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Abstract 
A mobile ad-hoc network (MANET) is a collection of 

wireless autonomous mobile hosts which are free to move 
randomly, thus forming a temporary network without any 
fixed backbone infrastructure. MANET is typically used in 
battlefields and disaster recovery situations where 
temporary network connectivity is required. Techniques 
that manage database transactions in MANET need to 
address additional issues such as host mobility, energy 
limitation and real-time constraints.  This paper proposes 
a solution for transaction management that reduces the 
number of transactions missing deadlines  while 
balancing the energy consumption by the mobile hosts in 
the system. This paper then presents a performance study 
by means of simulation. 

 
 

1. Introduction 
 

Transaction Manager (TM) of a mobile multidatabase 
management system is responsible for providing reliable 
and consistent units of computing to its users. There are 
two typical mobile computing architectures.  In the 
General Mobile Computing Architecture, there is a fixed 
Mobile Support Station (MSS) that supports all mobile 
hosts (MHs) roaming within its cell.  When an MH 
migrates to a new cell, it is under the control of the new 
cell’s MSS. In the second architecture called Mobile Ad-
Hoc Network (MANET) Architecture, all MHs are 
roaming and the network that interconnects these MHs is 
a wireless network with a frequently changing topology, 
and there are no fixed infrastructure and fixed MSSs.  
MANET is widely used in battlefields and in disaster 
recovery situations ([7][10]).  

Much research in the area of mobile database 
transaction management was based on the first 
architecture ([15], [12], [6], [11], [5]), while none on the 
second one.  Supporting database transaction services in 
MANET raises new issues.  If an MH stores a database, 
then other MHs will try to submit transactions and get 
data from it. In this environment both the user and the 
data source will be moving. So finding a route from one 
MH to another MH is necessary before submitting a 
transaction. Moreover applications in this environment are 
time-critical which require their transactions to be 
executed not only correctly but also within their 
deadlines.  Thus the TM at the MH where the database is 
stored has to consider the mobility of the submitting MHs 
as well as the deadlines of the transactions.   Another 
important issue in MANET is power or energy restriction 
on MHs because MHs are not connected to direct power 
supplies and many of them will run on small and low-
power devices.  So the TM should also provides a balance 
of energy consumption among MHs so that MHs with low 
energy do not run out of energy quickly, and thus the 
number of MH disconnections can be reduced. 

This paper presents a transaction management solution 
that takes ad-hoc networks, real-time constraints, and 
energy efficiency into consideration. The rest of the paper 
is organized as follows.  Sections 2 and 3 describe the 
proposed MANET architecture and transaction 
management solution.  Section 4 presents the simulation 
results. Finally Section 5 concludes the paper with future 
research. 

 
2. Proposed Architecture 
 

Depending on communication capacity, computing 
power, disk storage, size of memory and energy 
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limitation, MHs can be classified into two groups: 1) 
computers with reduced memory, storage, power and 
computing capabilities, which we will call Small Mobile 
Hosts (SMHs), and 2) classical workstations equipped 
with more storage, power, communication and computing 
facilities than the SMHs, which we will call Large Mobile 
Host (LMHs). Every MH has a radius of influence. An 
MH can directly communicate with other MHs, which are 
within its radius of influence. If two MHs are outside each 
other's radius of influence, they will be able to indirectly 
communicate with each other in multiple hops using other 
intermediate MHs between them [2].   

To reduce energy consumption, an MH can operate in 
three modes - Active mode, Doze mode and Sleep mode. 
In the active mode, the MH performs its usual activities, 
its CPU is working and its communication device can 
transmit and receive signals. In the doze mode, the CPU 
of the MH will be working on a lower rate but it can 
examine messages from other MHs, and the 
communication device can receive signals in this mode; so 
the MH can be awaken by a message from other MHs [3]. 
In the sleep mode, both the CPU and the communication 
device of the MH are suspended. Due to energy and 
storage limitations, we will assume that only LMHs will 
store the whole DBMS and SMHs will store only some 
modules of the DBMS (e.g. Query Processor) that allow 
them to query their own data, submit transactions to 
LMHs and receive the results. The DBMSs at LMHs can 
be heterogeneous.  

