
 1

A Power-Aware Technique to Manage Real-Time Database Transactions in
Mobile Ad-Hoc Networks **

Le Gruenwald , Shankar M. Banik
University of Oklahoma

School of Computer Science
Norman, OK 73019

(ggruenwald@ou.edu; smbanik@ou.edu)

** This work is partially supported by the National Science Foundation grant No. EIA-9973465

Abstract
A mobile ad-hoc network (MANET) is a collection of

wireless autonomous mobile hosts which are free to move
randomly, thus forming a temporary network without any
fixed backbone infrastructure. MANET is typically used in
battlefields and disaster recovery situations where
temporary network connectivity is required. Techniques
that manage database transactions in MANET need to
address additional issues such as host mobility, energy
limitation and real-time constraints. This paper proposes
a solution for transaction management that reduces the
number of transactions missing deadlines while
balancing the energy consumption by the mobile hosts in
the system. This paper then presents a performance study
by means of simulation.

1. Introduction

Transaction Manager (TM) of a mobile multidatabase
management system is responsible for providing reliable
and consistent units of computing to its users. There are
two typical mobile computing architectures. In the
General Mobile Computing Architecture, there is a fixed
Mobile Support Station (MSS) that supports all mobile
hosts (MHs) roaming within its cell. When an MH
migrates to a new cell, it is under the control of the new
cell’s MSS. In the second architecture called Mobile Ad-
Hoc Network (MANET) Architecture, all MHs are
roaming and the network that interconnects these MHs is
a wireless network with a frequently changing topology,
and there are no fixed infrastructure and fixed MSSs.
MANET is widely used in battlefields and in disaster
recovery situations ([7][10]).

Much research in the area of mobile database
transaction management was based on the first
architecture ([15], [12], [6], [11], [5]), while none on the
second one. Supporting database transaction services in
MANET raises new issues. If an MH stores a database,
then other MHs will try to submit transactions and get
data from it. In this environment both the user and the
data source will be moving. So finding a route from one
MH to another MH is necessary before submitting a
transaction. Moreover applications in this environment are
time-critical which require their transactions to be
executed not only correctly but also within their
deadlines. Thus the TM at the MH where the database is
stored has to consider the mobility of the submitting MHs
as well as the deadlines of the transactions. Another
important issue in MANET is power or energy restriction
on MHs because MHs are not connected to direct power
supplies and many of them will run on small and low-
power devices. So the TM should also provides a balance
of energy consumption among MHs so that MHs with low
energy do not run out of energy quickly, and thus the
number of MH disconnections can be reduced.

This paper presents a transaction management solution
that takes ad-hoc networks, real-time constraints, and
energy efficiency into consideration. The rest of the paper
is organized as follows. Sections 2 and 3 describe the
proposed MANET architecture and transaction
management solution. Section 4 presents the simulation
results. Finally Section 5 concludes the paper with future
research.

2. Proposed Architecture

Depending on communication capacity, computing
power, disk storage, size of memory and energy

 2

limitation, MHs can be classified into two groups: 1)
computers with reduced memory, storage, power and
computing capabilities, which we will call Small Mobile
Hosts (SMHs), and 2) classical workstations equipped
with more storage, power, communication and computing
facilities than the SMHs, which we will call Large Mobile
Host (LMHs). Every MH has a radius of influence. An
MH can directly communicate with other MHs, which are
within its radius of influence. If two MHs are outside each
other's radius of influence, they will be able to indirectly
communicate with each other in multiple hops using other
intermediate MHs between them [2].

To reduce energy consumption, an MH can operate in
three modes - Active mode, Doze mode and Sleep mode.
In the active mode, the MH performs its usual activities,
its CPU is working and its communication device can
transmit and receive signals. In the doze mode, the CPU
of the MH will be working on a lower rate but it can
examine messages from other MHs, and the
communication device can receive signals in this mode; so
the MH can be awaken by a message from other MHs [3].
In the sleep mode, both the CPU and the communication
device of the MH are suspended. Due to energy and
storage limitations, we will assume that only LMHs will
store the whole DBMS and SMHs will store only some
modules of the DBMS (e.g. Query Processor) that allow
them to query their own data, submit transactions to
LMHs and receive the results. The DBMSs at LMHs can
be heterogeneous.

