Conflict Resolution and Reconciliation in Disconnected Databases*

Shirish Hemant Phatak

B. R. Badrinath

Department of Computer Science
Rutgers University
New Brunswick, NJ 08903
e-mail: {phatak,badri } @cs.rutgers.edu

Abstract

As mobile computing devices become more and more
popular, mobile databases have started gaining popularity.
An important feature of these database systemsistheir abil-
ity to allow optimistic replication of data by providing dis-
connected mobile devices the ability to perform local up-
dates. The key problem to this approach is the reconcilia-
tion problem, i.e. the problem of serializing potentially con-
flicting updates from disconnected clients on all replicas of
the database. Reconciliation of conflicting updatesisa fun-
damental problemfor mobiledatabaseswhere disconnected
updates are allowed. We examine some choices for pro-
viding solutionsto the reconciliation problem. We also de-
scribe a simple but illustrative sample application. Finally
we present our conclusions.

1. Introduction

Mobile databases are gaining popularity and are likely
to do so well into the future as portable devices become
more and more popular and common. One key aspect of
these database systems is their ability to deal with discon-
nection. Disconnection refers to the condition when a mo-
bile system is unable to communicate with some or dl of its
peers. In such a situation the mobile no longer has access
to shared data. Optimisticreplication approaches have been
proposed to deal with the disconnection problem [29]. In
such approaches, the mobileunit isallowed to locally repli-
cate shared data and to operate on this datawhile it isdis-
connected. The local updates can be propagated to the rest
of the system on reconnection. However, sincethelocal up-
dates potentially conflict with other updates in the system,
some form of conflict detection and resolutionis required.

*This research work was supported in part by DARPA under contract
numbers DAAHO04-95-1-0596 and DAAG55-97-1-0322, NSF grant num-
bers CCR 95-09620, IRI'S 95-09816 and Sponsors of WINLAB.

The architectures we consider are extended client server
architectures. Here, the primary copies of al dataitems are
stored on the server. All transactions must commit on the
server to be “globally” committed. The clients are allowed
tolocally replicate a subset of the current database state (i.e.
the set of all committed versions of al dataitems currently
in the database). Loca transactions on the client can oper-
ateon thislocal replicaand perform updates. Aslong asthe
clientisconnected to the server, each local transactionisau-
tomatically serialized on the server beforeit is alowed to
commit. However, if the client is disconnected and cannot
access the server, local transactionsare alowed to “locally”
commit in the sense that their updates are made available to
other local transactions after they have locally committed.
The client on reconnection propagates all local transactions
on the server for globally seridizability testing. A transac-
tion that can’t be seridized due to conflicts, or because it
read dirty data from another non-serializabile transaction,
must be rolled back. Otherwise, the transaction is globally
committed and its updates applied to the shared database.
Werefer to the process of serializability testing of and glob-
ally commit of disconnected transactions as reconciliation.

1.1. Related work

Recently lot of research has been directed at optimistic
replication schemes and at mobile databases and reconcilia
tion. Some early work can befoundin[3, 18, 19]. Recently,
Gray et. a. in[15] present a system architecture and arepli-
cation model for mobile databases. BAY OU [12], provides
another model for mobile data repositories. In BAYOU, in-
formation required for the reconciliation processisincluded
in each updateto the data repository. Walborn and Chrysan-
this[32] providean application semantics based approach to
the reconciliation problem.

Our approach to the reconciliation problem is presented
in[28]. In thispaper, we present our design choices and de-
cisions, and provide a sample application to show how the
algorithmin [28] can be put to work in thereal world.

1.2. Organization of the paper

We have organized the remainder of this paper as fol-
lows: section 2 describes the reconciliation process and the
choicesavailablefor reconciliational gorithms; section 3 de-
scribes a sample application; and section 4 briefly lists our
conclusions.

