
Conflict Resolution and Reconciliation in Disconnected Databases∗

Shirish Hemant Phatak B. R. Badrinath
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

e-mail:{phatak,badri}@cs.rutgers.edu

Abstract

As mobile computing devices become more and more
popular, mobile databases have started gaining popularity.
An important feature of these database systems is their abil-
ity to allow optimistic replication of data by providing dis-
connected mobile devices the ability to perform local up-
dates. The key problem to this approach is the reconcilia-
tion problem, i.e. the problem of serializing potentially con-
flicting updates from disconnected clients on all replicas of
the database. Reconciliation of conflicting updates is a fun-
damental problem for mobile databases where disconnected
updates are allowed. We examine some choices for pro-
viding solutions to the reconciliation problem. We also de-
scribe a simple but illustrative sample application. Finally
we present our conclusions.

1. Introduction

Mobile databases are gaining popularity and are likely
to do so well into the future as portable devices become
more and more popular and common. One key aspect of
these database systems is their ability to deal with discon-
nection. Disconnection refers to the condition when a mo-
bile system is unable to communicate with some or all of its
peers. In such a situation the mobile no longer has access
to shared data. Optimistic replication approaches have been
proposed to deal with the disconnection problem [29]. In
such approaches, the mobile unit is allowed to locally repli-
cate shared data and to operate on this data while it is dis-
connected. The local updates can be propagated to the rest
of the system on reconnection. However, since the local up-
dates potentially conflict with other updates in the system,
some form of conflict detection and resolution is required.

∗This research work was supported in part by DARPA under contract
numbers DAAH04-95-1-0596 and DAAG55-97-1-0322, NSF grant num-
bers CCR 95-09620, IRIS 95-09816 and Sponsors of WINLAB.

The architectures we consider are extended client server
architectures. Here, the primary copies of all data items are
stored on the server. All transactions must commit on the
server to be “globally” committed. The clients are allowed
to locally replicate a subset of the current database state (i.e.
the set of all committed versions of all data items currently
in the database). Local transactions on the client can oper-
ate on this local replica and perform updates. As long as the
client is connected to the server, each local transaction is au-
tomatically serialized on the server before it is allowed to
commit. However, if the client is disconnected and cannot
access the server, local transactions are allowed to “locally”
commit in the sense that their updates are made available to
other local transactions after they have locally committed.
The client on reconnection propagates all local transactions
on the server for globally serializability testing. A transac-
tion that can’t be serialized due to conflicts, or because it
read dirty data from another non-serializabile transaction,
must be rolled back. Otherwise, the transaction is globally
committed and its updates applied to the shared database.
We refer to the process of serializability testing of and glob-
ally commit of disconnected transactions as reconciliation.

1.1. Related work

Recently lot of research has been directed at optimistic
replication schemes and at mobile databases and reconcilia-
tion. Some early work can be found in [3, 18, 19]. Recently,
Gray et. al. in [15] present a system architecture and a repli-
cation model for mobile databases. BAYOU [12], provides
another model for mobile data repositories. In BAYOU, in-
formation required for the reconciliation process is included
in each update to the data repository. Walborn and Chrysan-
this [32] provide an application semantics based approach to
the reconciliation problem.

Our approach to the reconciliation problem is presented
in [28]. In this paper, we present our design choices and de-
cisions, and provide a sample application to show how the
algorithm in [28] can be put to work in the real world.

1.2. Organization of the paper

We have organized the remainder of this paper as fol-
lows: section 2 describes the reconciliation process and the
choices available for reconciliationalgorithms; section 3 de-
scribes a sample application; and section 4 briefly lists our
conclusions.

2. The Reconciliation Process

In most systems the replication (hoarding) and local up-
date phases of a mobile’s operation can be dealt with in a
straightforward fashion. There are of course notable excep-
tions, especially when high speed mobility and trickle rein-
tegration are concerned. The reconciliation (reintegration)
phase of operation, on the other hand, provides interesting
challenges in any disconnected database model. In this sec-
tion, we explore some of the alternatives we have considered
for the reconciliation process.