This proposed architecture can be used to support
many applications, such as battlefields and disaster
recovery. In battlefields, portable computing device with
soldiers will work as SMHs while computers stored in
tanks and humvees will work as LMHs. These LMHs can
store tactical information regarding enemy and other units
in a database and the SMHs can communicate with the
LMHs to get information from the database (e.g. which
unit of enemy is located where, what is their strength). In
a disaster recovery operation, the palmtops carried by
rescuers can be viewed as the SMHs and the computers in
mobile hospitals can be viewed as the LMHs. The LMHs
can keep the information of all the medical equipments in
their databases, and the SMHs can query about the
inventory and inform the LMHs to keep ready a certain
arrangement for a particular patient whom they have
found in their site.

3. Proposed Solution

3.1. Key Information Stored at Mobile Hosts

Each MH will store some key information in its local
database. The ID field uniquely identifies an MH. Every
MH will get its coordinates from GPS [9] periodically and
store them in the Position field to be used at the time of
routing. The Energy_level field records the amount of

energy available at that time. Each LMH also maintains a
Global Schema - an integration of all local schemas from
all LMHs, and the ID of the LMH for each local schema.
This Global Schema is required to identify which data
object is stored in which LMH. Each LMH will
periodically broadcast its ID, Position and Enery_level,
which the SMHs and other LMHs will record in their local
databases after listening to the broadcast channel.

3.2. Transaction Properties and Classification

In our real-time environment, transactions have
deadlines and are classified into two categories: firm and
soft. Firm transactions must be aborted if they miss their
deadlines while soft transactions still can be executed
after their deadlines have expired. The value of a firm
transaction becomes zero after its deadline expires [14].
From the value function describing tasks with soft
deadlines in [1], we can define soft transactions with two
deadlines: it still can be executed after its first deadline
expires, but its value decreases after the first deadline and
becomes zero after the second deadline. A global
transaction may consist of a number of sub-transactions
running on other LMHs. A sub-transaction is either vital
or non-vital [4]. All the vital sub-transactions of a global
transaction must succeed in order for it to succeed.

3.3. Overview of the Proposed Transaction

 Management Technique

We assume that when an SMH initiates a transaction, it
will send its entire transaction to an LMH to process.
There are two parts of transaction management: how an
SMH submits a transaction to an LMH and how an LMH
executes that transaction and returns its result to the SMH.
We address energy limitation by using three MH energy
modes (active, sleep, and doze) at different stages of
transaction execution. We also provide a balance in LMH
energy consumption by executing soft transactions at the
LMH with the highest energy level. To address the real-
time behavior of transactions, we reduce the number of
transactions missing deadlines by executing firm
transactions at the nearest LMH, employing two deadlines
for soft transactions, and scheduling both soft and firm
transactions using a real-time energy-efficient transaction-
scheduling algorithm. To address disconnection and
migration that cause prolonged execution of mobile
transactions and disconnection due to catastrophic
failures, we introduce the concepts of toggled transactions
and suspended transactions that allow a transaction to be
verified for its violation of the Atomicity and Isolation
properties as soon as its vital sub-transactions are
completed, and allow disconnected transactions to wait in
the system unless they obstruct the execution of another
transaction.

 3

3.3.1. Energy-Efficient Real-Time Transaction
 Scheduling Algorithm
Our scheduling algorithm considers not only

transaction types (firm and soft), transaction deadlines,
but also MH energy limitation. Here we have modified
the Least Slack (LS) cognizant technique proposed in [1]
with respect to energy constraints, disconnections and
transaction types. We calculate a transaction’s slack time s
as follows: s = d – (t + c + Pd*Td) where d is the
deadline, t the current time, c the runtime estimate, Pd the
probability of disconnection during execution and Td the
average time loss due to disconnection. We sort all the
transactions with respect to their slack times irrespective
of their transaction types and give higher priorities to
transactions that have shorter slack times except for the
following cases. If two firm transactions have the same
slack time, then a higher priority will be given to the one
whose requester has less energy level because the
requester which has less energy will exhaust its energy
earlier, it is better to schedule its transactions earlier. We
assume that MHs while submitting their transactions/sub-
transactions to an LMH will also send their energy levels
to the LMH. The same technique will be adopted if two
soft transactions have the same slack time. If the slack
time of a firm transaction is equal to the slack time of a
soft transaction, then a higher priority will be given to the
firm transaction. If the slack time of a soft transaction is
found to be negative, then its slack time will be
recalculated considering its second deadline and its
priority will be recalculated. If the recalculated slack time
is again found to be negative, then the transaction will be
discarded.

