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Abstract

The latest ontology languages can be translated into a
description logic (DL), thus providing them with a formal
semantics and associated reasoning procedures. We intro-
duce the ordered description logicOSHOQ(D) as a sim-
ple decidable extension ofSHOQ(D) that supports the di-
rect definition of a preference order on defeasible axioms,
thus allowing for a succinct and intuitive expression of de-
feasible ontologies, containing e.g. exceptions for certain
axioms.

We demonstrate the usefulness ofOSHOQ(D) for solv-
ing inconsistencies that may appear e.g. when merging ex-
isting ontologies. We present an algorithm that, based on
concrete examples of facts that should be true, produces
minimal preference orderings on the axioms, in order to
make an otherwise inconsistent knowledge base consistent.

1. Introduction

The “Semantic Web” [5] will improve on the current In-
ternet by providing facilities for the sharing, interpretation
and processing of information, not only between humans
but also between software agents. Ontologies play an im-
portant role in the building of this new Web. Their main pur-
pose is to bring ashared understanding[15] to the web and,
by this understanding, allow a more intelligent approach to
information exchange.

In order to describe ontologies, one needs ontology lan-
guages, such as DAML+OIL or OIL [4, 10]. Figure 1 shows
a fragment of an example ontology [10], expressed in the
language (Standard) OIL [9].

The example describes a number of concepts and their
relationships: animals that only eat other animals arecarni-
voreswhile herbivoresonly eat plants (which themselves
are not animals). My dog is put forward as a carnivore
while grass is a plant. The resulting ontology is easily seen
to be consistent since there are no apparent contradictions.

ontology-definitions
slot-defeats
class-defanimal
class-defplant

subclass-of NOTanimal
class-defdefinedcarnivore

subclass-ofanimal
slot-constraint eats

value-typeanimal
class-defdefinedherbivore

subclass-ofanimal
slot-constraint eats

value-typeplant
class-defherbivore

subclass-of NOTcarnivore
covered-by(one-ofdog)carnivore
covered-by(one-ofgrass)plant

Figure 1. An example ontology

More formally, we say that the corresponding description
logic knowledge base is consistent, see later. Imagine, how-
ever, that you add the following axiom:covered-by(one-of
dog)(slot-constraint eatshas-value(one-ofgrass)).

The new axiom says that your dog (sometimes) eats
grass (this corresponds to reality: dogs that feel sick often
eat grass). Informally, this makes the ontology inconsistent
because your dog is supposed to be a carnivore and carni-
vores only eat animals, whereas grass is a plant and plants
are not animals. Thus the new ontology does not support
our intuition that “this dog is a carnivore, although, from
time to time, it eats grass”.

We can reconcile the example ontology with our intu-
ition by defeatingthe rule saying that carnivores only eat
animals with the rule that this dog also eats plants. Infor-
mally, this means that one is willing to accept that the car-
nivore rule is not absolute and may be ignored if one sees a
carnivore eating grass. Of course, we will need to formalize
this notion of defeat by extending the underlying descrip-
tion logic.

A description logic can be used to express the formal



semantics of an ontology written in an ontology language
like OIL, but it also provides some basic reasoning services
such as satisfiability checking and related algorithms [12].
The correspondence between OIL and the DLSHIQ has
been shown in [9]. As explained in [11] this mapping is
incomplete with respect toconcrete data typesandnamed
individuals, two features that are present in current ontology
languages. A DL that overcomes these two deficiencies is
SHOQ(D)[11], which includes support for data types (D)
and named individuals (O, see also [14] for reasoning with
individuals).

In this paper, we extendSHOQ(D) to include a prefer-
ence relation on axioms. This relation can be used as a jus-
tification for defeating certain axioms with more preferred
ones, thus capturing “subtleties” like the grass-eating dog
example in OIL. A similar approach has been proposed for
e.g. ordered logic programming in [7, 6]. Besides being of-
ten more intuitive, allowing an explicit preference relation
between axioms also has the advantage that it can be derived
algorithmically, in contrast with the default logic approach
[2, 3] where default rules have to be manufactured virtually
by hand.

