paradigmto usefor thetransportof data
throughoutthequeryevaluationplan.

In sequentialsystems,thedemand-driven
paradigmwheredatais generatedonly when
needed—keepingthe resourceusagedown
and causingalmostno overhead—emerged
asthedefactostandard.Theproblem,how-

ever, turnsouttobequitedifferentin thepar-
allel case.

The solution proposedin Volcano [1]
seems intuitive but proved not general
enoughto supportvarious kinds of paral-
lelismandthemajorhardwarearchitectures.
Thefar-reachingchangesto thesystemsin-
troducedin [3] toovercomesomeof thedefi-
cienciesaddedsizeableoverheadwhich not
only slows down thequeryexecutionbut is
alsomoredifficult to allow for in the opti-
mizationphase.

In this paperwe develop an effective so-
lution to this problemin two steps. First,
we show how thedemand-drivenevaluation
paradigmcan be extendedby requesthan-
dlesthatallow operatorsto distinguishtheir
callers. Basedon this extensionwe devise
a new evaluationparadigmcalled request-
drivenevaluationparadigmwhich, together
with a query plan transformation,enables
the execution of algebraicoperatorswith
morethanonlyoneoutputstream.Secondly,
weencapsulatebothincomingandoutgoing
inter-processcommunicationduringparallel
executionin onesingle relationalalgebraic
operatorovercomingthe problemsof Vol-
cano’s exchange operator.

2 Iterators

Every relationalalgebraicexpressioncan
be denoted as a tree-shapedevaluation

class Iterator�

...
void open();
DataUnit next();
void close();�

Figure 1. Iterator interface .

graph,calledqueryplan in thesequel,with
data-flow from theleavesto theroot. An op-
erator, i.e. nodeof thetreecanbeabstracted
with aninterfaceconsistingof threecompo-
nents.1 Figure1 shows a C++ style like no-
tation.Therolesareasfollows:

open. Initializes internal structures like
memorybuffersetc.Theoperatorprop-
agatestheopento its childrenwhich in
turnpassit on theirpredecessorsrecur-
sively.

next. Thisprocedureimplementstheactual
algebraicoperatorfor a single unit of
data(DataUnit).

close. Theclosecall is thecounterpartof the
open. Temporarydatastructuresneces-
saryfor aproperfunctioningof thenext
arereleasedandresourcesarereturned
to theoperatingsystem’sresourcepool.

Theiteratorconcepthasprovenavery ro-
bust implementationof relationalalgebraic
operators.Its main advantagesarethe eas-
ily achievedextensibilitywith respecttonew
operatorsaswell asto differentimplementa-
tions for one operator. However, mostno-
table is the implicit resourcemanagement:
all datais generatedon demand(next call),
i.e. only whenneededfor the next process-
ing steps,so,no resourcesareoccupiedany
longerthannecessary.

1For a more detaileddescription,the interested
readeris referredto [2] andthestandardliteratureon
databasesystemimplementation

A

B C
��� ���	��
�
� ��� ������
�
��

��� ���	��
�
��

Figure 2. Parallel plan, detail.

3 The Problem

Amongotherparallelizationschemasthat
have beenproposed,cutting an evaluation
plan in smallerpartswhich areassignedto
groupsof processorsafterwardsis animpor-
tantbuildingblockfor parallelexecution[4].

The critical spotsfor the evaluationare
the processboundaries,i.e. the data de-
mandsthat involve inter-processcommuni-
cation. Clearly, the iterator’s next call can
be accommodatedto the special require-
mentsof the inter-processcommunication
medium, e.g. shared-memorycommunica-
tion, RPC etc. However, the recursive pro-
ceedingis designedfor a singlecontrolflow
with deterministicdataavailability. To illus-
tratetheconsequenceswefocustheexample
in Figure2.

