
Using the Distance Distribution for Approximate Similarity Queries
in High-Dimensional Metric Spaces

Paolo Ciaccia
DEIS - CSITE-CNR

University of Bologna, Italy
pciaccia@deis.unibo.it

Marco Patella
DEIS - CSITE-CNR

University of Bologna, Italy
mpatella@deis.unibo.it

Abstract

We investigate the problem ofapproximate similar-
ity (nearest neighbor) search in high-dimensional metric
spaces, and describe how thedistance distribution of the
query object can be exploited so as to provide probabilistic
guarantees on the quality of the result. This leads to a new
paradigm for similarity search, called PAC-NN (probably
approximately correct nearest neighbor) queries, aiming to
break the “dimensionality curse”. PAC-NN queries return,
with probability at least1 � �, a (1 + �)-approximate NN
– an object whose distance from the queryq is less than
(1 + �) times the distance betweenq and its NN. Analyt-
ical and experimental results obtained for sequential and
index-based algorithms show that PAC-NN queries can be
efficiently processed even on very high-dimensional spaces
and that control can be exerted in order to tradeoff the ac-
curacy of the result and the cost.

1. Introduction

Answering similarity queries is a difficult problem in
high-dimensional spaces [4, 15], and recent studies also
show that this phenomenon, known as the “dimensional-
ity curse”, is not peculiar to vector spaces, but can also af-
fect more generic metric spaces [12]. The dimensionality
curse plagues modern database applications, such as multi-
media, data mining, decision support, and medical applica-
tions, where similarity is usually evaluated by first extract-
ing high-D feature vectorsfrom the objects, and then mea-
suring the distancebetween feature values, so that similarity
search becomes a nearest neighbor(NN) query over the fea-
ture space. Dimensionality curse, which is strictly related
to the distribution of distances between the indexed objects
and the query object [4] – intuitively, if these distances are
all similar, i.e. their varianceis low, then searching is dif-
ficult – vanifies the usage of both multi-dimensionaltrees
(such as the R�-tree [2] and the SR-tree [11]) and metric
trees (e.g. the M-tree [6]), the latter only requiring that the

distance is a metric, thus suitable even when no adequate
vector representation for the features is possible.

To obviate this unpleasant situation, several approximate
solutions have been proposed that allow errors in the result
in order to reduce costs [1, 16]. In this paper we propose
a probabilistic approach, in which a NN query can spec-
ify two additional parameters: the accuracy� allows for a
certain relative error, and the confidence� guarantees, with
probability at least (1 � �), that � will not be exceeded.
This generalizes both correct (C-NN) and approximately
correct (AC-NN) NN queries, where the latter only con-
sider �. The basic information used by our PAC (proba-
bly approximately correct) NN algorithms is the distance
distribution of the query object, which is exploited to de-
rive a stoppingcondition with provable quality guarantees.
We first evaluate the performance of a sequential PAC-NN
algorithm which, although effective in many cases, has a
complexity still linear in the dataset size. We then provide
experimental evidence that the index-based PAC algorithm,
which we have implemented in the M-tree, can lead to sub-
stantial performance improvement. Although we use the
M-tree for practical reasons, our results apply to anymulti-
dimensional or metric index tree. We also demonstrate that,
for any value of �, � can be chosen so that the actualrelative
error stays indeed very close to �. This implies that an user
can indeed exert an effective control on the quality of the
result, trading off between accuracy and cost.

1.1. Basic Background

In our generic scenario, objects are points of a metric
spaceM = (U ; d), where U is the domain of values and d
is a metric used to measure the distance between points of
U . For any real value r � 0, Br(c) = fp 2 U j d(c; p) � rg
denotes the r-ball of point c, i.e. the set of points whose
distance from c does not exceed r. Given a set S � U of n
points, and a query point q 2 U , the nearest neighbor(NN)

of q in S is a point p(q) 2 S such that rq
def
= d(q; p(q)) �

d(q; p);8p 2 S.