2. The Reconciliation Process

In most systems the replication (hoarding) and loca up-
date phases of a mobile's operation can be dealt with in a
straightforward fashion. There are of course notable excep-
tions, especialy when high speed mobility and tricklerein-
tegration are concerned. The reconciliation (reintegration)
phase of operation, on the other hand, provides interesting
challenges in any disconnected database model. In this sec-
tion, weexploresome of thealternativeswe have considered
for the reconciliation process.

2.1. Data-centric ver sus Transaction-centric recon-
ciliation

Reconciliation can occur at various granularities. Two
obvious choices are to run the process at the granularity of
individual dataitemsor thegranularity of entiretransactions
(i.e read sets and write sets of transactions). The former
is called data-centric; the latter transaction-centric. Data
centric reconciliation is the norm for most commercia dis-
connected databases.

To understand the difference between thetwo, let uscon-
sider a simple example. Consider asingle version database
consisting of a single dataitem, x = 1. Further suppose
that a mobile client downloads 2 and disconnects and runs
asingletransaction 71/ : = x + 1. Meanwhile, another
transactionT; onthe server updatesx = 2. Thehistory here
isasfollows:

History 1:

Server: wo[z] = 1, co, m1[z] = 1, wi[z] = 2, ¢1
Client: downloadedz = 1, ry/[z] = 1, wy/[z = = +
1] = 2, ¢y, reconcile

On reconnecting the reconciler finds that the value of =
read by the client transaction 73/ i.e. 1 is different from the
vaueof z at the server, 2 (Note that we are assuming a sin-
gle version system, so that any past values of = are “lost”).
Thusaconflict existsand conflict resol ution needsto be per-
formed.

Inthe data-centric approach, the system usesrulesto deal
with dataitem conflicts. In our example, the DBA could de-
finethefollowing rulefor z-conflicts using the commutativ-
ity of addition and subtraction:

s .8 c c
Tpew = Lold + Tnew — T downloaded

Here, z; .., isthe new valueto be written to the server data
set after conflict resolution, x?,, isthe value present on the
server before conflict resolution, z¢,,,, isthevalue of x cur-
rently present on the client, and x5, ..10adeq 1S the value of
x that the client downloaded.

Thus, on using thisruleon the server, we achieve thefol -

lowing history after conflict resolution:
History 2:
Server: wolz] =
2, c1,wez] = 3, ¢c

Here T, isanew transaction created on the server to re-
flect the client’s updates. Note how the value of x is mod-
ified. Also note that transaction 73, has now been trans-
formed into transaction T,. on the server, which is a blind
write. Thisisbecause T1.'soriginal read set is meaningless
and thereconciliation mechanism doesnot understand trans-
actions. To illustrate thisfurther consider the following his-
tory, where two transactions run on the client:

History 3:

Server: wo[z] = 1,co,m1[z] = L, wi[z] = 2,¢1
Client: downloadedz = 1, ry/[z] = 1, wy/[z = = +
1] = 2,c1,ror[z] = 2wz = v+ 1] = 3,¢1/,
reconcile

The reconciler merely sees the downloaded image and
the after image of = when the client reconciles updates.
Thus, the fact that two transactions were run on client is
lost (they are both replaced by asingletransaction T, onthe
server); however we get thefollowing history that isstill se-
mantically correct:

History 4:
Server: wol[z] =
2, c1,wez] =4, cc

The advantage of thisapproach isthat it isfast and cheap
to implement. Moreover, the client need not even main-
tain the transactions it executed, just the current and down-
loaded values of the dataitems. However, if the semantics
of the client transaction changes, e.g., suppose transaction
Ty, doubles the value of z, x = 2z, then our ruleis use-
lesssinceit might lead to incorrect execution. The problem
becomes intractabl e using the data-centric approach if there
are multiple transactions with different semantics. To com-
plicatetheissue, very few transactions access only one data
item. If someof the updatesfrom atransaction are accepted,
while othersare rejected, we al so compromise theatomicity
of the client transactions. The only solution, which isfol-
lowed by many commercial databases, istoforceall updates
to the be reconciled failing which the database is taken of -
fline pending manua reconciliation. Obviously, this would
lead to loss of throughput and database availability.