3.3.2. Transaction Submission from SMH to LMH

In our transaction management solution, an SMH will
submit its firm transactions to the nearest LMH and its
soft transactions to the highest energy level LMH. Now if
the nearest LMH is in active mode, it will receive and
process the transaction. If it is in doze mode and the
transaction is firm, it will wake up, start processing the
transaction. But if the LMH is in sleep mode, it will not be
able to receive the transaction; the requesting SMH will
then wait for some time period. If the SMH does not
receive the result of the transaction in this time period, it
will assume that the nearest LMH is either in sleep mode
or disconnected. So it will again check its local database
to find the next nearest LMH, find a route to this LMH
and submit the transaction. The SMH can determine the
length of the time period using the transaction run time
estimate, communication overhead and possible delay due
to disconnection. If the transaction is soft, the SMH will
find the LMH with the highest energy level from its local
database, find a route to this LMH and submit the
transaction to it. The SMH, after getting the result of the
transaction, will send an acknowledgement to the LMH
which has processed the global transaction.

3.3.3. Transaction Processing at LMH and Result
 Submission to SMH
After receiving a transaction from an SMH, if the LMH

is in active mode, the Transaction Scheduler (TS) of the
LMH will schedule the transaction according to real-time
scheduling algorithm described in Section 3.3.1. The
Transaction Coordinator (TC) of the LMH will find the
participant LMHs which contain the required data items
for this transaction after consulting the Global Schema.
Then it will divide the global transaction into sub-
transactions such that all data required by a sub-
transaction resides at one single participant LMH. The
TC will then distribute the deadline of the global
transaction among the sub-transactions using the EQF
Strategy proposed in [8]. Then the TC will find the routes
to LMHs and submit the corresponding sub-transactions
to them.

When all the vital sub-transactions of a global
transaction are completed, the TC will run the Partial
Global Serialization Graph (PGSG) algorithm that we
have developed for the General Mobile Computing
Architecture [5] to verify whether the global transaction
has violated the Atomicity/Isolation (A/I) properties. If
all vital sub-transactions can commit, then the global
transaction does not violate the Atomicity property. Then
the PGSG algorithm with check for the Isolation property
violation using the concept of serialization graphs.

If the A/I properties are not violated, then the
transaction is toggled and its execution continues until all
its remaining non-vital sub-transactions are either
committed or aborted. LMH can then commit the
transaction and submit the result to the requesting SMH.
Note that a toggled transaction is guaranteed not to be
aborted due to concurrency conflicts because all its vital
sub-transactions have been committed unless it obstructs
the execution of another global transaction while in a
suspended state. A transaction is said to be in a suspended
state (i.e. its transaction is halted, no new sub-transaction
can be initiated) if its MH is disconnected from the
network and the system determines that this MH has
encountered a catastrophic failure.

But if the A/I properties are violated and the
transaction has not yet missed the deadline (or the second
deadline for a soft transaction), the LMH will restart the
transaction; otherwise the LMH will abort the transaction.
After the TC has decided to commit/abort a transaction, it
will find a route to the requesting SMH for submitting the
result of the transaction. If the requesting SMH is in active
mode, it will receive the result and send an
acknowledgement. If it is in doze mode and the
transaction is firm, then it will wake up, receive the result
and send an acknowledgement. But if the transaction is
soft, SMH will calculate the remaining slack time for the
transaction. The SMH will wait until the slack time is less
than some time period value, then it will wake up, receive
the result and send an acknowledgement. If the requesting