An optimal index-based correct nearest neighbor (C-
NN) algorithm is described in [3]. The algorithm is termed
optimal since it only accesses those nodes of the index
whose region intersects the NN ballBrq(q). The algorithm
can be used with any multi-dimensional and metric index
tree which is based on a recursive and conservative decom-
position of the space, as it is the case with the R�-tree, the
M-tree, and many others. However, the algorithm is effec-
tive only when the dimensionality D of the feature space is
low (i.e.� 10), after which a sequential scan becomes com-
petitive [15]. Intuitively, this is because in high-D spaces rq

is very likely to be “large”, thus the probability that a data
region intersects the NN ball Brq(q) approaches 1.

In order to reduce costs, approximateNN algorithms
have been proposed. The quality of the result of such algo-
rithms is typically evaluated by the effective (relative) error,
�e� , defined as:

�e� =
r

rq
� 1 (1)

where r � rq is the distance between q and the approxi-
mate NN returned by the algorithm. Approximately correct
NN (AC-NN) algorithms [1, 16] use an accuracyparameter
(relative error) �, to bound �e� , i.e. they return a point p0

(called a (1 + �)-approximate NN) for which:

d(q; p0) � (1 + �)rq (2)

surely holds. The optimal algorithm for C-NN queries can
be easily adapted to support AC-NN queries, by pruning all
those nodes N whose region, Reg(N), does not intersect
the ball Br=(1+�)(q), with r being the distance from q of the
“current” (approximate) NN.

Even if performance of AC-NN algorithms can in prin-
ciple be tuned by varying �, two problems arise. First, as
results in [1] (for the BBD-tree) and [16] (for the M-tree)
show, �e� � � usually holds, with ratios typically in the
range [0:01; 0:1]. This implies that users cannot directly
control the actual quality of the result, rather only a much-
higher upper bound. Second, since the cost of AC-NN is
still exponential in D, performance improvements are pos-
sible only in low-D [1] but not in high-D [16] spaces.

An alternative approach to AC-NN queries [16] consid-
ers to use the relative distance distribution ofq, formally
defined as:

Fq(x) = Prfd(q; p) � xg (3)

where p is distributed according to a measure of probabil-
ity over U , denoted as �. This leads us to consider random
metric spaces, M = (U ; d; �) [7]. To help intuition, we
slightly abuse terminology and also call � the datadistribu-
tion over U . Since Fq depends on q, different query objects
can have different “views” of the space [5].

Example 1 Consider the metric spaces lD
1;U

=

([0; 1]D; L1; U), where points are uniformly (U ) dis-
tributed over the D-dimensional unit hypercube, and
the L1 “max” metric is used, L1(pi; pj) = maxkfj

pi[k] � pj [k] jg � 1 . When the query point coincides
with the “center” of the space, qcen = (0:5; : : : ; 0:5), it is
easy to derive that Fqcen(x) = (2x)D , whereas when the
query point is one of the 2D corners of the hypercube, it is
Fqcor (x) = xD . 2

The Fq-based algorithm in [16] stops the search when it
finds a point p0 whose distance r = d(q; p0) from q is such
that

Fq(r) � � (4)

where � is an input parameter. The idea is that when Eq. 4
holds for, say, � = 0:01, one obtains an approximate NN
which is among the best 1% cases. Although interesting,
this approach does not provide guarantees on the quality of
the result, since �e� is not bounded by any function of �.
Furthermore, it is not clear how � has to be chosen and how
it affects the tradeoff between cost and accuracy.

2. Probably Approximately Correct Similarity
Queries

The new approach we propose considers a probabilistic
framework, and can be regarded as an extension of AC-NN
queries where the error bound � can be exceeded with a cer-
tain probability �.

Definition 1 Given a datasetS, a query pointq, an accu-
racy parameter�, and aconfidence parameter� 2 [0; 1),
the result of a PAC-NN (probably approximately correct)
query is a pointp0 2 S such that the probability thatp0 is
inside theB(1+�)rq(q) ball is at least1� �, that is,

Prf�e� > �g � �

The result of a PAC-NN query is said to be a(1 + �; �)-
approximate nearest neighbor ofq.

The characterization of PAC-NN algorithms relies on infor-
mation on the distance distribution. However, unlike [16],
we make use of the distribution of the distance of the near-
est neighbor ofq with respect to a dataset of size n, which
is given by [7]:

Gq(x)
def
= Prfrq � xg = 1� (1� Fq(x))

n (5)

For instance, by referring to Example 1, it is Gqcen(x) =

1� (1� (2x)D)n and Gqcor (x) = 1� (1� xD)n.
Given Gq, the basic idea of PAC-NN search is to avoid

to search in a region which is “too close” to the query point,
since, in high-D spaces, it is unlikely that any data point
will be found therein because rq is usually “large”.



