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Abstract

In this paper we presentWINDSURF (Wavelet-Based
Indexing of Images Using Region Fragmentation), a new
approach to content-based image retrieval. The method
uses the wavelet transform to extract color and texture fea-
tures from an image and applies a clustering technique to
partition the image into a set of “homogeneous” regions.
Similarity between images is assessed by using the Bhat-
tacharyya distance to compare region descriptors, and then
combining the results at image level. Experimental results
on a testbed of 10,000 general-purpose images show that
our approach is very effective in retrieving images that are
“semantically” similar to the query image. Inparticular,
we compared results ofWINDSURF with the approach by
Stricker and Orengo [11], showing that a significant im-
provement is obtained in the quality of the result.

1. Introduction

The goal of content-based image retrieval (CBIR) sys-
tems is to define a set of properties (similarity features) able
to effectively characterize the content of images and then to
use such features during the retrieval. The features should
be simple enough to allow their automatic extraction but
meaningful enough to capture the image content.

Recent studies have highlighted the fact that features like
color, texture, shape, and spatial position indeed possess a
very high semantic value, and are effectively used in sev-
eral CBIR systems [6, 11, 8, 9]. The usual approach of
such systems is to represent each image as a feature vec-
tor and to assess similarity between images by way of a
metric function. The choice on the number and the type
of such features is peculiar to each method. As an exam-
ple, in the IBM QBIC System [6] a number of features is
extracted from each image, representing its color, texture
and shape. Stricker and Orengo [11] propose a different ap-
proach to color similarity, where each image is represented
by way of the first three moments of the distribution of each
color channel. The Photobook systems [8] uses a stochas-

tic model (Wold-decomposition) to assess the similarity be-
tween images based on texture.

All of the previously descripted approaches use global
featuresto represent image semantics. This is due to the
fact that all these methods consider color, texture and shape
as separate features, whereas, in order to fragment an image
in regions, it would be desirable to operate on a combined
space (e.g. on a color-texturespace). This issue has only
recently emerged as a need for CBIR in order to support
more specific queries (e.g. find all those images containing
a small grass region under a big blue region). As an exam-
ple, in [10] a system is proposed considering information
on both the spatial and the frequency domain in order to de-
compose each image into regions. The similarity between
two images is computed by taking into account the loca-
tion, the dimension, and the relative positioning of regions.
The major drawbacks of this approach are the quality of the
segmentation and the limited number of image regions. In
[1] the authors present the Blobworld system, where images
are represented as sets of blob, i.e. ellipses in the 2-D space,
corresponding to regions of the image which are homoge-
neous for color and texture. Each blob is represented by a
6-D vector (HSV descriptors for color, anisotropy, orienta-
tion, and contrastfor texture).

In recent years a number of new techniques has been de-
veloped for signal analysis, that can be applied to the com-
pression, the edge detection, and the texture analysis of im-
ages. Such techniques operate in the time-frequency do-
main by using the wavelet transform (WT, [5]) to obtain
a multi-resolution analysis of the space. As an example,
the WBIIS system [14] uses Daubechies’ wavelets [5] to
build the vector representing each image. This approach
offers a better frequency location with respect to other clas-
sic algorithms, and the quality of its results is high when
the query image contains high-frequency information due to
sharp color variations. However, the WBIIS system assess
the similarity between images by using whole pixel matri-
ces, therefore operating in a very high-dimensional space.

In WINDSURF we use the Discrete WT (DWT) to ex-
tract a set of features representing each image in the color-



texture space. Such features are then used to fragment the
image into homogeneous regions by using a clustering al-
gorithm. Finally, similarity between images is computed by
comparing wavelet coefficients for the extracted regions and
combining the results.

1.1. The Wavelet Transform

The basic idea of the wavelet transform is similar to that
of Fourier transform: Approximate a signal through a set
of basic mathematical functions. However, wavelet func-
tions are able to give a multi-resolution representation of
the signal, since each frequency component can be analyzed
with a different resolution and scale, whereas the Fourier
transform divides the time-frequency domain in an homo-
geneous way. This allows the WT to represent disconti-
nuities in the signal by using “short” functions and, at the
same time, to emphasize low frequency components using
“wide” functions.

The Continuous WT decomposes a signal f into a set of
scaling functionsby using a wavelet functions basis:

(Waf)(b) =

Z
f(x) �

a;b
(x)dx (1)

The basis of wavelet functions is obtained by scaling and
shifting a single mother waveletfunction  (x):

 a;b(x) =
1
p
a
 

�
x� b

a

�
(2)

The mother wavelet should only satisfy the zero-average
condition, i.e.