We provide such a learning algorithm that proposes a
preference order on the set of axioms in a knowledge base,
thus reconciling input example facts with existing axioms.
Because we assume that reasoning with ontologies is done
through a description logic, this also provides an ontology
learning mechanism.

The remainder of this paper is organized as follows: in
Section 2 we extendSHOQ(D) to orderedSHOQ(D)
(denotedOSHOQ(D)) by providing an extra component
(anObox) that defines an order on distinguished sets of de-
feasible (both terminological and role) axioms. The notion
of defeat between axioms is used to define a semantics for
anOSHOQ(D) knowledge base (KB) that respects the or-
der in the Obox. An algorithm that learns the order among
the axioms from examples provided by the designer is pre-
sented in Section 3, where we argue that this may be a use-
ful tool for synthesizing new ontologies from existing (but
overlapping) ones. Finally, Section 4 contains conclusions
and directions for further research.

2. Basic Definitions

We summarize the syntax and semantics ofSHOQ(D)
as in [11]. We assume that we have a set of data typesD and
associate with eachd ∈ D a setdD ⊆ ∆D, where∆D is
the domain of all data types (theconcrete domain, see [1]).

Let C be the set ofconcept names, R the disjoint
union ofabstract role namesRA andconcrete role names
RD. A role boxR is a finite set ofrole axiomsR v S
whereR,S ∈ RA or R,S ∈ RD and transitivity axioms
Trans(R) for R ∈ RA. An abstract roleR is calledtran-

Table 1. Syntax and semantics of SHOQ(D)-
concept expressions

syntax semantics

A AI ⊆ ∆I

R RI ⊆ ∆I ×∆I

T T I ⊆ ∆I ×∆D

{o} {o}I ⊆ ∆I , #{o}I = 1
d dD ⊆ ∆D

¬d (¬d)D = ∆D \ dD

C uD (C uD)I = CI ∩DI

C tD (C tD)I = CI ∪DI

¬C (¬C)I = ∆I \ CI

∃R.C (∃R.C)I = {x | ∃y : (x, y) ∈ RI , y ∈ CI}
∀R.C (∀R.C)I = {x | ∀y : (x, y) ∈ RI ⇒ y ∈ CI}
≥ nS.C (≥ nS.C)I

= {x |#{y | (x, y) ∈ SI , y ∈ CI} ≥ n}
≤ nS.C (≤ nS.C)I

= {x |#{y | (x, y) ∈ SI , y ∈ CI} ≤ n}
∃T.d (∃T.d)I = {x | ∃y : (x, y) ∈ T I , y ∈ dD}
∀T.d (∀T.d)I = {x | ∀y : (x, y) ∈ T I ⇒ y ∈ dD}

sitive if Trans(R) ∈ R. A simple roleR for a role boxR
is a role that is not transitive nor does it have any transitive
subroles. LetI be a set ofindividual names. C, R andI
are mutually disjoint. The set ofSHOQ(D)-concept ex-
pressionsis defined such that every concept nameA ∈ C is
a concept expression and for everyo ∈ I, {o} is a concept
expression. Moreover, forC andD concept expressions,
R ∈ RA, T ∈ RD, S a simple role andd ∈ D, the con-
structors in Table 1 can be used to form complex concept
expressions.

The semantics ofSHOQ(D) is defined using an inter-
pretationI = (∆I , ·I), where∆I is a nonempty domain
(the abstract domain) and ·I is an interpretation function,
defined on concept expressions and roles as in Table 1.