Definition 2 Given a datasetS of n points, a query pointq
with nearest neighbor distance distributionGq , and a con-
fidence parameter� 2 [0; 1), the�-radius of q, denotedrq

�
,

is the maximum value of distance fromq for which the prob-
ability that exists at least a pointp 2 S with d(q; p) � rq

�

is not greater than�, that is,rq
�

def
= supfr j Gq(r) � �g. If

Gq is invertible, then:

rq
�
= G�1

q (�) (6)

For instance, for the metric spaces lD
1;U

, when the query
point is qcen = (0:5; : : : ; 0:5) it is

rq
cen

�
= G�1

qcen
(�) =

1

2

�
1� (1� �)1=n

�1=D
(7)

When D = 50, n = 106, and � = 0:01, then rq
cen

0:01 � 0:346
results, that is, with probability 0:99 the hypercube centered
on qcen with side 2� 0:346 is empty.

The definition of �-radius immediately leads to a stop-
ping conditionwith probabilistic guarantees. Let p0 be the
closest point to q discovered so far by a PAC-NN algorithm,
and let r = d(q; p0). If

r � (1 + �)rq
�

def
= rq

�;�
(8)

then p0 is a (1 + �; �)-approximate nearest neighbor of q.
This holds since Prf�e� > �g � � iff Pr fr=rq � 1 > �g =
Prfrq < r=(1 + �)g � �. Since the last probability equals
Gq(r=(1 + �)) and r=(1 + �) � rq

�
= G�1

q
(�), it follows

that Gq(r=(1 + �)) � Gq(G
�1
q (�)) = �.

Figure 1 provides a graphical intuition on how param-
eters of a PAC-NN algorithm are used. Given a value of
�, the algorithm first determines the �-radius rq

�
, then stops

the search according to the condition in Equation 8, i.e. as
soon as a point p0 is found whose distance from q does not
exceed (1 + �)rq

�
= rq

�;�
, which is conveniently called the

(�; �)-radiusof q.

0

0.2

0.4

0.6

0.8

1

0 1
 

δ

rδ
q (1+ε)rδ

q

Fq
Gq

Figure 1. How Gq , �, and � interact in PAC-NN
search.

2.1. Analysis of the PAC-NN Sequential Search

When the dataset S is stored as a sequential file, an AC-
NN search (� = 0) would necessarily scan the whole file. In
order to estimate the cost, measured as the number of dis-
tance computations, of a PAC-NN query, we can consider a
random sampling process with repetitions(i.e. a point can
be examined more than once). This is adequate as long as
there is no correlation between the distances of the points to
q and their positions in the file, n is large, and the estimated
cost is (much) lower than n. On the other hand, when the
analysis derives that the cost is comparable to n, then pre-
dictions only provide a (non-tight) upper bound of cost.

With the above assumptions, the cost M is a geomet-
ric random variable, where the probability of success of a
“trial” is Fq(r

q

�;�
), thus its expected value is simply the in-

verse of the trial success probability, E[M ] = 1=Fq(r
q

�;�
).

It follows that the cost does not change as long asrq
�;�

is

kept constant. As an example, given the value of rq
cen

�
in

Eq. 7, it is obtained:

E[M ] =
1

(1 + �)D(1� (1� �)1=n)
(9)

Thus, as long as � = const.=(1 � (1 � �)1=n)1=D � 1 the
cost will not change. Results in Table 1 are in line with the
analysis (this, as expected, breaks down when E[M ] � n
does not hold).1

As to the effective error, its distribution is derived to be:

Prf�e� � xg = 1�Gq(r
q

�;�
=(1 + x)) +

+

Z
r
q

�;�
=(1+x)

0

Fq((1 + x)y)� Fq(y)

Fq(r
q

�;�
)� Fq(y)

gq(y) dy (10)

where gq is the density ofGq and 1�Gq(r
q

�;�
) = Prf�e� =

0g. The denominator “normalizes” the possible distances to
those that can result when rq = y � rq

�;�
, that is [y; rq

�;�
].