R
 (x)dx = 0. The Discrete WT is obtained

by taking a = 2n and b 2 Z. The oldest, and simplest,
example of a mother wavelet is the Haar function, which
was first introduced in 1910, and is composed by a pair of
rectangular pulses:

 (x) =

8<
:

1 0 � x < 1=2
�1 1=2 � x < 1
0 otherwise

(3)

The following example shows how a discrete signal is de-
composed using the Haar wavelet.

Example 1 Consider a discrete signal x =
(x0; x1; : : : ; x2L�1) having length 2L. The DWT is
computed through the following steps:

1. For each pair of consecutive samples(x2i; x2i+1),
(0 � i < 2L�1), computea1

i
= 1p

2
(x2i + x2i+1)

andd1
i
= 1p

2
(x2i � x2i+1).

2. Consider the new signal(a10; : : : ; a
1
2L�1�1) and pro-

ceed as in step 1., obtaininga2
i

and d2
i
(0 � i <

2L�2).

3. Continue until a single value ofaL0 is obtained.

The Haar transform ofx is given by the set of “difference”
valuesdl

i
(0 < l � L, 0 � i < 2L�l), and the “aver-

age” value for the last levelaL0 . In the frequency domain,
the valuesal

i
correspond to the output of alow pass filter,

thus representing low-frequency information, whereas the
dl
i

values correspond to the output of ahigh pass filter, thus
representing high-frequency information. 2

In our case, the signal is a 2-D color image, where
the “time” domain is the spatial location of pixels and the
“frequency” domain is the color variation between adja-
cent pixels. In order to build a wavelet basis for the 2-D
space, one can start from the 1-D domain and define the
prototype function as the product of two 1-D basis func-
tions: 	j1;k1;j2;k2(x1; x2) =  j1;k1(x1)� j2;k2(x2). For an
N �M image, the first transformation step decomposes the
signal into four sub-images of size N=2�M=2, represent-
ing the sub-bands in the frequency domain. The obtained
sub-images are labelled as LL;LH;HL;HH , whereL and
H represent low- and high-frequency information, respec-
tively, and the first and the second position refer to the hor-
izontal and the vertical direction, respectively. The second
transformation level decomposes theLL sub-image, obtain-
ing four images of size N=4 �M=4, and so on. Figure 1
shows the decomposition of the frequency domain at differ-
ent scale levels: Ad

2�L
f contains low-frequency informa-

tion, whereas D1
2j
f , D2

2j
f , and D3

2j
f contain horizontal,

vertical and diagonal information, respectively.

2-3D1 f

2-3D2 f 2-3D3 f
2-2D1 f

2-2D2 f 2-2D3 f

2-1D1 f

2-1D2 f 2-1D3 f

2-3A3 f

Figure 1. The sub-images Dk

2j
f;Ad

2�L
f in the

“wavelet” image representation.

2. The Windsurf Approach

In WINDSURF the similarity between a pair of images
is assessed by way of the similarity between their regions.
Each region is represented by means of a (restricted) do-
main of features and the match between regions is mea-
sured using a specific metric function on such a domain.
The global architecture of the system is sketched in Figure



2. Each image is processed through a number of steps de-
scribed in the following:

DWT The image is analyzed in the time-frequency domain
using a 2-D discrete wavelet transform.

Clustering The image is fragmented into a set of regions
using the wavelet coefficients (clustering features).

Feature Indexing Regions so obtained are stored using a
set of similarity features.

In WINDSURF each image is divided into the correspon-
dent color channels and the DWT is applied to each channel.
It is well known [9, 14] that the RGB color space is not suit-
able to reflect human perception of color. To overcome this
problem, we considered the transformation of each image in
a color space where each color component is perceptually
indipendent and uniform. In particular, we investigated the
HSV and the OPP color spaces [9]. Experimental results,
however, showed that the HSV color space is most appro-
priate for our approach, since in the HSV space the WIND-
SURF fragmentation technique generates perceptually better
regions with respect to those generated in the OPP space. In
the following, the j-th wavelet coefficient in the S sub-band
(S 2 fLL;LH;HL;HHg) of the l-th DWT level will be

indicated as wl;S
j

=
�
w
l;S
0j
; w

l;S
1j
; w

l;S
2j

�
, where c 2 f0; 1; 2g

denotes a color channel.
In the WINDSURF system we used the Haar wavelet

as a special case of the bihorthogonal wavelet of Cohen-
Daubechies-Feauveau (CDF), as provided by the WAILI
software library [12].