2.1. Data-centric versus Transaction-centric recon-
ciliation

Reconciliation can occur at various granularities. Two
obvious choices are to run the process at the granularity of
individual data items or the granularity of entire transactions
(i.e. read sets and write sets of transactions). The former
is called data-centric; the latter transaction-centric. Data-
centric reconciliation is the norm for most commercial dis-
connected databases.

To understand the difference between the two, let us con-
sider a simple example. Consider a single version database
consisting of a single data item, x = 1. Further suppose
that a mobile client downloads x and disconnects and runs
a single transaction T1′ : x = x + 1. Meanwhile, another
transactionT1 on the server updates x = 2. The history here
is as follows:

History 1:
Server: w0[x] = 1, c0, r1[x] = 1, w1[x] = 2, c1
Client: downloaded x = 1, r1′ [x] = 1, w1′ [x = x +
1] = 2, c1′ , reconcile

On reconnecting the reconciler finds that the value of x
read by the client transaction T1′ i.e. 1 is different from the
value of x at the server, 2 (Note that we are assuming a sin-
gle version system, so that any past values of x are “lost”).
Thus a conflict exists and conflict resolution needs to be per-
formed.

In the data-centric approach, the system uses rules to deal
with data item conflicts. In our example, the DBA could de-
fine the following rule forx-conflicts using the commutativ-
ity of addition and subtraction:

xsnew = xsold + xcnew − xcdownloaded

Here, xsnew is the new value to be written to the server data
set after conflict resolution, xsold is the value present on the
server before conflict resolution, xcnew is the value of x cur-
rently present on the client, and xcdownloaded is the value of
x that the client downloaded.

Thus, on using this rule on the server, we achieve the fol-
lowing history after conflict resolution:

History 2:
Server: w0[x] = 1, c0, r1[x] = 1, w1[x] =
2, c1, wc[x] = 3, cc

Here Tc is a new transaction created on the server to re-
flect the client’s updates. Note how the value of x is mod-
ified. Also note that transaction T1′ has now been trans-
formed into transaction Tc on the server, which is a blind
write. This is because T1′ ’s original read set is meaningless
and the reconciliation mechanism does not understand trans-
actions. To illustrate this further consider the following his-
tory, where two transactions run on the client:

History 3:
Server: w0[x] = 1, c0, r1[x] = 1, w1[x] = 2, c1
Client: downloaded x = 1, r1′ [x] = 1, w1′ [x = x +
1] = 2, c1′ , r2′ [x] = 2, w2′ [x = x + 1] = 3, c1′ ,
reconcile

The reconciler merely sees the downloaded image and
the after image of x when the client reconciles updates.
Thus, the fact that two transactions were run on client is
lost (they are both replaced by a single transaction Tc on the
server); however we get the following history that is still se-
mantically correct:

History 4:
Server: w0[x] = 1, c0, r1[x] = 1, w1[x] =
2, c1, wc[x] = 4, cc

The advantage of this approach is that it is fast and cheap
to implement. Moreover, the client need not even main-
tain the transactions it executed, just the current and down-
loaded values of the data items. However, if the semantics
of the client transaction changes, e.g., suppose transaction
T1′ doubles the value of x, x = 2x, then our rule is use-
less since it might lead to incorrect execution. The problem
becomes intractable using the data-centric approach if there
are multiple transactions with different semantics. To com-
plicate the issue, very few transactions access only one data
item. If some of the updates from a transaction are accepted,
while others are rejected, we also compromise the atomicity
of the client transactions. The only solution, which is fol-
lowed by many commercial databases, is to force all updates
to the be reconciled failing which the database is taken of-
fline pending manual reconciliation. Obviously, this would
lead to loss of throughput and database availability.