This proposed architecture can be used to support 
many applications, such as battlefields and disaster 
recovery.  In battlefields, portable computing device with 
soldiers will work as SMHs while computers stored in 
tanks and humvees will work as LMHs. These LMHs can 
store tactical information regarding enemy and other units 
in a database and the SMHs can communicate with the 
LMHs to get information from the database (e.g. which 
unit of enemy is located where, what is their strength). In 
a disaster recovery operation, the palmtops carried by 
rescuers can be viewed as the SMHs and the computers in 
mobile hospitals can be viewed as the LMHs. The LMHs 
can keep the information of all the medical equipments in 
their databases, and the SMHs can query about the 
inventory and inform the LMHs to keep ready a certain 
arrangement for a particular patient whom they have 
found in their site.  

 
3. Proposed Solution 
  
3.1. Key Information Stored at Mobile Hosts 
 

Each MH will store some key information in its local 
database. The ID field uniquely identifies an MH.  Every 
MH will get its coordinates from GPS [9] periodically and 
store them in the Position field to be used at the time of 
routing.  The Energy_level field records the amount of 

energy available at that time. Each LMH also maintains a 
Global Schema - an integration of all local schemas from 
all LMHs, and the ID of the LMH for each local schema. 
This Global Schema is required to identify which data 
object is stored in which LMH.  Each LMH will 
periodically broadcast its ID, Position and Enery_level, 
which the SMHs and other LMHs will record in their local 
databases after listening to the broadcast channel.  

 
3.2. Transaction Properties and Classification 
 

In our real-time environment, transactions have 
deadlines and are classified into two categories: firm and 
soft. Firm transactions must be aborted if they miss their 
deadlines while soft transactions still can be executed 
after their deadlines have expired. The value of a firm 
transaction becomes zero after its deadline expires [14]. 
From the value function describing tasks with soft 
deadlines in [1], we can define soft transactions with two 
deadlines: it still can be executed after its first deadline 
expires, but its value decreases after the first deadline and 
becomes zero after the second deadline. A global 
transaction may consist of a number of sub-transactions 
running on other LMHs.  A sub-transaction is either vital 
or non-vital [4]. All the vital sub-transactions of a global 
transaction must succeed in order for it to succeed.  

 
3.3. Overview of the Proposed Transaction  

   Management Technique 
 

We assume that when an SMH initiates a transaction, it 
will send its entire transaction to an LMH to process.   
There are two parts of transaction management: how an 
SMH submits a transaction to an LMH and how an LMH 
executes that transaction and returns its result to the SMH. 
We address energy limitation by using three MH energy 
modes (active, sleep, and doze) at different stages of 
transaction execution.  We also provide a balance in LMH 
energy consumption by executing soft transactions at the 
LMH with the highest energy level.  To address the real-
time behavior of transactions, we reduce the number of 
transactions missing deadlines by executing firm 
transactions at the nearest LMH, employing two deadlines 
for soft transactions, and scheduling both soft and firm 
transactions using a real-time energy-efficient transaction-
scheduling algorithm. To address disconnection and 
migration that cause prolonged execution of mobile 
transactions and disconnection due to catastrophic 
failures, we introduce the concepts of toggled transactions 
and suspended transactions that allow a transaction to be 
verified for its violation of the Atomicity and Isolation 
properties as soon as its vital sub-transactions are 
completed, and allow disconnected transactions to wait in 
the system unless they obstruct the execution of another 
transaction.   
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3.3.1. Energy-Efficient Real-Time Transaction    
      Scheduling Algorithm 
Our scheduling algorithm considers not only 

transaction types (firm and soft), transaction deadlines, 
but also MH energy limitation.  Here we have modified 
the Least Slack (LS) cognizant technique proposed in [1] 
with respect to energy constraints, disconnections and 
transaction types. We calculate a transaction’s slack time s 
as follows: s = d – (t + c + Pd*Td) where d is the 
deadline, t the current time, c the runtime estimate, Pd the 
probability of disconnection during execution and Td the 
average time loss due to disconnection.  We sort all the 
transactions with respect to their slack times irrespective 
of their transaction types and give higher priorities to 
transactions that have shorter slack times except for the 
following cases. If two firm transactions have the same 
slack time, then a higher priority will be given to the one 
whose requester has less energy level because the 
requester which has less energy will exhaust its energy 
earlier, it is better to schedule its transactions earlier.  We 
assume that MHs while submitting their transactions/sub-
transactions to an LMH will also send their energy levels 
to the LMH. The same technique will be adopted if two 
soft transactions have the same slack time. If the slack 
time of a firm transaction is equal to the slack time of a 
soft transaction, then a higher priority will be given to the 
firm transaction.  If the slack time of a soft transaction is 
found to be negative, then its slack time will be 
recalculated considering its second deadline and its 
priority will be recalculated. If the recalculated slack time 
is again found to be negative, then the transaction will be 
discarded.  