To solve these problems, we resort to transaction-centric
reconciliation. In thisapproach, client transactions are rec-
onciled as a unit, one a atime. Thus, entire transactions
are reconciled or rejected. The client can also specify the

1co,mi[z] = Llywifz] =

1co,mi[z] = Llywifz] =

semantics of the transaction in form of conflict resolution
routines or functions. Thus, if transaction 77, doubles the
valueof x, rather thanincrementingit our samplehistory be-
Comes:

History 5:

Server: wo[z] = 1, co, m1[z] = 1, wi[z] = 2, ¢1

Client: downloadedz = 1, ry/[z] = 1,wi/[x = 2 *

z] = 2,¢p,rofz] = 2,wy[z = x + 1] = 3,¢17,

reconcile

whichisidentical tothe earlier history 1 except for trans-

action semantics, but leadsto avery different history onrec-
onciliation! The history after 73 isreconciled is:

History 6:

Server: wolz] = 1,co,m[z] =

2,c1,m (7] = 2,wy [z =2%x] =4, ¢,
and after reconciling 7% is:

1, w1 [z]

History 7:
Server: wolz] = 1l,co,m[z] = Liwifz] =
2,c1,m (7] = 2wz = 2% 2] = 4,c),ry(z] =

4wylz=x+1] =5,ch

Note that thisis a semantic rather than syntactic redo of
the transactions. Also note how the approach easily takes
into account the different semantics of transactions 73, and
Ty Further, if the semantics of 77, and Ty, are unknown,
we must reject 71,. However, since Ty, 'sread set {x = 2}
matches the value on the server, we can still reconcile Ty,
and we get the following history:

History 8:
Server: wolz] = 1,co,m[z] =
2, 1,75 [T] = 2, wh [z] = 3, chy

Notethat only valuesof x intheread and write sets of T,
are being used and not the semantics of Ty.. This property
is very useful in mobile systems where transactions might
need to be prioritized for reconciliation over weak or inter-
mittent links as in case of cellular or infostation (see [13,
14]) coverage. Since transaction dependencies no longer
meatter, transactions can now be sent to the server in any or-
der. In our example T’ can be reconciled before T/ even
though 75, reads dirty data written by T7.. Thus, if Ty is
“more important” than 73.. then it can be sent to the server
first.

Asthisexampl e shows, transacti on-centricreconciliation
is considerably more powerful than data-centric. However,
it should be noted that transaction centric reconciliationim-
pliesmorework on the part of the client (entire transactions
must now be tracked), and more complicated algorithmsfor
reconciliation. Inthenext subsectionswe discusshow trans-
action centric reconciliation can be made even more power-
ful using weakened serializability model s and multiversion-
ing of data items on the server.

1wifz] =

2.2. Weakening Serializability Guar antees

The mobile environment is inherently susceptible to
weak consistency. This is due to the fact that we alow

disconnected client to locally modify their replicas of the
database. However, on reconnection, we require that these
updates be somehow appliedto the server dataset in aserial-
izable fashion. Thisturns out to be a mgjor hurdle for most
systems, since full seridizability is afairly pessimistic and
strong guarantee.

It stands to reason, therefore, that weskening the seri-
alizability requirement might lead to better performance of
the system. Data-centric modelsinherently rely on thisfact
to improve performance. This is because the data-centric
model assumes a fixed set of semantics for client transac-
tions which is coded into the reconciliation rules. These
fixed semantics can be used to bypass the seridizability
guarantees while still maintaining consistency of the data.

On the other hand, all effort must be made to provide as
strong a seriaizability guarantee as can be achieved with
reasonable performance. One such guarantee that works
naturally with multiversion systems is snapshot isolation
[7]. Thisguarantee is amost as strong as read committed,
but is weak enough to alow us to focus on just the write
setsof reconciling client transactions. Snapshot isolational-
lows histories in which transactions read from a snapshot
of the database and where concurrent transactionswritedis-
tinct dataitems (i.e. if adataitem is shared by two concur-
rent transactions, only one of the transactions may writeit).
Note that seriadizability additionally requires that only one
of the concurrent transactions modify shared dataitems (i.e.
if one of the concurrent transactions modify a shared data
item, then the other may not write any shared data item).