To solve these problems, we resort to transaction-centric
reconciliation. In this approach, client transactions are rec-
onciled as a unit, one at a time. Thus, entire transactions
are reconciled or rejected. The client can also specify the

2

semantics of the transaction in form of conflict resolution
routines or functions. Thus, if transaction T1′ doubles the
value ofx, rather than incrementing it our sample history be-
comes:

History 5:
Server: w0[x] = 1, c0, r1[x] = 1, w1[x] = 2, c1
Client: downloaded x = 1, r1′ [x] = 1, w1′ [x = 2 ∗
x] = 2, c1′ , r2′ [x] = 2, w2′ [x = x + 1] = 3, c1′ ,
reconcile

which is identical to the earlier history 1 except for trans-
action semantics, but leads to a very different history on rec-
onciliation! The history after T1′ is reconciled is:

History 6:
Server: w0[x] = 1, c0, r1[x] = 1, w1[x] =
2, c1, r

′
1′ [x] = 2, w′1′ [x = 2 ∗ x] = 4, c′1′

and after reconciling T2′ is:
History 7:
Server: w0[x] = 1, c0, r1[x] = 1, w1[x] =
2, c1, r

′
1′ [x] = 2, w′1′ [x = 2 ∗ x] = 4, c′1′ , r

′
2′ [x] =

4, w′2′ [x = x+ 1] = 5, c′2′

Note that this is a semantic rather than syntactic redo of
the transactions. Also note how the approach easily takes
into account the different semantics of transactions T1′ and
T2′ . Further, if the semantics of T1′ and T2′ are unknown,
we must reject T1′ . However, since T2′’s read set {x = 2}
matches the value on the server, we can still reconcile T2′ ,
and we get the following history:

History 8:
Server: w0[x] = 1, c0, r1[x] = 1, w1[x] =
2, c1, r

′
2′ [x] = 2, w′2′ [x] = 3, c′2′

Note that only values of x in the read and write sets ofT2′

are being used and not the semantics of T2′ . This property
is very useful in mobile systems where transactions might
need to be prioritized for reconciliation over weak or inter-
mittent links as in case of cellular or infostation (see [13,
14]) coverage. Since transaction dependencies no longer
matter, transactions can now be sent to the server in any or-
der. In our example T2

′ can be reconciled before T1′ even
though T2′ reads dirty data written by T1′ . Thus, if T2′ is
“more important” than T1′ . then it can be sent to the server
first.

As this example shows, transaction-centric reconciliation
is considerably more powerful than data-centric. However,
it should be noted that transaction centric reconciliation im-
plies more work on the part of the client (entire transactions
must now be tracked), and more complicated algorithms for
reconciliation. In the next subsections we discuss how trans-
action centric reconciliation can be made even more power-
ful using weakened serializability models and multiversion-
ing of data items on the server.

2.2. Weakening Serializability Guarantees

The mobile environment is inherently susceptible to
weak consistency. This is due to the fact that we allow

disconnected client to locally modify their replicas of the
database. However, on reconnection, we require that these
updates be somehow applied to the server dataset in a serial-
izable fashion. This turns out to be a major hurdle for most
systems, since full serializability is a fairly pessimistic and
strong guarantee.

It stands to reason, therefore, that weakening the seri-
alizability requirement might lead to better performance of
the system. Data-centric models inherently rely on this fact
to improve performance. This is because the data-centric
model assumes a fixed set of semantics for client transac-
tions which is coded into the reconciliation rules. These
fixed semantics can be used to bypass the serializability
guarantees while still maintaining consistency of the data.

On the other hand, all effort must be made to provide as
strong a serializability guarantee as can be achieved with
reasonable performance. One such guarantee that works
naturally with multiversion systems is snapshot isolation
[7]. This guarantee is almost as strong as read committed,
but is weak enough to allow us to focus on just the write
sets of reconciling client transactions. Snapshot isolation al-
lows histories in which transactions read from a snapshot
of the database and where concurrent transactions write dis-
tinct data items (i.e. if a data item is shared by two concur-
rent transactions, only one of the transactions may write it).
Note that serializability additionally requires that only one
of the concurrent transactions modify shared data items (i.e.
if one of the concurrent transactions modify a shared data
item, then the other may not write any shared data item).