 4

SMH is in sleep mode, it will not be able to receive the
result. So if the TC of the LMH which has processed the
transaction does not receive any acknowledgement till the
deadline of the transaction, it will assume that the
requesting SMH is in sleep mode. If the transaction is
firm, it will abort the transaction. But if the transaction is
soft, the TC will calculate the slack time using the second
deadline of the transaction. If this slack time is zero, it
will abort the transaction. Otherwise it will divide the
slack time into some time intervals and will submit the
result again to the requesting SMH during those intervals.
The motivation behind this technique is that since the
transaction is soft and transmission consumes a lot of
energy, the LMH will not continuously keep sending the
result to the sleeping SMH and lose its energy. The length
of the time-interval will depend on the remaining slack
time of the transaction and the energy level of the LMH. If
the energy level is low, the interval will be large and the
number of transmissions will be small.

4. Simulation Results

We study the performance of our proposed technique
by means of simulation. The simulation model is
implemented using the Awesim simulation tool [13].
Global transactions are defined as entities and mobile
hosts are defined as resources with identical initial energy
levels and randomly distributed locations. We measure
the performance in terms of percentage of transactions
missing deadlines and amount of energy consumption of
each resource, which is equal to the power of the resource
multiplied with the time the resource was in active mode.

In the first experiment, we have varied the number of
LMHs for different mixtures of firm and soft transactions.
Figure 1 shows that more transactions will miss their
deadlines when there are more LMHs in the system. This
is expected since LMHs are servers, and as there are more
LMHs, transactions will need less waiting time to use the
servers and thus fewer transactions will miss their
deadlines. The total energy consumption in LMHs
increases as the number of LMHs increases [Figure 2].
This is due to the fact that when there are more servers,
fewer transactions will be aborted, and thus LMHs will
consume more energy to complete more transactions.

In the second experiment, we have varied the inter-
arrival time (IAT) of soft transactions and calculated the
energy consumption of each LMH to see the effect of the
system load on energy consumption distribution among
individual LMHs. In our simulation model, the energy
level of each LMH is updated when it has processed a
transaction or a sub-transaction by calculating the time it
was in the active mode. But if another transaction enters
the system before the energy level of the LMH is updated,
then there is a possibility that the SMH, which initiated
that transaction, will identify a wrong LMH as the one
with the highest energy level. That means if the IAT of

transactions is small, then all the SMHs may not have the
recent values of energy levels of all LMHs. As a result,
they will not be able to correctly identify the LMH with
the highest energy level for soft transactions. So the total
energy consumption in the system will not be evenly
distributed among all the LMHs. Figure 3 and 4 shows
that when the IAT is EXPON(1) energy consumption of
LMHs is not uniformly distributed, but when the IAT
increases to EXPON(5), the energy consumption of LMHs
are almost uniform.

5. Conclusions

In this paper, we have introduced a mobile ad-hoc
network database architecture that can be used to support
applications such as battlefields and disaster recovery
operations. We have provided a solution for transaction
management considering transaction real-time constraints
as well as mobility and energy limitation of both servers
and clients. Our solution is aimed at reducing the
percentage of transactions missing deadlines while saving
the energy consumption by both clients and servers and
balancing the energy consumption by servers. Our
simulation results indicate the following: 1) when there is
a lower system load of soft transactions, a better balance
of energy consumption among servers is achieved; 2) the
system performs better when there are more servers.

For future research, we plan to examine other
alternatives for managing firm/soft transactions, such as
sending all transactions to nearest servers only, to highest
energy level servers only, or to the randomly selected
servers only. We will study the impact of roaming
frequencies of both servers and clients.

6. References

[1] Abbott R., H. Garcia-Molina, “Scheduling Real Time
Transactions”, SIGMOD RECORD, Vol. 17, No. 1, March
1988.

[2] Bandyopadhyay, S., and K. Paul, “Evaluating the
Performance of Mobile Agent-Based Communication among
Mobile Hosts in Large Ad-Hoc Wireless Network”, MSWIM
1999.

[3] Barbara D., T. Imielinski, “Sleepers and Workaholics:
Caching Strategies in Mobile Environments”, ACM SIGMOD,
May 1994.

[4] Chrysanthis, P.K., “Transaction Processing in Mobile
Computing Environments”, IEEE Workshop on Advances in
Parallel and Distributed Systems, October 1993.