2.1. Region Fragmentation

To fragment each image into regions, we use a cluster-
ing algorithm on the coefficients obtained through the DWT.
We use a simple k-meansalgorithm with a validity function
which is slightly different from that proposed for the fuzzy
k-means [15].

Given the setX = fx1; : : : ; xNg ofN points to be clus-
tered, let V = f�1; : : : ; �kg be the set of cluster centroids.
The goal of the k-means algorithm is to minimize the func-
tion

J =
kX
i=1

X
xj2Ci

Æ(xj ; �i)
2 (4)

where Æ(xj ; �i) is the distance between xj and the cen-
troid �i of the i-th cluster Ci. Obviously, the value of J
depends both on the value of k and on the choice of the
distance function Æ(), i.e. different choices of Æ() lead to
different results. In order to provide semantically meaning-
ful regions, we ignore clusters having size smaller than a
minimum value.

For Æ() we adopted the Mahalanobis distanceapplied on
the 3-D wavelet coefficients of the LL sub-band of the 3-rd
level, i.e. xj = w

3;LL
j

. Since we only use wavelet coef-
ficients to divide the image into regions, no spatial infor-
mation is taken into account, i.e. image pixels are grouped
together only using information on color and texture. This
could be viewed as a limit of the system, since spatial
queries, where the user requests for images having a spatial
arrangement of regions similar to that of the query image,
cannot be issued. However, by ignoring spatiality of re-
gions, the WINDSURF system is able to consider as similar
images having “similar” regions with different positioning
(and, by the way, also different orientation, rotation, etc.).

The Mahalanobis distance between points xi and xj is
given by:

Æ(xi; xj) = (xi � xj)
T �
�
Cl;S

��1
� (xi � xj) (5)

where Cl;S =
n
cov

l;S
c;d

o
is the covariance matrix of the

points, where diagonal values represent energies and non-
diagonal elements represent correlations. By using the Ma-
halanobis distance we obtain both a normalization of vec-
tors (given by diagonal elements of the covariance matrix),
and the fact that texture characteristics are also taken into
account. Indeed, as recent studies demonstrate [13], tex-
ture information is captured by the cross-correlation be-
tween color channels, i.e. by the off-diagonal coefficients
of matrix C l;S. In our case, C l;S is a 3 � 3 matrix whose
coefficients covl;S

c;d
are given as:

cov
l;S
c;d

=
1

N

0
@ NX

j=1

wl;S
cj
w
l;S
dj

�
NX
j=1

wl;S
cj

�
NX
j=1

w
l;S
dj

1
A

c; d 2 f0; 1; 2g: (6)

The k-means algorithm provides, as the output, the N
points divided in k clusters. However, different values of
the parameter k lead, as intuition may suggest, to different
results. To compute the “optimal” value for k, we iterate it
between a minimum (kmin = 2) and a maximum (kmax =
10) value, choosing the best solution which minimizes the
validity V defined as:

V =
J

N � d2min

+
kX
i=1

1

1 + kCik
(7)

where J is given by Equation 4, and dmin =
mini6=jfd(�i; �j)g is the minimum distance between clus-
ter centroids. The first term of Equation 7 represents the
goal function J divided by dmin, i.e. clusters well separated
provide better solutions, whereas the second term represents
a penalty factor for small clusters. As an example, Figure 3



Figure 2. Steps for image features indexing in the WINDSURF system.

shows the result of the k-means algorithm applied to the im-
age on the left, when k = 2, k = 10, and k = 4, the latter
being the optimal solution according to the validity func-
tion of Equation 7. In the clustered images, points having
the same color belong to the same cluster.

The validity criterion expressed by Equation 7 is not ap-
plicable when k = 1. However, our approach should deal
with general-purpose images which can also present an uni-
form pattern, i.e. that are perceptually homogeneous. In
such cases, we do not apply the clustering and represent
images globally as a single region. We choose if an image
should be clustered by looking at the trace TC3;LL of the co-
variance matrix C3;LL used for clustering.1 Intuitively, if
the eigenvalues have all small values, then the coefficients
have a small variability, and the image can be considered as
an homogeneous pattern.

3. Similarity Assessment

Our clustering algorithm takes into account only the low-
frequency information to fragment the image (this is intu-
itive, since regions are low-frequency information). How-
ever, when comparing two images, our goal is to use the
information provided by all the frequency sub-bands. To
this end, regions are represented by way of the coefficients
of the covariance matrices in all the sub-bands. In short, the
similarity features for each regionRi are defined as:

Size The number of points in the region, size(R i).