3. A sample application

Our work in [28] embodies much of the suggestions in
the previous section. In particular, we have described an al-
gorithm that achieves multiversion transaction-centric rec-
onciliation and provides snapshot isolation to reconciling
transactions. Additionally, the algorithm can be easily mod-
ified to support full serializability. At the core of our algo-
rithm are two functions defined for each reconciling transac-
tion: the conflict resolution functionCR, which attempts to
capture transaction semantics and the cost functionC which
measures the cost of resolving conflicts.

In this section, we describe a sample application. Using
this application as a baseline we show that our conflict res-
olution model is far more powerful than others described in
literature since it inherently allows side effects, i.e. the abil-
ity for a client to manipulate data that it has not replicated.
We achieve this because unlike most other systems, conflict
resolution is not optional in our model, rather the conflict
resolution function must be invoked every time a transac-
tion is reconciled against a snapshot, even if the snapshot
matches the read set. (This requirement can be dropped for
efficiency reasons if side effects are not needed and we not

3

wish to detect phantoms.)
Consider a corporate database serving salepersons. The

salespersons use laptops to access the centralized database
server. Orders are generated or modified at customer
sites while the database clients (laptops) are disconnected,
and the corresponding transactions reconciled when the
database clients (laptops) reconnect.

Let us assume the following schemas (amongst others)
exist on the server (primary keys are denoted by a single
∗ while foreign keys are denoted by a double ∗∗):

CUSTOMER(CID∗,CNAME,ADDRESS,...)
PART(PID∗,SUPPLIERID,PNAME)
ORDERBOOK(OID∗,PID∗∗,SIZE)
CUSTBOOK(COID∗,CID,PID∗∗,SIZE)

Note that these schemas are not meant to be all the rela-
tions in the database, rather these are only some of the rela-
tions on the database server. A real database can have many
more relations.

The CUSTOMER relation has the customer informa-
tion. The PART relation contains the supplier information
for all parts. The CUSTBOOK is the order book for cus-
tomers, where all the orders for individual customers are
logged. This is used to create invoices. ORDERBOOK
on the other hand represents the orders that need to be sent
to the supplier and aggregates all orders for a part from the
CUSTBOOK. Note that this implies that this set of schemas
is not normalized, nevertheless, it does illustrate a typical
application.

Let us assume that whenever a salesperson goes out the
salesperson locally replicates the CUSTBOOK, PART and
CUSTOMER (or a subset of each, since we do not require
that entire relations be replicated by the client). ORDER-
BOOK is not replicated, since the client will not generate
orders directly to suppliers. However, there is a tight in-
tegrity constraint between the ORDERBOOK and CUST-
BOOK whereby all the sum of all orders for a given part in
the CUSTBOOK must be less than or equal to the ordersize
on the ORDERBOOK. (In practice, these values might drift
as orders go out to the suppliers. However, we shall assume
the tight constraint for our example.)

Further, suppose that the salesperson can execute the fol-
lowing types of transactions (amongst others): neworder (to
book new orders), modifyorder (to modify existing orders),
and cancelorder (to cancel and delete an order). As men-
tioned before the client can (but does not have to) specify
conflict resolution functions. In our example, these func-
tionsare integrated into the transaction template, i.e. they are
provided as a part of the transaction specification. However,
this need not be the case, and the conflict resolution func-
tions can be generated on demand during reconciliation or
not at all. The transaction templates for our sample transac-
tions are presented as algorithms 1, 2 and 3. We use standard

embedded SQL like statements interspersed with non SQL
operations to define the transaction template. (To actually
instantiate the template all variables must be replaced by a
value.)

