
 

 

 

 

Repositorio Institucional de la Universidad Autónoma de Madrid 

https://repositorio.uam.es  

Esta es la versión de autor de la comunicación de congreso publicada en: 
This is an author produced version of a paper published in: 
 

11th International Workshop on Database and Expert Systems Applications. 
Proceedings. IEEE, 2000. 231-235 

 
DOI:    http://dx.doi.org/10.1109/DEXA.2000.875032  
 
Copyright: © 2000 IEEE 
 
El acceso a la versión del editor puede requerir la suscripción del recurso 

Access to the published version may require subscription 
 

https://repositorio.uam.es/
http://dx.doi.org/10.1109/DEXA.2000.875032


Small-World Topology for Multi-Agent Collaboration

Carlos Aguirre
Carlos.Aguirre@ii.uam.es

Jaime Martı́nez-Muñoz
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Abstract

This paper studies a specific methodology for the design
of different topologies in multi-agent networks with the cen-
tral objective of maximizing agent collaboration. In order
to obtain this feature we rely on the use of a recently discov-
ered type of topology, namely ”small-world” (SW) topol-
ogy. This topology has been shown to present several ad-
vantages such as enhancement of signal-propagation speed,
computational power, and synchronizability. We have ex-
tended the analysis to multi-agent networks searching for
the topologies that maximize the flow of entities (data, en-
ergy, goods, etc...) with different complexities in the be-
haviour of each agent in the network.

1 Introduction

This paper presents the different collaboration dynamics
that appear in networks of simple agents connected under
different topologies. In particular we will show that a spe-
cial kind of topologies called small-world (SW) defined by
Watts and Strogatz (1998) [1] enhances agent collaboration
by maximizing flow.

The cooperative behavior of large assemblies of dynam-
ical elements has been the subject of many investigations
both in dynamical systems [2, 3, 7] or in holonic systems
[4, 5, 6]. In all these investigations the connectivity between
the elements of the network were local, global all-to-all, or
random sparse connectivity. However few research projects
have investigated the influence that all the different connec-
tion topologies may play on the dynamics of the network
[8]. Other research projects have attempted to design coop-
eration strategies in multi-agent networks. A comprehen-

sive review is beyond the scope of this short article. We
can only provide a few examples and list others. Coopera-
tion among autonomous agents has been studied by the Dis-
tributed Artificial Intelligence (DAI) community for several
years. Yet there has been a resurgence due to the growth of
the autonomous agents scientific community. [9, 10, 11].

In this paper we present different topologies for multi-
agent networks giving rise to the different functional prop-
erties. Small-world (SW) topologies maximize flow of en-
tities while maintaining high reliability and network con-
struction low cost.

On the other hand, random connection topologies also
give rise to high flow yet they have high construction cost
and low transmission reliability. Finally regular topologies
show the lowest flow, although they have a low construction
cost and high reliability. Hence, SW networks take advan-
tage of the best features of regular and random networks.

To construct the multi-agent network we decompose the
problem methodology in two main thrusts: single agent dy-
namics and network topologies. Then we study the dynam-
ics of the multi-agent network under different configura-
tions.

2 Single Agent Dynamics

Each agent in the multi-agent network handles informa-
tion (or in general any other kind of commodity) and is ca-
pable to pass/communicate part of it to its neighbour agents
in the network. In a general setting we define an agent by
its perceptions, actions, believes, goals, and the correspond-
ing mappings (Corbacho & Arbib, 1997). In this paper
the internal structure of each individual agent is kept to a
minimum to emphasize on the emergence of collective be-
havior. The network is composed of a set of autonomous
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agents communicated by connections which may have dif-
ferent properties. The dynamics of each agent in its most
general form is described by

����� �� � �������� ���������� ������� (1)

where � is the number of agents in the system and �� 	 ver-
ify � 
 �� 	 
 � , ����� represents the state of the agent � at
time � and ���� represents the effective connectivity matrix
(neighborhood) of agent �. The input arriving from other
agents is gathered by �. The manner in which the current
state and the current input from the neighbor agents affects
the agent’s next state is computed by the transition mapping
� . � , and � may be different in different multi-agent net-
works as it will be shown in Section 5 that describes specific
systems. For instance � may have a saturation to reflect the
fact that the agent capacity is limited. In all the different
agent dynamics we will use

���������� ������ �

��
����� ���

������������ (2)

but change the way in which w is computed for different
multi-agent networks. � represents the effective connec-
tivity in the sense that, for any two particular nodes �, 	 in
the network that are connected by an edge � ��� , this path
will have an effective connectivity of ���� . In any topology
where � and 	 are not connected by any path, � ��� will have
no meaning (usually equivalent to � ��� � �).