In a sequentialenvironment,operatorA
would requestdatafrom thechildrenB and
C oneafter another, i.e. repeatedlysending
a requestand receiving an answer. Now,
considera parallel environment with pro-
cessboundariesas indicated. For maximal
datathroughput,all threeprocessesshould
act as independentlyof eachother as pos-
sible. That involves two steps:on the one
hand,the requestfrom A shouldsimultane-
ously go to B andC, andnot wait until the
answerfrom the onewhich hasbeencalled
first is received. On the other hand, and
this is more difficult to overcome,the re-
sponsedatashouldbe collectedon a first-
come-first-serve basis.This is not only im-
portantfor operatorsthat canconsumedata
from every inputatany timelike theUNION,

but alsooperatorslike JOIN canbenefitfrom
it by cachinginput datalocally. However,
thedesiredbehavior cannotbeachievedwith
the bareiterator model. Every next call is
“synchronous”andterminatesonlywhenthe
responsedatais provided—in otherwords,
the call hasto anticipatewhich of the chil-
drenwill answerfirst or will wasteprocess-
ing timeandresources.

General Model. Consider an operator
pair SPLIT/COLLECT which distributesdata
amonganarbitrarynumberof branchesand
collectsthe results. Moreover, the assign-
ment of datato branchesis donebasedon
specific propertiesof the data, e.g. value
ranges. This kind of queryplan cannotbe
evaluatedwith the crude iterator model as
thedataavailability is non-deterministic,i.e.
it is unknown which way the tuple will be
passedon until thepredicateof theSPLIT is
evaluated. However, the next call from the
COLLECT will be propagatedto one of the
branchesprior to thisevaluation.

In the following we first focus on this
sequential instance of the problem and
presenta solutionby extendingthe evalua-
tion paradigm. Finally, we develop an ap-
proachto transferthe new conceptsto the
originalparallelproblem.

4 Request handles and TNAs

In order to copewith operatorsthat pro-
vide more than just one output streamwe
extend the genericiterator interfacein two
ways(cf. Figure3):

1. All functionsdifferentiatetheir callers
by requesthandles. This allows in-
dividual action for different consumer
operators.

2. Besidesqualifying tuplesandtheEnd-
Of-Stream token, the next call may
also returna specialTemporarily-Not-
Available(TNA) token, indicatingthat
no qualifying data is available at the

DataUnit TNA;

class RequestIterator�

...
void open(RequestHdl &hdl);
DataUnit next(

RequestHdl &hdl,...);
void close(RequestHdl &hdl);�

Figure 3. Extended interface .

moment. Streamsthat may contain
TNAs arecallednon-strict, otherwise
strict.

To solve theproblemof non-deterministic
dataavailability, we alsoneedto transform
the queryplan. We collapsethe SPLIT and
COLLECT operatorsto one single operator
calledHUB, asshown in Figure4. Thenum-
bersillustrate the single phasesfor a tuple
thatqualifiesfor theright operator.

The extensionand modification to both
evaluationparadigmandquerygraphadhere
to the basicprinciple of encapsulationpro-
viding unrestrictedflexibility like the origi-
nal iteratorinterface.

5 Making Parallel Query Execution
Work

The new evaluation paradigmas intro-
ducedabove canbeusedasa powerful tool
to tackle the original parallelproblem. All
we have to do is restructurethe original
queryplanin anappropriateway.

5.1 Query Plan Design

Given a query plan and its scheduling,
i.e. the assignmentof operatorsto proces-
sorswe encapsulateall inter-processcom-
municationwith two new operators:IN and
OUT. In Figure ??, an example, slightly
more complicatedas the previous ones,is
shown. In the next step, we collapseall
INs andOUTs of a processleaving only one

5

�����

������������
6

9

8

7

10

!#"$��%

a) b)

1

2

3 4

Figure 4. Collapsing SPLIT and COLLECT.

single IN and alsoone single OUT. At the
sametime we introducerequesthandlesto
identify the streams. The reducedgraph
correspondsnow to the generalmodel for
non-deterministicdata availability. In the
last step we collapsethe intermediateIN

andOUT operatorsto a new operatorcalled
COMM, whichformsthehubin thenew plan.
An exampleplanlayoutis givenin Figure5.