Algorithm 1 Transaction neworder
// get customer info from customer, if not found create a new customer
select £custid from CUSTOMER where CNAME = £customername
if not found then

create new tempid
insert (tempid,customername,address) into CUSTOMER where
CID=£tempid

// now create a new customer order id
create new temporderid
// get part information
select £partid from PART where PNAME = £partname
if not found then

// Couldn’t find the part, so abort the transaction
abort

// Enter the order into the local order book
insert (£temporderid,£custid,£partid,£ordersize) into ORDERBOOK

CR:
// if customer id was temporary, indicating a new customer, get the new
permanent id for customer
if custid is temporary then

select £custid from CUSTOMER with CNAME=£customername
if not found then

// new customer, get permanent customer id and insert into server
create new custid for CUSTOMER
insert (£custid,£customername, £address) into CUSTOMER

// Now get the permanent order ids
create new custorderid for CUSTBOOK
create new orderid for ORDERBOOK
// now place the order in the server database
insert (£custorderid,£custid,£partid,£ordersize) into CUSTBOOK
// also update the global order book
// Note that the original transaction did not and could not touch ORDER-
BOOK
select £partid from ORDERBOOK
if found then

update ORDERBOOK where PID = £partid, set £size = £size + £or-
dersize)

else
create new oid for ORDERBOOK
insert (£oid,£partid,£ordersize) into ORDERBOOK

We shall assume for the purpose of this section that the
cost function is uniformly 0. However, other cost functions
can be easily integrated into the framework provided here.

The CR functions not only capture the actions of the
client transactions, but can extend them to capture additional
semantics on the server. In our examples, ORDERBOOK
is used to place orders with part suppliers and does not even
exist on the client. However the CR routines always up-
date the ORDERBOOK. Since executing the functions is
mandatory in our model, we are guaranteed that successful
reconciliation implies that these functions will be executed
and the global ORDERBOOK will always be updated to re-
flect the correct order sizes. Moreover, notice how the se-
mantics of a cancelorder are different from the semantics of

4

modifyorder or neworder. Such (and more) semantic hetero-
geneity is impossible to capture in data centric reconcilia-
tion. (Note that in data centric reconciliation, we would need
to specify one action for all data conflicts on records of the
the same relation.) Note that all inserts from the conflict res-
olution function become the new writeset of the transaction
during the reconciliation process.

Algorithm 2 Transaction modifyorder
// get customer order info from customer order book, if not found abort
select £custoid from CUSTBOOK where COID=£custoid
if not found then

abort
// Now register the new order
update CUSTBOOK, set ORDERSIZE=£newordersize

CR:
// find the order on the server database
select £custoid,£custid,£partid,£ordersize from COID where
COID=£custoid
// now place the order in the server db
insert (£custorderid,£custid,£partid,£newordersize) into CUSTBOOK
// also update the global order book
// Note that the original transaction did not and could not touch ORDER-
BOOK
select £size from ORDERBOOK where PID = £partid
if $size + $newordersize - $ordersize> 0 then

update ORDERBOOK where PID= £partid, set £size=£size +
£newordersize - £ordersize)

else
delete from ORDERBOOK where PID = £partid

The neworder transaction, algorithm 1, is used by the
disconnected client to book a new order from a customer.
The transaction template we have presented takes into ac-
count the fact that the customer record may not be repli-
cated on the client (since the client is free to replicate only
a part of the CUSTOMER relation). However, note the
the non-availability of a part on the client replica of PART
is treated as a fatal error, since presumably a salesperson
must at least replicate information about parts sold by this
salesperson. Note that on the client, the neworder transac-
tion only accesses the CUSTOMER and PARTS relations
and manipulates the CUSTBOOK relation (since these are
the only ones replicated on the clients). Nevertheless, the
conflict resolution function does manipulate the global OR-
DERBOOK during the reconciliation process, ensuring that
the global state is always consistent. Note that the changes
to ORDERBOOK made by the conflict resolution function
for a given instance of neworder are not applied to the server
database until that instance globally commits. Also note
that the data that was read and modified need not be explic-
itly stored by the transaction, since the system automatically
stores such values as a part of the transactions read and write
sets, which are required by our algorithm.