Centroid The centroid of Ri is defined through a 12-D
vector VRi = (�LL

i
; �LH

i
; �HL

i
; �HH

i
), where, for

each sub-band S, �S
i

is a 3-D point representing the
centroid coefficient for each color channel.

Features These correspond to the coefficients of the 3� 3
covariance matrices, C3;S

Ri
, of the points contained in

Ri. Since the covariance matrices are symmetrical, we
only store 6 values for each matrix C 3;S

Ri
, obtaining a

24-D vector CRi .
1Indeed, the trace of a matrix is equal to the sum of its eigenvalues.

In the WINDSURF system, the similarity between two
regions, Ri and Rj , is computed as follows:

sim(Ri; Rj) = �ij � �ij � h(d(Ri; Rj)) (8)

where d() is a distance function, h() is a so-called corre-
spondence function[4] relating distance values to similarity
scores, �ij and �ij are similarity coefficients.

The �ij coefficient, used to favor match between large
regions, takes into account the relative size of the regions
with respect to those of the images they were extracted
from. The �ij coefficient takes into account the similar-
ity in size between the two regions. If Ri is extracted from
image I and Rj from image J , �ij and �ij can be defined
as:

�ij =
size(Ri) + size(Rj)

size(I) + size(J)
(9)

�ij = 1�
jsize(Ri)� size(Rj)j
size(Ri) + size(Rj)

The correspondence function h() is used to transform
distance values into similarity scores. The function h :
<+
0 ! [0; 1] has to satisfy the following properties: h(0) =

1 and d1 � d2 ) h(d1) � h(d2);8d1; d2 2 <+
0 . In all

the experiments, we used h(d) = e�d=�d , where �2
d

is the
distance variance computed over a sample of regions.

Finally, distance between two regions is computed by
way of the Bhattacharyya metric[2], used to compare el-
lipsoidal clusters:

dS(Ri; Rj)
2 =

1

2
ln

0
BB@

����C
3;S

Ri
+C3;S

Rj

2

�������C3;SRi

��� 12 � ���C3;SRj

��� 12
1
CCA+

+
1

8

2
4�VRi � VRj

�T �
 
C3;S
Ri

+ C3;S
Rj

2

!�1
�
�
VRi � VRj

�35
(10)

where jAj is the determinant of matrix A. Note that Equa-
tion 10 is composed of two terms, the second one being the



(a) (b) (c) (d)

Figure 3. (a) The input image. (b) Clusters obtained for k = 2. (c) Clusters obtained for k = 10. (d)
Clusters obtained for k = 4 (optimal solution).

Mahalanobis distance (Equation 5) between regions cen-
troids, using the average covariance matrix. The first term
is used to compare the covariance matrices of the two re-
gions. Indeed, if the two regions have the same centroid,
the second term of Equation 10 has a value of zero, and the
first term is used to distinguish between the two regions (see
Figure 4).

Rj

Ri

Ri
V Rj

V=

Figure 4. Two regions with different shape
and coincident centroids.

The overall distance between regions Ri and Rj is as-
sessed by computing Equation 10 over all the frequency
sub-bands: d(Ri; Rj)

2 =
P

S

S � dS(Ri; Rj)

2, where
dS(Ri; Rj)

2 is computed by way of Equation 10 and co-
efficients 
S are used to give different weights to frequency
sub-bands. In our experiments we equally weigh the fre-
quency coefficients, therefore it is 
LL = 
LH = 
HL =

HH = 1.

When computing Equation 10, we have to take into ac-
count particular cases arising when dealing with singular
covariance matrices. Such situations arise when dealing
with uniform images (e.g. a totally black image), where the
covariance between coefficients is null.

3.1. Image Similarity

Having defined how the similarity between regions is
computed, we now need to assess the overall similarity be-
tween two images (e.g. the query image Q and a DB image

T ). When matching regions inQwith regions in T , we have
to satisfy two basic constraints:

1. A region ofQ cannot match with two different regions
in T (Figure 5 (a)).

2. Two different regions of Q cannot match with a single
region of T (Figure 5 (b)).

To this end, each region qi of Q is associated to its “best
match” region tj in T by only considering d(qi; tj), i.e. re-
gions size is not taken into account. If, however, two regions
qi and ql ofQ are associated to the same region tj of T , only
the best match is kept, e.g. if d(qi; tj) < d(ql; tj), then the
match between ql and tj is removed. The best match of re-
gion qi in image T is indicated as tj(i). Note that the best
match for a certain region qi can be undefined.

qi

t k

jt

Q T

(a)
qi

jt

ql

Q T

(b)

Figure 5. A region ofQ cannot match with two
regions of T (a) and two regions of Q cannot
match with the same region of T (b).