3. A sample application

Our work in [28] embodies much of the suggestionsin
the previous section. In particular, we have described an a-
gorithm that achieves multiversion transaction-centric rec-
onciliation and provides snapshot isolation to reconciling
transactions. Additionally, the algorithm can be easily mod-
ified to support full serializability. At the core of our algo-
rithm aretwo functionsdefined for each reconciling transac-
tion: the conflict resolution function C' R, which attemptsto
capture transaction semantics and the cost function C which
mesasures the cost of resolving conflicts.

In this section, we describe a sample application. Using
this application as a baseline we show that our conflict res-
olution modd isfar more powerful than othersdescribed in
literaturesince it inherently alows side effects, i.e. the abil-
ity for a client to manipulate data that it has not replicated.
We achieve thisbecause unlike most other systems, conflict
resolution is not optiona in our model, rather the conflict
resolution function must be invoked every time a transac-
tion is reconciled against a snapshot, even if the snapshot
matches the read set. (This requirement can be dropped for
efficiency reasons if side effects are not needed and we not

wish to detect phantoms.)

Consider a corporate database serving salepersons. The
salespersons use | aptops to access the centralized database
server. Orders are generated or modified a customer
sites while the database clients (laptops) are disconnected,
and the corresponding transactions reconciled when the
database clients (laptops) reconnect.

Let us assume the following schemas (amongst others)
exist on the server (primary keys are denoted by a single
* whileforeign keys are denoted by a double **):

CUSTOMER(CID*,CNAME,ADDRESS,...)
PART (PID* ,SUPPLIERID,PNAME)
ORDERBOOK (Ol D* PID**,SI ZE)
CUSTBOOK (COID*,CID,PID**,SI ZE)

Note that these schemas are not meant to be al therela
tionsin the database, rather these are only some of therela-
tionson the database server. A real database can have many
more relations.

The CUSTOMER rdlation has the customer informa:
tion. The PART relation contains the supplier information
for al parts. The CUSTBOOK is the order book for cus-
tomers, where al the orders for individua customers are
logged. Thisis used to create invoicess. ORDERBOOK
on the other hand represents the orders that need to be sent
to the supplier and aggregates al orders for a part from the
CUSTBOOK . Notethat thisimpliesthat thisset of schemas
is not normalized, nevertheless, it does illustrate a typical
application.

Let us assume that whenever a salesperson goes out the
salesperson locally replicatesthe CUSTBOOK, PART and
CUSTOMER (or asubset of each, since we do not require
that entire relations be replicated by the client). ORDER-
BOOK is not replicated, since the client will not generate
orders directly to suppliers. However, there is a tight in-
tegrity constraint between the ORDERBOOK and CUST-
BOOK whereby all thesum of al ordersfor agiven partin
the CUSTBOOK must be lessthan or equal to theordersize
onthe ORDERBOOK. (In practice, these valuesmight drift
as orders go out to the suppliers. However, we shall assume
the tight constraint for our example.)

Further, supposethat the sal esperson can execute thefol-
lowing types of transactions(amongst others): neworder (to
book new orders), modifyorder (to modify existing orders),
and cancelorder (to cancel and delete an order). As men-
tioned before the client can (but does not have to) specify
conflict resolution functions. In our example, these func-
tionsareintegratedintothetransactiontemplate, i.e. they are
provided asapart of thetransaction specification. However,
this need not be the case, and the conflict resolution func-
tions can be generated on demand during reconciliation or
not at al. The transaction templatesfor our sample transac-
tionsare presented asalgorithms1, 2 and 3. We use standard

embedded SQL like statements interspersed with non SQL
operations to define the transaction template. (To actually
instantiate the template al variables must be replaced by a
value.)