A TboxT is a finite set ofterminological axiomsC v D
with C andD SHOQ(D)-concept expressions. An in-
terpretationI satisfiesa role axiomR1 v R2, in a role
box R iff RI1 ⊆ RI2 , and it satisfies a transitivity axiom
Trans(R) ∈ R iff RI = (RI)+, where(·)+ is the transi-
tive closure operator. An interpretationI satisfies a role box
R iff it satisfies every role and transitivity axiom inR. An
interpretationI satisfies a terminological axiomC1 v C2

from a Tbox iffCI1 ⊆ CI2 . I satisfies a TboxT iff I satis-
fies every axiom inT . An interpretationI that satisfiesT
andR is said to be amodelfor T andR. A SHOQ(D)-
concept expressionC is satisfiablew.r.t a TboxT and a
role boxR if there exists a modelI for T andR such that
CI 6= ∅. A concept expressionC is subsumedby a con-
cept expressionD (notation:C v D) if CI ⊆ DI for each



modelI for T andR.
Translating, as in [9], the example in the introduc-

tion to SHOQ(D) we get aSHOQ(D)-knowledge base
〈C,R,D = ∅, I,R = ∅, T 〉 with concept namesC =
{animal, plant, carnivore, herbivore}, R = {eats}, I =
{dog, grass} and the TboxT contains the following ax-
ioms (numbered for easy reference):

T
(1) plant v ¬ animal
(2) herbivore v ¬ carnivore
(3) {dog} v carnivore
(4) {grass} v plant
(5) carnivore v animal u ∀eats.animal
(6) herbivore v animal u ∀eats.plant
(7) animal u ∀eats.animal v carnivore
(8) animal u ∀eats.plant v herbivore
(9) {dog} v ∃eats.{grass}

Take an interpretationI with domain∆I = {d, g, c},
and animalI = {d, c}, carnivoreI = {d}, herbivore =
{c}, plantI = {g}, {dog}I = {d}, {grass}I = {g} and
eatsI = {(d, g), (d, c), (c, g)}. AlthoughI seems reason-
able to our human eyes, it does not satisfy the Tbox, be-
cause it falsifies axiom(5) since ourdog sometimes eats
grass, contradicting that it is acarnivore ({d} 6⊆ ∅).

Thus, we can keepI as a model, and support our intu-
ition, if we defeat axiom(5) using another “more preferred”
axiom. We could e.g. declare that(3) < (5), corresponding
to our belief that having been declared a carnivore is suffi-
cient for our dog to be a carnivore, even if he occasionally
eats grass. Intuitively, using(3) as a defeater for(5), an
object can cause(5) to fail, provided it satisfies(3). In our
case,d makes(5) fail, but {dog}I = {d} ⊆ carnivoreI ,
and thusd satisfies(3).

In general, the preference relation between axioms must
be provided by the knowledge base designer, depending on
the underlying intuition that she wishes to support. How-
ever, as will be shown in Section 3, one can “learn” an ap-
propriate order by supplying examples of individuals that
must be instances of concepts or play certain roles.

Formally, we define the defeasible logicOSHOQ(D)
as an extension ofSHOQ(D) by adding a preference order
between axioms.

Definition 1 AnOSHOQ(D)-knowledge base is a tuple1

〈T ,R,O〉 where〈T ,R〉 is aSHOQ(D)-knowledge base,
andO is anOboxrepresenting a preference order between
axioms. ThusO contains items of the formC1 v C2 <
C3 v C4 andR1 v R2 < R3 v R4 with C1 v C2 and
C3 v C4 in T , R1 v R2 andR3 v R4 in R. Moreover,
R1, R2, R3, R4 are all abstract or all concrete andR3 must
be simple. For a paira1 < a2 in O, a2 is said to bedefea-
siblewhilea1 is a (possible)defeaterof a2.

1For the sake of brevity, we omit the concept namesC, role namesR,
datatypesD and individual namesI from the notation.

The notion of defeat is formalized in the following defi-
nition.