Transaction modifyorder, algorithm 2, is used to change
an order from a customer. As specified here it only allows
modification of existing customer orders as replicated on the

Algorithm 3 Transaction cancelorder
// delete the order from the order book
// Note that this may fail if the customer’s order is not in the order book
delete CUSTBOOK with COID = £customerorderid
if not found then

warning: could not find orderid locally

CR:
// delete the order from the ORDERBOOK
// note that this may succeed though the main delete failed if the order
// exists on the server but not on the client’s ORDER book
select £custordersize,£partid from CUSTBOOK where COID = £cus-
toid
if not found then

error: could not find orderid
else

select £orderid,£ordersizefrom ORDERBOOK where PID = £partid
if ($ordersize> $custordersize) then

insert (£orderid,£ordersize,£ordersize - £custordersize) into OR-
DERBOOK

else
delete £orderid from ORDERBOOK

delete £custorderid from CUSTBOOK

client. This is a strict requirement; the template can be eas-
ily modified to allow changes to orders not replicated by the
client, and to have the conflict resolution function correctly
look up missing orders during reconciliation. This is done
by the cancelorder transaction.

Transaction cancelorder, algorithm 3, is used to accept
cancelations for previous orders. Note that this template is
unique in accepting cancelations for orders not replicated on
the client database. In such a case the transaction merely
records the orderid provided by the customer, and generates
a warning. The error is not generated until the conflict res-
olution function is unable to locate the orderid on the server
database.

4. Conclusions

We have presented an algorithm that provides multiver-
sion reconciliation. The algorithm is unique in that conflict
resolution and detection are integrated with global serializ-
ability testing.

A key concept in our algorithm is that conflict resolution
and detection are decoupled from each other. The respon-
sibility for detecting conflicts lies with the server. This is
done by performing serializability testing on locally com-
mitted transactions from reconciling clients. On the other
hand, conflict resolution is the responsibility of the client.
The client manages this by providing the conflict resolution
and cost functions for each transaction. In the absence of
these functions, the server assumes a default, which guaran-
tees snapshot isolation to “unmodified” client transactions.
We have illustrated the use of conflict resolution functions
using the salesperson example.

5

References

[1] D. Agrawal and V. Krishnamurthy. Using multiversion
data for non-interfering execution of write-only transactions.
Proceedingof the ACM SIGMOD conference, pages 98–107,
1991.

[2] D. Agrawal and S. Sengupta. Modular synchronization
in multiversion databases: Version control and concurrency
control. Proceedings of ACM SIGMOD Conference, pages
408–417, 1989.

[3] R. Alonso and H. F. Korth. Database system issues in no-
madic computing. Proceedings of the ACM SIGMOD, pages
388–392, June 1993.

[4] B. R. Badrinath and S. H. Phatak. An architecture for mo-
bile databases. Department of Computer Science Technical
Report DCS-TR-351.

[5] B. R. Badrinath and S. H. Phatak. Database server organi-
zation for handling mobile clients. Department of Computer
Science Technical Report DCS-TR-324.

[6] B. R. Badrinath and K. Ramamritham. Semantics-basedcon-
currency control: Beyond commutativity. ACM Transac-
tions on Database Systems, 17(1):163–199.

[7] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil,
and P. E. O’Neil. A critique of ansi sql isolation levels. Pro-
ceedings of ACM SIGMOD Conference, pages 1–10, 1995.

[8] P. A. Bernstein and N. Goodman. Concurrency control in
distributed database systems. ACM Computing Surveys,
13(2):185–221, June 1981.