3 Local vs. Global Control

The global principle from where we depart is the max-
imization of the flow for a large number of agents. There
are in general two extreme approaches, on one hand global
rules (totalitarian systems) that will respond to a measure of
the total information in the system, and on the other hand
local rules (democratic systems) inspired by biological sys-
tems (for example: hebbian rules and virus replication). We
understand that global rules imply expensive computational
procedures whereas local adaptation means cheap proce-
dures that do not need a supervisor. We investigate under
which conditions local interactions can lead to a good per-
formance as compared to global maximization. Moreover,
we will pursue the measure of the structural properties of
the different network topologies in order to prove the advan-
tages of using small-world topologies to increase the flow in
the multi-agent network.

In what follows we will introduce a global function to be
maximized ��
� and we shall show that local interactions
can give rise to the global maximization when the topology
(dependent on 
) lies within the small-world region.

4 Network Topologies for Agent Collabora-
tion

We have tested three different kinds of connectivity pat-
terns: regular, random and small-world. In all cases we
included � � ���� agents. To interpolate between regular
and random networks we follow the procedure described by
Watts and Strogatz [1] which we summarize here for con-
venience. Starting from a ring lattice with � vertices and
� edges per vertex, we rewire each edge at random with
probability 
. This procedure allows us to “tune” the graph
between regularity �
 � �� and randomness �
 � ��, and
probe the intermediate region � 
 
 
 � where the small-
world topology lies. We also quantify the structural prop-
erties of these graphs, following Watts and Strogatz (1998),
by their characteristic path length ��
� and clustering coef-
ficient ��
�. Where ��
� is defined as the number of edges
in the shortest path between two vertices, averaged over all
pairs of vertices. On the other hand, the clustering coeffi-
cient ��
� is defined as follows. suppose that a vertex � has
�� neighbors; then at most ����� � ���� edges can exist
between them. Let �� denote the fraction of these allow-
able edges that actually exist. Define � as the average of
�� over all �. Fig. 1a replicates that of Watts and Strogatz
[1] for ease of reference and to verify our computations.

5 Results: Specific Test Cases

We are working towards a framework for multi-agent
collaboration. Yet we must verify the framework on dif-
ferent specific examples. We have designed several multi-
agent systems simulations where the main goal of the col-
laboration will be the maximization of flow through the net-
work. Next we introduce a set of experiments under differ-
ent conditions (i.e. different agent dynamics and topolo-
gies) to explore the space of configurations. For every
multi-agent system we will define a global function that we
would like to be maximized by the overall network. Then
we check whether local interactions can lead to the maxi-
mization of this function. In general the features that we
would like to maximize are efficiency, and reliability while
minimizing the multi-agent network construction cost. Let
us now introduce several examples that show the global be-
havior of a network of multiple agents under different dy-
namics.
Experiment 1: A unit of reproducible commodity (data,
believes, information, etc...) is generated in one (randomly
chosen) of the agents (source) ������	
����� � � and is dis-
tributed (copied) across the network of agents. This could
represent, for example, the behavior of a set of Internet
routers with a routing algorithm based on inundation rout-
ing (used in many military networks). Each agent can in-
teract with all the agents it is directly connected to in the
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Figure 1. A. Characteristic path length ��
� and clustering coefficient ��
� for the family of randomly
rewired graphs (� � ���� and � � ��), normalized to the values ���� and ���� of the regular case. B.
Global function ��
� for the whole range of networks for Experiment 1. The triangles correspond to
a single random target and the squares to the case when all the nodes in the network have received
the information. Both curves are averages over 100 realizations of the simulation.

network. Each connection has a transmission reliability be-
tween pairs of agents. The transmission reliability reflects
the fact that longer connections are more prone to loss (mes-
sage lost in Internet, LANs, etc.). This is implemented by
assigning a transmission probability 
��� to each connection
in the network, assigning lower probabilities to longer con-
nections and calculating ������� accordingly,

������� �

�
� if 
��� � �
� otherwise

(3)

where � is a random variable in the interval ��� �	 under an
uniform distribution. The transition function corresponds to

�������� ��� �

�
� if ����� � � and �� � �
� otherwise

(4)

Initially we compute the construction cost for the differ-
ent topologies ��
�. The construction cost is computed by
considering all the links of a regular graph with the same
cost and considering the links created during the re-wiring
procedure described in section 4 with a higher cost (twice

the value of a short link). Then we allow the agents to inter-
act and we measure the transmission efficiency as the time
it takes for the commodity (in the source) to reach all the
nodes in the network � �
� (as well as half of them). We
then construct a function to be maximized that takes into ac-
count both the cost and the transmission reliability, namely