This, together with E[M ] = 1=Fq(r
q

�;�
), completely char-

acterizes the tradeoff between accuracy and cost. Table 2
shows some statistics on the effective error distribution.

� �e� (avg) �e� (max) �e� > � (% of cases)

0:01 0:087 0:234 1:79

0:05 0:135 0:304 2:95

0:10 0:144 0:304 6:03

0:20 0:179 0:343 17:95

Table 2. Statistics on the effective error. � =
0:2; n = 105; D = 40.
1The table simply reports n if E[M ] � n results from the analysis.



� # � ! 0:01 0:05 0:1 0:2 0:5

0:01 106 (982869) 106 (952869) 106 (843738) 106 (663542) 533381 (391212)

0:05 756640 (470758) 148255 (154617) 72176 (71741) 34079 (33479) 10971 (11944)

0:10 7221 (7138) 1415 (1410) 689 (683) 326 (327) 105 (107)

Table 1. Expected and (actual) costs of the PAC-NN sequential algorithm. n = 106; D = 100.

3. The Index-based PAC-NN Algorithm

From Eq. 9 it can be derived that the PAC-NN sequen-
tial algorithm has complexity at least O(n��1(1 + �)�D),
thus linear in n and unsuitable for (very) large datasets, es-
pecially when � and � have both small values. The index-
based PAC-NN algorithm in Figure 2 follows the outline of
the optimal algorithm in [3], where a priority queue con-
taining references to the tree nodes is used. The queue PQ
is ordered on increasing values of dmin(q; Reg(N)), i.e. the
minimum distance between q and the region of nodeN . The
stopping condition (Eq. 8) is at line 8. The � parameter is
also used in lines 5 and 11 to prune tree nodes, as it happens
in AC-NN search.

Algorithm PAC-NN

Input: index tree T , query object q, �, �, Gq ;
Output: object p0, a (1 + �; �)-approximate nearest neighbor of q;

1. Initialize the priority queue PQ with a pointer to the root node of T ;
2. Let rq

�
= G

�1
q (�); Let r =1;

3. While PQ 6= ; do:
4. Extract the first entry from PQ, referencing node N ;
5. If dmin(q; Reg(N)) � r=(1 + �) then exit, else read N ;
6. If N is a leaf node then:
7. For each point pi in N do:
8. If d(q; pi) < r then: Let p0 = pi, r = d(q; pi);

If r � (1 + �)rq
�

then exit;
9. else: (N is an internal node)
10. For each child node Nc of N do:
11. If dmin(q; Reg(Nc)) < r=(1 + �):
12. Update PQ performing an ordered insertion

of the pointer to Nc;
13. End.

Figure 2. The index-based PAC-NN algorithm.

Example 2 Refer to Figure 3, where the metric space is
(<2; L2), points are indexed by an M-tree, whose regions
are balls, Reg(N) = BrN (pN ), and dmin(q; Reg(N)) =

maxfd(q; pN ) � rN ; 0g. In Figure 3 (a) p0 is the cur-
rent NN, r = d(q; p0), and the queue contains pointers
to nodes A, B, C, and D. Node A is first accessed,
since dmin(q; Reg(A)) = maxfd(q; pA) � rA; 0g = 0 <
r=(1 + �), object p00 becomes the new current NN, and
r = d(q; p00) is set. Then (Figure 3 (b)) the search is im-
mediately stopped, since r � rq

�;�
, and point p00 is returned.

2

pC

rC

pD

rD

rB

pB

p

rA

pA

p’’

/ (1+ε)r

p’

q

r

(a)

pC

rC

pD

rD

rB

pB

p

rδ,ε
q q

p’’
r

(b)

Figure 3. PAC-NN search in the metric space
(<2,L2).

In the experiments we present, each dataset is indexed
by an M-tree and results are averaged over 100 queries.
We concentrate on uniform datasets (with clustereddatasets
both costs and effective errors are (much) lower, as ex-
pected). For simplicity, we approximate the query distance
distribution, Fq , with the overall distance distribution, F ,
obtained by sampling the dataset at hand. From a practi-
cal point of view estimation errors are minimal, as demon-
strated in [7].2 We only present results where the “cost” is
measured as the number of distance computations, since I/O
costs (page reads) follow a similar trend, up to a scale fac-
tor which depends on the average number of entries in each
node.