Algorithm 1 Transaction neworder

// get customer info from customer, if not found create a new customer
select £custid from CUSTOM ER where CNAME = £customername
if not found then
create new tempid
insert (tempid,customername,address) into CUSTOMER where
CID=ftempid
// now create anew customer order id
create new temporderid
// get part information
select £partid from PART where PNAME = £partname
if not found then
// Couldn’t find the part, so abort the transaction
abort
// Enter the order into the local order book
insert (£temporderid,£custid,£partid,£ordersize) into ORDERBOOK

CR:
// if customer id was temporary, indicating a new customer, get the new
permanent id for customer
if custid is temporary then
select £custid from CUSTOM ER with CNAM E= £customername
if not found then
// new customer, get permanent customer id and insert into server
create new custid for CUSTOMER
insert (£custid,£customer name, £address) into CUSTOMER
// Now get the permanent order ids
create new custorderid for CUSTBOOK
create new orderid for ORDERBOOK
// now placethe order in the server database
insert (£custorderid,£custid,£partid,£ordersize) into CUSTBOOK
// aso update the global order book
// Notethat the original transaction did not and could not touch ORDER-
BOOK
select £partid from ORDERBOOK
if found then
update ORDERBOOK wherePID = £partid, set £size= £size+ £or-
dersize)
else
create new oid for ORDERBOOK
insert (£oid,£partid,£ordersize) into ORDERBOOK

We shall assume for the purpose of this section that the
cost functionisuniformly 0. However, other cost functions
can be easily integrated into the framework provided here.

The CR functions not only capture the actions of the
client transactions, but can extend themto capture additional
semantics on the server. In our examples, ORDERBOOK
is used to place orderswith part suppliersand does not even
exist on the client. However the C'R routines always up-
date the ORDERBOOK. Since executing the functionsis
mandatory in our model, we are guaranteed that successful
reconciliation implies that these functions will be executed
andtheglobal ORDERBOOK will dwaysbe updatedtore-
flect the correct order sizes. Moreover, notice how the se-
mantics of a cancelorder are different from the semantics of

modifyorder or neworder. Such (and more) semantic hetero-
geneity isimpossible to capture in data centric reconcilia-
tion. (Notethat indata centricreconciliation, wewould need
to specify one action for al data conflicts on records of the
thesamerelation.) Notethat al insertsfromthe conflict res-
olution function become the new writeset of the transaction
during the reconciliation process.

Algorithm 2 Transaction modifyorder

// get customer order info from customer order book, if not found abort
select £custoid from CUSTBOOK where COI D=£custoid
if not found then
abort
// Now register the new order
update CUSTBOOK, set ORDERSI ZE=£newordersize

CR:
// find the order on the server database
select £custoid,£custid,£partid,fordersize from COID where
COI D=£custoid
// now place the order in the server db
insert (£custorderid,£custid,£partid,£newordersize) into CUSTBOOK
// also updatethe global order book
// Note that the original transaction did not and could not touch ORDER-
BOOK
select £size fromORDERBOOK where PID = £partid
if $size + $newordersize- $ordersize > 0 then
update ORDERBOOK where PID= £partid, set £size=£size +
£newordersize- £ordersize)
else
delete from ORDERBOOK wherePID = £partid

The neworder transaction, algorithm 1, is used by the
disconnected client to book a new order from a customer.
The transaction template we have presented takes into ac-
count the fact that the customer record may not be repli-
cated on the client (since the client is free to replicate only
a part of the CUSTOMER relation). However, note the
the non-availability of a part on the client replica of PART
is treated as a fatal error, since presumably a salesperson
must at least replicate information about parts sold by this
salesperson. Note that on the client, the neworder transac-
tion only accesses the CUSTOMER and PART S relations
and manipulatesthe CUSTBOOK relation (since these are
the only ones replicated on the clients). Nevertheless, the
conflict resol ution function does manipul ate the globa OR-
DERBOOK duringthereconciliation process, ensuring that
the globa state is aways consistent. Note that the changes
to ORDERBOOK made by the conflict resolution function
for agiveninstance of neworder are not applied tothe server
database until that instance globally commits. Also note
that the data that was read and modified need not be explic-
itly stored by thetransaction, since the system automeatical ly
storessuch values asa part of thetransactionsread and write
sets, which are required by our algorithm.