Definition 2 Let Σ = 〈T ,R,O〉 be anOSHOQ(D)-
knowledge base. Aninterpretation of Σ is any interpre-
tation I of theSHOQ(D)-knowledge base〈T ,R〉. A ter-
minological axiomA v B ∈ T is applicablew.r.t. x ∈ ∆I

iff x ∈ AI . A role axiomR1 v R2 ∈ R is applicablew.r.t.
(x, y) ∈ ∆I×∆I (or (x, y) ∈ ∆I×∆D, if R1, R2 ∈ RD)
iff (x, y) ∈ RI1 .
A v B ∈ T is appliedw.r.t. x ∈ ∆I iff A v B is

applicable w.r.t.x andx ∈ BI . R1 v R2 ∈ R is applied
w.r.t. (x, y) ∈ ∆I×∆I (or (x, y) ∈ ∆I×∆D, if R1, R2 ∈
RD) iff R1 v R2 is applicable w.r.t. (x, y) and (x, y) ∈
RI2 .
A v B ∈ T is defeatedw.r.t. x ∈ ∆I and the OboxO

iff ∃(C v D < A v B) ∈ O such thatC v D is applied
w.r.t. x. R1 v R2 ∈ R is defeatedw.r.t. (x, y) ∈ ∆I ×∆I

(or (x, y) ∈ ∆I ×∆D, if R1, R2 ∈ RD) and the OboxO
iff ∃(R3 v R4 < R1 v R2) ∈ O such thatR3 v R4 is
applied w.r.t.(x, y).

We adjust the definition of satisfaction to take into account
the preference order in the Obox.

Definition 3 Let Σ = 〈T ,R,O〉 be anOSHOQ(D)-
knowledge base. An interpretationI ofΣ satisfiesan axiom
ψ fromT (resp.R) if for eachx (resp.(x, y)) for whichψ
is applicable,ψ is either applied or defeated.

A modelof Σ is any interpretation that satisfies all of the
axioms inT ∪ R.

The definitions of concept satisfiability and subsumption
are then straightforward and basically the same as for
SHOQ(D). We callΣ consistentiff there exists a modelI
of Σ.

Note that while allowing the direct expression of pref-
erence between axioms is intuitive, the same effect can be
achieved in first order logic. TheSHOQ(D) tableau rea-
soning algorithm [11] can be extended to handle the prefer-
ence relation, leading to the following theorem.

Theorem 1 Satisfiability checking, consistency and sub-
sumption checking forOSHOQ(D) are decidable prob-
lems.

3. Applications

3.1. Default Reasoning

Representing preferences in an Obox provides a succinct
and modular mechanism to support the representation of de-
faults and exceptions: a default can be simply formulated as
a defeasible axiom while exceptions can be represented in-
dependently by adding appropriate items to the Obox. E.g.



we can start with a general description of birds and their
properties: 〈{B v F}, ∅, ∅〉 whereB v F asserts that
“birds tend to fly”. Later on, we can add specific kinds of
birds, e.g. sparrows (S) that inherit the default flying prop-
erty: in 〈{S v B,B v F}, ∅, ∅〉, S is subsumed byF .
Exceptions are accommodated by simply adding the rele-
vant information as a new axiom that is preferred over the
default, which itself need not be touched: in〈{S v B,P v
B,P v ¬F,B v F}, ∅, {P v ¬F < B v F}〉, penguins
(P ) are non-flying birds.

3.2. Synthesis of Ontologies

Often, new ontologies are constructed starting from (a
combination of) existing ontologies, adding refinements
that correspond to specialized knowledge. Both integration
of ontologies and ontology refinement may lead to inconsis-
tencies. E.g. consider the following fragment of an ontol-
ogy about different religions (a variation of the well-known
“Nixon diamond”): Σ1 = 〈{Q v P}, ∅, ∅〉 which asserts
that “quakers (Q) tend to be pacifists (P )”. Another “polit-
ical” ontology Σ2 = 〈{{Nixon} v R,R v ¬P}, ∅, ∅〉
states that “republicans (R) tend not to be pacifists” and
thatNixon is a republican. When joining the two ontolo-
gies and adding the specialized knowledge that Nixon is a
quaker, one obtains〈{{Nixon} v R, {Nixon} v Q,R v
¬P,Q v P}, ∅, ∅〉 which is inconsistent. The designer
can then incorporate his specialized knowledge by simply
adding{R v ¬P < Q v P} to the Obox, yielding a con-
sistentOSHOQ(D) knowledge base.