2Alternatively, a better approximation of Fq can be obtained by using
the techniques described in [5].



PAC-NN vs AC-NN Search. Figure 4 (a) contrasts PAC-
NN and AC-NN search costs in high-D spaces. In such
spaces, where the intrinsic dimensionality of the dataset is
high, AC-NN algorithms (� = 0) are not able to speed up
the search with respect to a sequential scan and even dimen-
sionality reduction techniques [13] fail, whereas the cost of
PAC-NN queries remains quite low. Figure 4 (b) presents a
more detailed analysis for the case D = 40.

1

10

100

1000

10000

100000

1 10+6

20 30 40 50 60 70 80 90 100

co
st

Dim

δ=0
δ=0.01
δ=0.05
δ=0.1
δ=0.2
δ=0.5

(a)

1

10

100

1000

10000

100000

1 10+6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

co
st

ε

δ=0
δ=0.01
δ=0.05
δ=0.1
δ=0.2
δ=0.5

(b)

Figure 4. Cost of AC-NN and PAC-NN queries
in high-D spaces. n = 105. (a) As a function
of space dimensionality when � = 0:1; (b) As
a function of � when D = 40.

Tuning PAC-NN Search. Figure 5 (a) relates �e� to
the cost, and confirms that �e� is almost independent of the
specific � and � values, provided they are chosen to yield
a given cost level. This is consistent with our statement of
Section 2.1, i.e. both �e� and the search cost only depend
on rq

�;�
.

A realistic scenario for an user issuing PAC-NN queries
on a dataset for which are available such kind of statistics
is as follows. The user can either specify a value for the
effectiverelative error or limit the cost to be paid. In the
first case the system can first choose � � �e� and then,
from Figure 5 (b), the appropriate value for �. In the second
case these steps have to be preceded by an estimate of �e�
based on Figure 5 (a).

Sequential vs Index-based PAC-NN Search. In Ta-
ble 3 we present some results which contrast sequential

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

ε ef
f

cost

δ=0.01
δ=0.05
δ=0.1
δ=0.2
δ=0.5

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

δ

εeff

ε=0
ε=0.1
ε=0.2
ε=0.3
ε=0.4
ε=0.5

(b)

Figure 5. (a) Effective error vs. cost; (b) � vs.
�e� . In both cases it is D = 40.

and index-based PAC-NN algorithms on a 40-dimensional
dataset with 105 uniformly distributed points. The improve-
ment obtainable through indexing is always consistent (be-
tween 1-2 orders of magnitude), and only reduces when the
search becomes easier (i.e. for higher values of � and/or �,
not shown in the table).

4. Conclusions

In this work we have introduced a new paradigm for ap-
proximatesimilarity queries, in which the error bound �
can be exceeded with a certain probability �, where both
� and � can be chosen on a per-query basis. We have shown
that PAC-NN queries can lead to remarkable performance
improvements in high-D spaces, where other algorithms
would fail because of the “dimensionality curse”. Our algo-
rithms necessitate of some prior information on the distance
distributionof the query point, which, using results in [7],
can be however reliably approximated by the overall dis-
tance distribution of the dataset. We have also shown that it
is indeed possible to exert an effective control on the qual-
ity of the result, thus trading off between accuracy and cost.
This is an important issue which has gained full relevance
in recent years [14].

Other approaches, besides those in [1, 16], exist to sup-
port approximate NN search. Indik and Motwani [10]



� # � ! 0:01 0:05 0:1 0:5

0:1 13498 (93726) 5494 (69704) 3614 (66667) 849 (24741)

0:2 3474 (67548) 1307 (31021) 898 (20741) 108 (4598)

0:3 898 (21232) 257 (4058) 118 (2752) 13 (555)

Table 3. Costs of index-based and (sequential) PAC-NN algorithms. n = 105, D = 40.

consider a hash-based technique able to return a (1 + �)-
approximate NN with constantprobability. However, this
technique is limited to vector spaces and Lp norms, its pre-
processing costs are exponential in 1=�, and � needs to be
known in advance. Also, no possibility to control at query
time the probability of exceeding the error bound is given.
This is also the case for the solution in [9], which applies
to exact NN search over generic metric spaces, but whose
space requirements depend on the error probability.