[9] S. Ceri and G. Pelagatti. Distributed Databases—Principles
and Systems. McGraw-Hill, 1984.

[10] P. Chrysanthis. Transaction processing in mobile computing
environment. IEEE Workshop on Advances in Parallel and
Distributed Systems, pages 77–82, Oct. 1993.

[11] S. B. Davidson. Optimism and consistencyin partitioned dis-
tributed database systems. ACM Transactions on Database
Systems, 9(3):456–481, Sept. 1984.

[12] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer,
and B. Welch. The bayou architecture: Support for data shar-
ing among mobile users. Proceedings of the IEEE Workshop
on Mobile Computing Systems and Applications, pages 2–7,
Dec. 1994.

[13] R. H. Frenkiel and T. Imieliński. Infostations: The joy of
many-time many-where communications. WINLAB Techni-
cal Report 119, Apr. 1996.

[14] D. Goodman, J. Borrás, N. B. Mandayam, and R. D. Yates.
Infostations: A new system model for data and messaging
services. Proceedings of IEEE VTC, May 1997.

[15] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The dangers
of replication and a solution. Proceedingsof ACM SIGMOD,
pages 173–182, June 1996.

[16] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan-Kaufmann, 1993.

[17] T. Imieliński and B. R. Badrinath. Mobile wireless comput-
ing: Challenges in data management. Communications of the
ACM, 37(10):18–28, 1994.

[18] R. Katz and S. Weiss. Design transaction management. Pro-
ceedings of the 21st Design Automation Conference, pages
692–693, 1984.

[19] N. Krishnakumar and R. Jain. Mobile support for sales and
inventory applications.

[20] G. Kuenning and G. J. Popek. Automated hoarding for mo-
bile computers. Proceedingsof the 16th ACM Symposium on
Operating Systems Principles, Oct. 1997.

[21] G. Kuenning, G. J. Popek, and P. Reiher. An analysis of trace
data for predictive file caching in mobile computing. Pro-
ceedings of the USENIX Summer Conferenc, pages 291–303,
1994.

[22] P. Kumar and M. Satyanarayanan. Supporting application-
specific resolution in an optimistically replicated file system.
Proceedings of the Fourth IEEE Workshop on Workstation
Operating Systems, pages 66–70, Oct. 1993.

[23] H. T. Kung and J. T. Robinson. On optimistic methods of
concurrency control. ACM Transactions on Database Sys-
tem, 6(2):213–226, June 1981.

[24] Q. Lu and M. Satyanarayanan. Isolation-only transaction for
mobile computing. Operating Systems Review, 28(2):81–87,
May 1981.

[25] P. E. O’Neil. The escrow transactional method. ACM Trans-
actions on Database Systems, 11(4):405–430, Dec. 1986.

[26] P. E. O’Neil. Database—Principles,Programming,and Per-
formance. Morgan-Kaufmann, 1994.

[27] M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall Inc., 1991.

[28] S. H. Phatak and B. R. Badrinath. Multiversion reconcili-
ation for mobile databases. Proceedings of the 15th Inter-
national Conference on Data Engineering, pages 582–589,
Mar. 1999.

[29] M. Satyanarayanan. Coda: A highly available file system for
a distributed workstation environment. Proceedings of the
Second IEEE Workshop on Workstation Operating Systems,
pages 447–459, Sept. 1989.

[30] A. Silberschatz, H. Korth, and S. Sudarshan. Database Sys-
tem Concepts. McGraw-Hill, 1997.

[31] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M.
Theimer, and B. B. Welch. Session guarantees for weakly
consistent replicated data. Proceedings of the International
Conference on Parallel and Distributed Information Sys-
tems, pages 140–149, Sept. 1994.

[32] G. Walborn and P. Chrysanthis. Supporting semantics-based
transaction processing in mobile databasesystems. Proceed-
ings of the 14th Symposium on Reliable Database Systems,
Sept. 1995.

6