[5] Dirckze, R. and L. Gruenwald, “A Pre-serialization
Transaction Management Technique for Mobile Multi-databases
“, Special Issue on Software Architecture for Mobile
Applications, Vol.5, No.4, 2000.

 5

[6] Dunham M., A. Helal, S. Balakrishnan S., “A Mobile
Transaction Model that Captures Both the Data and Movement
Behavior”, Mobile Network and Applications, Vol. 2, No. 2,
October 1997.

[7] Hong X., et al, “A Group Mobility Model for Ad Hoc
Wireless Networks”, MSWIM, 1999.

[8] Kao B., H. Garcia-Molina, “Deadline Assignment in a
Distributed Soft Real-Time Systems”, Proceedings of the 13th
International Conference on Distributed Computing Systems.
May 1993.

[9] Ko, Y., N. Vaidya , “Location-Aided Routing (LAR) in
Mobile Ad-Hoc Networks”, MOBICOM 1998.

[10] Liu, M., et al., “Modeling and Simulation of large Hybrid
Networks”, Proceeding of 2nd Annual Advanced
Telecommunications/ Infrastructure Distribution Research
Program (ATIRP) Conference 1999.

[11] Madria, S. K., B. K. Bhargava, “A Transaction Model for
Mobile Computing”, International Database Engineering and
Application Symposium (IDEAS 1998), July 1998.

[12] Pitoura, S. K., B. K. Bhargava, “Maintaining Consistency of
Data in Mobile Distributed Environment”, 15th Int. Conference
on Distributed Computing System, June 1995.

[13] Pritsker A. Alan B, O’Reilly Jean J., “Simulation with
Visual SLAM and Awesim”, Systems Publishing Corporation,
1999.

[14] Ramamritham K., “Real-Time Databases”, Distributed and
Parallel Databases, Vol. 1, No. 2, April 1993, pp 199-226.

[15] Walborn G. D., P. K. Chrysanthis, “Supporting Semantic-
Based Transaction Processing in Mobile Database
Applications”, 14th IEEE Symposium on Reliable Distributed
Systems, Sept. 1994.

% Missed Deadline (Varying number of LMHs)

0.0%
20.0%
40.0%
60.0%
80.0%

100.0%
120.0%

1 5 10 15 20

No. of LMHs

%
 M

is
se

d
de

ad
lin

e

All Firm

All Soft

Firm/Soft 75/25

Firm/Soft 50/50

Firm/Soft 25/75

Total Energy Consumption in LMHs
(Varying the number of LMHs)

0.00
50.00

100.00
150.00
200.00
250.00
300.00

5 10 15 20

No. of LMHs

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n
in

 L
M

H
s

All Firm

All Soft

Firm/Soft 75/25

Firm/Soft 50/50

Firm/Soft 25/75

Energy Consumption in LMHs for Soft
Transactions with Inter-arrival time = EXPON(1)

0

10

20

30

40

1 3 5 7 9 11 13 15 17 19

LMH ID

En
er

gy
 C

on
su

m
pt

io
n

Energy Consumption in LMHs for Soft
Transactions with Inter-arrival time = EXPON(5)

0
0.5

1
1.5

2

1 3 5 7 9 11 13 15 17 19

LMH ID

En
er

gy
 C

on
su

m
pt

io
n

Figure 3. Impact of IAT on Energy Consumption of
LMHs for soft transactions
 Figure 4. Impact of IAT on Energy Consumption of
LMHs for soft transactions
Figure 1. Impact of No. of LMHs on % Missed
Deadline

Figure 2. Impact of No. of LMHs on Total Energy
Consumption

	A
	Abstract
	1. Introduction
	3. Proposed Solution
	
	3.1. Key Information Stored at Mobile Hosts

	3.3. Overview of the Proposed Transaction
	Management Technique
	3.3.1. Energy-Efficient Real-Time Transaction
	Scheduling Algorithm
	3.3.2. Transaction Submission from SMH to LMH
	
	
	
	3.3.3. Transaction Processing at LMH and Result
	Submission to SMH

	5. Conclusions
	6. References