Transaction modifyorder, algorithm 2, is used to change
an order from a customer. As specified here it only allows
modification of existing customer ordersas replicated onthe

Algorithm 3 Transaction cancel order

// delete the order from the order book
// Note that this may fail if the customer’s order is not in the order book
delete CUSTBOOK with COID = £customerorderid
if not found then
warning: could not find orderid locally

CR:
// delete the order from the ORDERBOOK
// notethat this may succeed though the main delete failed if the order
// exists on the server but not on the client's ORDER book
select £custordersize,£partid from CUSTBOOK where COID = £cus-
toid
if not found then
error: could not find orderid
ese
select £orderid,£ordersizefromORDERBOOK wherePID = £partid
if ($ordersize > $custordersize) then
insert (£orderid,£ordersize,fordersize - £custordersize) into OR-
DERBOOK
ese
delete £orderid from ORDERBOOK
delete £custorderid from CUSTBOOK

client. Thisisastrict requirement; the template can be eas-
ily modified to alow changesto orders not replicated by the
client, and to have the conflict resolution function correctly
look up missing orders during reconciliation. Thisis done
by the cancel order transaction.

Transaction cancelorder, agorithm 3, is used to accept
cancelations for previous orders. Note that this template is
uniguein accepting cancel ations for orders not replicated on
the client database. In such a case the transaction merely
recordsthe orderid provided by the customer, and generates
awarning. The error is not generated until the conflict res-
olutionfunction is unableto locate the orderid on the server
database.

4. Conclusions

We have presented an algorithm that provides multiver-
sion reconciliation. The algorithmis uniquein that conflict
resolution and detection are integrated with global serializ-
ability testing.

A key concept in our algorithmisthat conflict resolution
and detection are decoupled from each other. The respon-
sihility for detecting conflicts lies with the server. Thisis
done by performing serializability testing on locally com-
mitted transactions from reconciling clients. On the other
hand, conflict resolution is the responsibility of the client.
The client manages this by providing the conflict resolution
and cost functions for each transaction. In the absence of
these functions, the server assumes adefault, which guaran-
tees snapshot isolation to “unmodified” client transactions.
We have illustrated the use of conflict resolution functions
using the salesperson example.

References

(1]

(2]

(3]

[4]

(5]

(6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

D. Agrawal and V. Krishnamurthy. Using multiversion
datafor non-interfering execution of write-only transactions.
Proceedingof the ACM SSIGMOD conference, pages98-107,
1991.

D. Agrawa and S. Sengupta. Modular synchronization
in multiversion databases: Version control and concurrency
control. Proceedingsof ACM SSGMOD Conference, pages
408-417, 1989.

R. Alonso and H. F. Korth. Database system issues in no-
madic computing. Proceedingsof the ACM SSGMOD, pages
388-392, June 1993.

B. R. Badrinath and S. H. Phatak. An architecture for mo-
bile databases. Department of Computer Science Technical
Report DCSTR-351.

B. R. Badrinath and S. H. Phatak. Database server organi-
zation for handling mobile clients. Department of Computer
Science Technical Report DCS-TR-324.

B. R. Badrinath and K. Ramamritham. Semantics-based con-
currency control: Beyond commutativity. ACM Transac-
tions on Database Systems, 17(1):163—199.

H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’ Neil,
and P. E. O'Neil. A critique of ansi sql isolation levels. Pro-
ceedings of ACM SGMOD Conference, pages 1-10, 1995.
P. A. Bernstein and N. Goodman. Concurrency control in
distributed database systems. ACM Computing Surveys,
13(2):185-221, June 1981.