In the future, we plan to extend our approach to k-nearest
neighbors queries and to develop a cost model for predict-
ing the performance of the index-based PAC-NN search.
Another interesting research issue would be to extend our
results to the case of complexNN queries, where more than
one similarity criterion has to be applied in order to deter-
mine the overall similarity of an object [8].

References

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu. An optimal algorithm for approximate nearest
neighbor searching in fixed dimensions. To appear on Jour-
nal of the ACM. A preliminary version has appeared in Pro-
ceedings of the 5th Annual ACM-SIAM Symposium on Dis-
crete Algorithms.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R�-tree: An efficient and robust access method for
points and rectangles. In Proceedings of the 1990 ACM SIG-
MOD International Conference on Management of Data,
pages 322–331, Atlantic City, NJ, May 1990.

[3] S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel. A
cost model for nearest neighbor search in high-dimensional
data space. In Proceedings of the 16th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS’97), pages 78–86, Tucson, AZ, May 1997.

[4] K. Beyer, J. Goldstein, R. Ramakhrishnan, and U. Shaft.
When is “nearest neighbor” meaningful? In Proceedings
of the 7th International Conference on Database Theory
(ICDT’99), pages 217–235, Jerusalem, Israel, Jan. 1999.

[5] P. Ciaccia, A. Nanni, and M. Patella. A query-sensitive cost
model for similarity queries with M-tree. In Proceedings
of the 10th Australasian Database Conference (ADC’99),
pages 65–76, Auckland, New Zealand, Jan. 1999.

[6] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In Pro-
ceedings of the 23rd International Conference on Very Large

Data Bases (VLDB’97), pages 426–435, Athens, Greece,
Aug. 1997.

[7] P. Ciaccia, M. Patella, and P. Zezula. A cost model for sim-
ilarity queries in metric spaces. In Proceedings of the 16th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS’97), pages 59–68, Seattle, WA,
June 1998.

[8] P. Ciaccia, M. Patella, and P. Zezula. Processing complex
similarity queries with distance-based access methods. In
Proceedings of the 6th International Conference on Extend-
ing Database Technology (EDBT’98), pages 9–23, Valencia,
Spain, Mar. 1998.

[9] K. L. Clarkson. Nearest neighbor queries in metric spaces.
In Proceedings of the 29th Annual ACM Symposium on The-
ory of Computing (STOC’97), pages 609–617, El Paso, TX,
May 1997.

[10] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In Proceed-
ings of the 30th Annual ACM Symposium on Theory of Com-
puting (STOC’98), pages 604–613, Dallas, TX, May 1998.

[11] N. Katayama and S. Satoh. The SR-tree: An index structure
for high-dimensional nearest neighbor queries. In Proceed-
ings of the 1997 ACM SIGMOD International Conference
on Management of Data, pages 369–380, New York, NY,
May 1997.

[12] V. Pestov. On the geometry of similarity search:
Dimensionality curse and concentration of mea-
sure. Technical Report RP-99-01, School of Math-
ematical and Computing Sciences, Victoria Uni-
versity of Wellington, New Zealand, Jan. 1999.
http://xxx.lanl.gov/abs/cs.IR/9901004.

[13] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest
neighbor search. In Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, pages
154–165, Seattle, WA, June 1998.

[14] N. Shivakumar, H. Garcia-Molina, and C. Chekuri. Fil-
tering with approximate predicates. In Proceedings of the
24rd International Conference on Very Large Data Bases
(VLDB’98), pages 263–274, New York, NY, Aug. 1998.

[15] R. Weber, H.-J. Schek, and S. Blott. A quantitative analy-
sis and performance study for similarity-search methods in
high-dimensional spaces. In Proceedings of the 24th Inter-
national Conference on Very Large Data Bases (VLDB’98),
pages 194–205, New York, NY, Aug. 1998.

[16] P. Zezula, P. Savino, G. Amato, and F. Rabitti. Approxi-
mate similarity retrieval with M-trees. The VLDB Journal,
7(4):275–293, 1998.