 
3.3.2. Transaction Submission from SMH to LMH 

In our transaction management solution, an SMH will 
submit its firm transactions to the nearest LMH and its 
soft transactions to the highest energy level LMH. Now if 
the nearest LMH is in active mode, it will receive and 
process the transaction. If it is in doze mode and the 
transaction is firm, it will wake up, start processing the 
transaction. But if the LMH is in sleep mode, it will not be 
able to receive the transaction; the requesting SMH will 
then wait for some time period. If the SMH does not 
receive the result of the transaction in this time period, it 
will assume that the nearest LMH is either in sleep mode 
or disconnected. So it will again check its local database 
to find the next nearest LMH, find a route to this LMH 
and submit the transaction. The SMH can determine the 
length of the time period using the transaction run time 
estimate, communication overhead and possible delay due 
to disconnection. If the transaction is soft, the SMH will 
find the LMH with the highest energy level from its local 
database, find a route to this LMH and submit the 
transaction to it.  The SMH, after getting the result of the 
transaction, will send an acknowledgement to the LMH 
which has processed the global transaction.  

3.3.3. Transaction Processing at LMH and Result  
     Submission to SMH 
After receiving a transaction from an SMH, if the LMH 

is in active mode, the Transaction Scheduler (TS) of the 
LMH will schedule the transaction according to real-time 
scheduling algorithm described in Section 3.3.1. The 
Transaction Coordinator (TC) of the LMH will find the 
participant LMHs which contain the required data items 
for this transaction after consulting the Global Schema. 
Then it will divide the global transaction into sub-
transactions such that all data required by a sub-
transaction resides at one single participant LMH.  The 
TC will then distribute the deadline of the global 
transaction among the sub-transactions using the EQF 
Strategy proposed in [8]. Then the TC will find the routes 
to LMHs and submit the corresponding sub-transactions 
to them.  

When all the vital sub-transactions of a global 
transaction are completed, the TC will run the Partial 
Global Serialization Graph (PGSG) algorithm that we 
have developed for the General Mobile Computing 
Architecture [5] to verify whether the global transaction 
has violated the Atomicity/Isolation (A/I) properties.  If 
all vital sub-transactions can commit, then the global 
transaction does not violate the Atomicity property.  Then 
the PGSG algorithm with check for the Isolation property 
violation using the concept of serialization graphs.   

If the A/I properties are not violated, then the 
transaction is toggled and its execution continues until all 
its remaining non-vital sub-transactions are either 
committed or aborted.  LMH can then commit the 
transaction and submit the result to the requesting SMH. 
Note that a toggled transaction is guaranteed not to be 
aborted due to concurrency conflicts because all its vital 
sub-transactions have been committed unless it obstructs 
the execution of another global transaction while in a 
suspended state. A transaction is said to be in a suspended 
state (i.e. its transaction is halted, no new sub-transaction 
can be initiated) if its MH is disconnected from the 
network and the system determines that this MH has 
encountered a catastrophic failure.   