S. Ceri and G. Pelagatti. Distributed Databases—Principles
and Systems. McGraw-Hill, 1984.

P. Chrysanthis. Transaction processing in mobile computing
environment. |EEE Workshop on Advancesin Parallel and
Distributed Systems, pages 77-82, Oct. 1993.

S. B. Davidson. Optimism and consistency in partitioned dis-
tributed database systems. ACM Transactionson Database
Systems, 9(3):456-481, Sept. 1984.

A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer,
and B. Welch. Thebayou architecture: Support for datashar-
ing among mobile users. Proceedingsof the | EEE Workshop
on Mobile Computing Systems and Applications, pages2—7,
Dec. 1994.

R. H. Frenkiel and T. Imielifski. Infostations: The joy of
many-time many-where communications. WINLAB Techni-
cal Report 119, Apr. 1996.

D. Goodman, J. Borras, N. B. Mandayam, and R. D. Yates.
Infostations: A new system model for data and messaging
services. Proceedingsof IEEE VTC, May 1997.

J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. Thedangers
of replication and asolution. Proceedingsof ACM SSGMOD,
pages 173-182, June 1996.

J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan-Kaufmann, 1993.

T. Imielihski and B. R. Badrinath. Mobile wireless comput-
ing: Challengesin datamanagement. Communicationsof the
ACM, 37(10):18-28, 1994.

R. Katz and S. Weiss. Design transaction management. Pro-
ceedings of the 21st Design Automation Conference, pages
692—693, 1984.

[19]

[20]

[21]

[22]

[23]

[24]

[29]
[26]
[27]
[28]

[29]

(30]

(31]

(32]

N. Krishnakumar and R. Jain. Mobile support for salesand
inventory applications.

G. Kuenning and G. J. Popek. Automated hoarding for mo-
bile computers. Proceedingsof the 16th ACM Symposiumon
Operating Systems Principles, Oct. 1997.

G. Kuenning, G. J. Popek, and P. Reiher. An analysisof trace
data for predictive file caching in mobile computing. Pro-
ceedingsof the USENIX Summer Conferenc, pages291-303,
1994,

P. Kumar and M. Satyanarayanan. Supporting application-
specificresolution in an optimistically replicated file system.
Proceedings of the Fourth IEEE Workshop on Workstation
Operating Systems, pages 66—70, Oct. 1993.

H. T. Kung and J. T. Robinson. On optimistic methods of
concurrency control. ACM Transactions on Database Sys-
tem, 6(2):213-226, June 1981.

Q. Luand M. Satyanarayanan. |solation-only transaction for
mobile computing. Operating SystemsReview, 28(2):81-87,
May 1981.

P. E. O'Neil. The escrow transactional method. ACM Trans-
actions on Database Systems, 11(4):405-430, Dec. 1986.
P.E. O’Neil. Database—Principles, Programming, and Per-
formance. Morgan-Kaufmann, 1994.

M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall Inc., 1991.

S. H. Phatak and B. R. Badrinath. Multiversion reconcili-
ation for mobile databases. Proceedings of the 15th Inter-
national Conference on Data Engineering, pages 582589,
Mar. 1999.

M. Satyanarayanan. Coda: A highly availablefile systemfor
a distributed workstation environment. Proceedings of the
Second |EEE Workshop on Workstation Operating Systems,
pages 447459, Sept. 1989.

A. Silberschatz, H. Korth, and S. Sudarshan. Database Sys-
tem Concepts. McGraw-Hill, 1997.

D.B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M.
Theimer, and B. B. Welch. Session guarantees for weakly
consistent replicated data. Proceedings of the International
Conference on Parallel and Distributed Information Sys-
tems, pages 140-149, Sept. 1994.

G. Walborn and P. Chrysanthis. Supporting semantics-based
transaction processing in mobile databasesystems. Proceed-
ings of the 14th Symposium on Reliable Database Systems,
Sept. 1995.