We are now ready to define the overall similarity be-
tween two images Q and T as:

SIM(Q;T ) =
X
i

sim(qi; tj(i)) = (11)

=
X
i

�ij(i) � �ij(i) � h(d(qi; tj(i)))

Of course, sim(qi; tj(i)) = 0 if tj(i) is undefined.



The user can now express a query by giving an input
image and an integer value n. The WINDSURF system will
retrieve the n DB images most similar to the query image,
with ties arbitrarily broken (n-nearest neighbor query). At
the moment, the system performs a sequential scan of the
regions in the DB, but we are considering a speed-up of the
retrieval phase by exploiting a metric tree (like M-tree [3])
to index regions features.

4. Experimental Results

In order to evaluate the effectiveness of our approach, we
compare the results of a number of queries in the WIND-
SURF system with those obtained by applying the (SO)
method proposed in [11]. For our experiments, we consid-
ered a dataset composed by 10,000 images extracted from a
CD-ROM of IMSI-PHOTOS.2 The regions database is com-
posed of over 40,000 regions. These, of course, are only
preliminary results comparing performance of the WIND-
SURF system with those of a simple method which was
available to us at the time of this work. In the future, see
Section 5, we plan to perform an exhaustive comparison of
results between WINDSURF and other CBIR systems.

From a semantic point of view, results obtained by the
WINDSURF system are considerably better with respect to
those obtained by the SO method, as it is clear by observ-
ing the following results, which are only a minor part of
those obtained during experimentation. As an example,
consider Figure 6: Results for SO (SO1 - SO5) contain im-
ages semantically uncorrelated to the query image (e.g. im-
age (SO3), a house, and image (SO5), a harbour). As for the
results for the WINDSURF system (WS1 - WS5), all present
a “sky” region and a darker area.

The superior effectiveness of our approach is confirmed
when considering “difficult” queries, i.e. queries having a
low number of similar images in the DB. In Figure 7 we
show the results for a query having only two similar images:
For SO, none of the two images is included in the result.
The WINDSURF system, on the other hand, retrieves both
images.

Finally, we compared the two approaches when dealing
with “partial match” queries, i.e. queries specifying only a
part of the image. As an example, consider Figure 8, where
we query the system giving, as the query image, an image
obtained by “cropping” a DB image, in this case, the dome
of St. Peter in Rome. For WINDSURF all the retrieved im-
ages refer to St. Peter, with the exception of image (WS3),
representing the dome of St. Marcus in Venice. Indeed, the
query image was extracted from image (WS1). When we
anaylze the result obtained by SO, we see that only an image
referring to the query image is retrieved in third position,
whereas other images, with the exception of image (SO2)

2IMSI MasterPhotos 50,000: http://www.imsisoft.com

(query) (SO1) (SO2)

(SO3) (SO4) (SO5)

(query) (WS1) (WS2)

(WS3) (WS4) (WS5)

Figure 6. Results for the “mountains” query.

(again the dome of St. Marcus), are totally uncorrelated to
the query image.

5. Conclusions

In this work we introduced WINDSURF, a new ap-
proach to content-based image retrieval. The novelty of
our approach is given by the use of a combined transform-
clustering approach. In particular, each image is analyzed in
the spatial-frequency domain by applying a discrete wavelet
transform on the color channels. This corresponds to con-
sider combined color and texture information to represent
the image content, as opposed to previous approaches which
only consider color and texture as separate features. Such
information is then used to divide each image into a num-
ber of regions, which are therefore homogeneous in color
and texture. Similarity between images is then assessed by
means of a distance function comparing region features and
combining the results at a global level. Finally, we have ex-
perimentally demonstrated the superior retrieval effective-
ness of the WINDSURF approach over an established color
retrieval method [11].

The major current limit of the presented approach is its
low speed during the retrieval phase, since the regions DB
is sequentially scanned. To overcome this problem, we
are considering to index region features using an M-tree
[3]. Other planned work includes the comparison of the
WINDSURF approach to other CBIR systems, like QBIC
[6], WALRUS [7], and WBIIS [14].



(query) (SO1) (SO2)

(query) (WS1) (WS2)

Figure 7. Results for the “bridge” query.
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