But if the A/I properties are violated and the 
transaction has not yet missed the deadline (or the second 
deadline for a soft transaction), the LMH will restart the 
transaction; otherwise the LMH will abort the transaction. 
After the TC has decided to commit/abort a transaction, it 
will find a route to the requesting SMH for submitting the 
result of the transaction. If the requesting SMH is in active 
mode, it will receive the result and send an 
acknowledgement. If it is in doze mode and the 
transaction is firm, then it will wake up, receive the result 
and send an acknowledgement. But if the transaction is 
soft, SMH will calculate the remaining slack time for the 
transaction. The SMH will wait until the slack time is less 
than some time period value, then it will wake up, receive 
the result and send an acknowledgement. If the requesting 
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SMH is in sleep mode, it will not be able to receive the 
result. So if the TC of the LMH which has processed the 
transaction does not receive any acknowledgement till the 
deadline of the transaction, it will assume that the 
requesting SMH is in sleep mode. If the transaction is 
firm, it will abort the transaction. But if the transaction is 
soft, the TC will calculate the slack time using the second 
deadline of the transaction. If this slack time is zero, it 
will abort the transaction. Otherwise it will divide the 
slack time into some time intervals and will submit the 
result again to the requesting SMH during those intervals. 
The motivation behind this technique is that since the 
transaction is soft and transmission consumes a lot of 
energy, the LMH will not continuously keep sending the 
result to the sleeping SMH and lose its energy. The length 
of the time-interval will depend on the remaining slack 
time of the transaction and the energy level of the LMH. If 
the energy level is low, the interval will be large and the 
number of transmissions will be small.  
 
4. Simulation Results 
 

We study the performance of our proposed technique 
by means of simulation.  The simulation model is 
implemented using  the Awesim simulation tool [13]. 
Global transactions are defined as entities and mobile 
hosts are defined as resources with identical initial energy 
levels and  randomly distributed locations.  We measure 
the performance in terms of percentage of transactions 
missing deadlines and amount of energy consumption of 
each resource, which is equal to the power of the resource 
multiplied with the time the resource was in active mode.   

In the first experiment, we have varied the number of 
LMHs for different mixtures of firm and soft transactions. 
Figure 1 shows that more transactions will miss their 
deadlines when there are more LMHs in the system.  This 
is expected since LMHs are servers, and as there are more 
LMHs, transactions will need less waiting time to use the 
servers and thus fewer transactions will miss their 
deadlines. The total energy consumption in LMHs 
increases as the number of LMHs increases [Figure 2]. 
This is due to the fact that when there are more servers, 
fewer transactions will be aborted, and thus LMHs will 
consume more energy to complete more transactions.  

In the second experiment, we have varied the inter-
arrival time (IAT) of soft transactions and calculated the 
energy consumption of each LMH to see the effect of the 
system load on energy consumption distribution among 
individual LMHs.  In our simulation model, the energy 
level of each LMH is updated when it has processed a 
transaction or a sub-transaction by calculating the time it 
was in the active mode. But if another transaction enters 
the system before the energy level of the LMH is updated, 
then there is a possibility that the SMH, which initiated 
that transaction, will identify a wrong LMH as the one 
with the highest energy level. That means if the IAT of 

transactions is small, then all the SMHs may not have the 
recent values of energy levels of all LMHs. As a result, 
they will not be able to correctly identify the LMH with 
the highest energy level for soft transactions. So the total 
energy consumption in the system will not be evenly 
distributed among all the LMHs. Figure 3 and 4 shows 
that when the IAT is EXPON(1) energy consumption of 
LMHs is not uniformly distributed, but when the IAT 
increases to EXPON(5), the energy consumption of LMHs 
are almost uniform.   

 
5. Conclusions 
 

In this paper, we have introduced a mobile ad-hoc 
network database architecture that can be used to support 
applications such as battlefields and disaster recovery 
operations.  We have provided a solution for transaction 
management considering transaction real-time constraints 
as well as mobility and energy limitation of both servers 
and clients. Our solution is aimed at reducing the 
percentage of transactions missing deadlines while saving 
the energy consumption by both clients and servers and 
balancing the energy consumption by servers. Our 
simulation results indicate the following: 1) when there is 
a lower system load of soft transactions, a better balance 
of energy consumption among servers is achieved; 2) the 
system performs better when there are more servers. 

For future research, we plan to examine other 
alternatives for managing firm/soft transactions, such as 
sending all transactions to nearest servers only, to highest 
energy level servers only, or to the randomly selected 
servers only.  We will study the impact of roaming 
frequencies of both servers and clients.  
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Energy Consumption in LMHs for Soft 
Transactions with Inter-arrival time = EXPON(5)
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Figure 3. Impact of IAT on Energy Consumption of 
LMHs for soft transactions 
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