��
� �
�

�
����

� �
�

��
�

� � ���
��
�

��
�

�� (5)

where ��
� corresponds to the maximum time it takes for
the unit of commodity reach all the nodes in the network for
all networks, and ��
� corresponds to the maximum cost
for all the networks. In fig. 1B we plot ��
� for each of the
different networks characterized by its probability 
. No-
tice that the maximum value occurs in the region in which a
high��
� and a low��
� occur simultaneously. This is pre-
cisely the S-W region. The triangles correspond to a single
target node and the squares to the case when the informa-
tion has arrived to all the nodes, in both cases averaged over
100 trials.
Experiment 2: A packet of non-reproducible commodity



(energy, chemical substance, etc...) is sent to one and only
one of the neighbors due to the nature of this kind of com-
modity. To avoid any a priori bias the neighbor is selected
randomly. The agent dynamics is described by (1), (2), (4),
and

������� �

�
� if 	 � � and 
��� � �
� otherwise

(6)

where � is a discrete random variable in the interval ��� �	
under an uniform distribution. The function ��
� for each
of the different networks is represented in Fig. 2A. Again,
the maximum value occurs in the region in which a high
��
� and a low ��
� occur simultaneously.
Experiment 3: Each agent may have any number of units
of commodity 
� with � � � � � � �. Yet for ease of analysis
we still assume it can only send one unit at a time. Each
agent maintains a queue of commodities � �, and sends the
first unit of commodity in its queue (removing the unit from
its queue) to one of its neighbors (except for the target agent
��
	��� that does not send any commodity). The receiving
agent inserts the unit of commodity at the end of its queue.
Again the neighbor that receives the unit of commodity is
selected randomly. In this experiment we consider � �
� as
the time it takes for all the units to reach a randomly se-
lected target agent (averaged over 100 simulations) using
(5) as function to be maximized. In this case let � ���� repre-
sent the state of the queue of agent � at time �, and the opera-
tors ���� and ���� �� the standard ’remove from head’ and
’add packet � to tail’ queue operators and ���� represent
no operation over the queue. According to this, the agent
dynamics are described by

������� �

�
�������� ��������� if ���� � � and 	 �� ������
�������� otherwise

(7)
where ���� is defined as in (8). Fig. 2B shows ��
� for
the different topologies generated by probability varying 
.
Surprisingly, in spite of the very different system dynamics,
��
� has a very similar shape as in the other experiments
pointing out the robustness of the framework. Again the
maximum values of ��
� are obtained in the S-W region.
Directionality constraints:

In many MAS, the connections between agents cannot
be considered as bidirectional, in the following experiment
we followed the networks generation procedure described
in section 4 but considering the links as directed edges in
the graph.

The results obtained resembled the ones obtained when
the connections where considered as bidirectional. The
small-world area in directed graphs is also present at the
same range of probabilies than for undirected graphs. The
maximum value of the function ��
� was obtained again in
the small-world area. Figures are ommited as they are very

similar to the images obtained when considering undirected
graphs.

6 Discussion

In this paper we have presented a set of multi-agent sim-
ulations that can be applied to specific real-life examples in
a better way than other approaches that don’t take in account
factors such as cost, loss of information, dissipation of en-
ergy, etc. A specific example could be the electric power
grid; this has been already investigated by [1] (for the elec-
tric power grid of the western United States), our approach
allows to introduce another important feature: the cost. The
introduction of the cost in the analisys of the different pos-
sible topologies allows a realistic study of the more suitable
topology for this particular system. Another example could
be a network of robots trying to interchange information
within an environment containing several obstacles.

For instance, two robots are connected if they are able
to interchange information (one or both can move in order
to get a distance short enough to establish communication).
Long connections could mean that there are some robots
that can move through some obstacles that others don’t.
These long distance robots could have a very high cost com-
pared with normal robots and will also spend much more
energy in their movements.

Networks of Internet routers could be another interesting
real-life example of system that can use these results in or-
der to maximize the information flow in the network with
the lowest cost. In [11] a Collective Intelligence approach
is proposed in order to control Internet traffic routing. We
strongly believe that this approach can be complemented
with a convenient selection of the network topology. There
are many other systems and dynamics that can improve their
performance through the use of these SW topologies.

7 Conclusion

In this paper we have investigated a variety of possible
network topologies. Each one gives rise to different prop-
erties. We have reviewed both regular and random topolo-
gies and have introduced new results on small-world net-
works. The main conclusion of this research project is that
small-world topologies seem to give rise to cheaper, more
efficient, and more reliable cooperation channels for multi-
agent systems.
We thank the Dirección General de Enseñanza Superior e
Investigación Cientı́fica for financial support (PB97-1448).
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