5.2 Processes at Work

After thequeryplanis restructureanden-
richedwith COMM operatorsthesingleparts
of thequeryplanareloadedby theseparate
processesof theparallelqueryengine.

The COMM operatorsarenot only distin-
guishedby being the SPLIT/COLLECT hub
of the entire query plan of the respective
process,they are also extendedwith inter-
processcommunicationmeans. Moreover,
every input andoutputstreamis assigneda
buffer within the COMM. After activating
theprocess,theCOMM operatorsendsasyn-
chronousrequeststo all its producerpro-
cessesit dependson. Then,aregularrequest
is sentto theprocess’top-mostinternaloper-
ator, propagatedthroughthelocalqueryplan
eventuallyrequestingdatafrom the COMM.

Like with thegeneralmodel,theCOMM an-
swerstheserequestsin dependency of the
caller’s requesthandle.

The input andoutputbuffer ensuremax-
imal processindependence.Their sizesare
parametersof thequeryoptimization,but for
simplicity canalsobefixedaftercalibrating
thesystem.

Oncea COMM filled all its outputbuffers
no further internal requestsareemittedun-
til theprocesseddatais requestedby a con-
sumerprocessandoutputbuffer capacitybe-
comesavailableagain. By this way an ef-
fective self-regulatory mechanismis estab-
lishedthat doesnot needinterferencefrom
theconsumerlike theback-pressureconcept
in Volcano. On the otherhand,the COMM

doesnotsendrequeststo otherprocessesun-
lessthelocal inputbuffersareempty.

The inter-process communication can
now be handledinterleaving with the regu-
lar processingof thelocalquerygraphwith-
outproblemssinceall arriving datais stored
in the COMM ’s buffer pool first. Hence,
thecontrol-flow within theprocessdoesnot
needto be corrected—alloperatorsthat re-
quiredatathatis inputto thisprocesssimply
requestit from theCOMM.

&�'�()(&*'�()(

&�'�(+(

&*'�()(

&*'�()(

Figure 5. Parallel plan with full y encapsulated inter -process comm unication.

6 Summary

In thispaper, weshowedhow thedemand-
drivenevaluationparadigmcanbeextended
to suit the advancedrequirementsof paral-
lel query execution. In contrastto previ-
ouswork, our new techniquenot only pre-
servesfull encapsulation,flexibility andeasy
exchangability of implementationsfor re-
lational algebraicoperators,it also offers
an elegant solution to the problemof non-
deterministicdata availability in both se-
quentialandparallelexecution.

Thequeryplanlayoutweproposedmakes
parallelqueryexecutiona simpleyet highly
efficient task without additional overhead,
providing a self-regulatory mechanismof
activationandde-activation.

Theconceptspresentedhave beenimple-
mentedin aparallelqueryenginefor shared-
nothing workstationclustersand proved a
framework that is easyto implement,en-
ablesextensibility by its uniform interface,
andmostnotableprovidesrun-timeandre-
sourceefficientexecution.

Acknowledgments

Thanksare due to Nikola Dimitrov who
helpedimplementthe prototypeof the exe-
cutionengine.

References

[1] G. Graefe. Encapsulationof Parallelismin
the VolcanoQueryProcessingSystem. In
Proc. of the ACM SIGMODInt’l. Conf. on
Managementof Data, pages749–764,At-
lanticCity, NJ,USA, May 1990.

[2] G.Graefe.QueryEvaluationTechniquesfor
LargeDatabases.ACM ComputingSurveys,
25(2):73–170,June1993.

[3] G. Graefe. Iterators, Schedulers,
and Distributed-memory Parallelism.
Software—Practice & Experience,
26(4):427–452,Apr. 1996.

[4] W. Hasanand R. Motwani. Optimization
Algorithms for Exploiting the Parallelism-
CommunicationTradeoff in PipeliningPar-
allelism. In Proc.of theInt’l. Conf. onVery
Large Data Bases, pages36–47,Santiago,
Chile,Sept.1994.