In general, the appropriate Obox can be learned from
examples and inconsistent knowledge bases may be made
consistent by simply adding appropriate items to the Obox,
as is implied by the following theorem which asserts that
extending the Obox is monotonic w.r.t. the semantics.

Definition 4 Let Σ = 〈T ,R,O〉 be an OSHOQ(D)
knowledge base. Anorder-extensionof Σ is any knowledge
base〈T ,R,O′〉 whereO′ ⊇ O.

Theorem 2 LetΣ be anOSHOQ(D) knowledge base. All
models ofΣ are models of any order-extension ofΣ.

We propose an Obox-learning algorithm for extending
the Obox of an inconsistent knowledge base〈T ,R,O〉 to
a consistent version〈T ,R,O′〉 whereO ⊆ O′. The al-
gorithm is based on the “candidate elimination algorithm”
from [13]. It operates on ahypothesis spaceH that contains
all possible Oboxes, i.e., identifyingA v B < C v D
with (A v B,C v D) andR3 v R4 < R1 v R2 with
(R3 v R4, R1 v R2), subsets ofU = ((T ∪ T d) ×
T d) ∪ ((R ∪ Rd) × Rd), partially ordered by thegener-
alization partial order⊆. HereT d ⊆ T andRd ⊆ R are
those sets of axioms for which one is willing to accept de-
featers. Thetraining setcontains axiomsE = {{a1} v

Table 2. “candidate elimination” algorithm
1. Start withS = {O0}, whereΣ = 〈T0 = T ,R,O0〉 is the

original KB, and examplesE = {{a1} v K1, . . . , {an} v
Kn}, i = 1.

2. Consider an example{ai} v Ki from E.

3. For eachO ∈ S such that〈Ti−1 ∪ {{ai} v Ki},R,O〉 is
not consistent

(a) RemoveO from S.

(b) Add toS all generalizationsO′ ⊃ O (O′ formed with
axioms fromΣ) of O such that

i. 〈Ti−1 ∪ {{ai} v Ki},R,O′〉 is consistent, and

ii. O′ is minimal, i.e.∀O′′,O ⊂ O′′ ⊂ O′ ·〈Ti−1∪
{{ai} v Ki},R,O′′〉 is not consistent.

4. Ti = Ti−1 ∪ {{ai} v Ki}; i← i + 1

5. Continue from2. until eitherS = ∅, in which case the algo-
rithm fails, or all examples inE have been considered and
S 6= ∅. In the latter case, the algorithm succeeds and the
learned Oboxes are inS.

K1, . . . , {an} v Kn} where each{ai} v Ki, ai an indi-
vidual andKi a concept expression, represents an example
piece of knowledge that must be satisfied by the resulting
ontology, i.e.〈T ∪ E,R,O′〉 must be consistent.

In [13] the algorithm is initialized with a lower boundS
(of specialized items) and an upper boundG (of generalized
items). These collections form the limits in between which
all the solutions must lie. Here,S = {O} contains the
original Obox, andG = {U}. In the original algorithm (see
[13]) there are positive and negative examples. Since we
only deal with positive examples, we obtain the algorithm
in Table 2.

Theorem 3 Let Σ = 〈T ,R,O〉 be anOSHOQ(D) KB
and letE = {{a1} v K1, . . . , {an} v Kn}, be a set
of examples. If the algorithm from Table 2 succeeds with
non-empty solution setS, thenO′ ∈ S iff 〈T ,R,O′〉 is a
minimal order-extension ofΣ such that〈T ∪ E,R,O′〉 is
consistent.

We illustrate the algorithm with a small extension of the
previous example, for which the original combined ontol-
ogy is shown in Figure 2. In this ontology republicans
tend to be football fans (F ), while pacifists tend to be anti-
military (A). Furthermore, football fans tend not to be anti-
military.

Rewriting this as anOSHOQ(D) knowledge base,
it becomes〈{R v ¬P u F,Q v P, P v A,F v
¬A}, ∅, ∅〉. We assume we have the following set of ex-
amplesE = {{Nixon} v R, {Nixon} v Q, {Nixon} v
¬A, {Nixon} v ¬P}, which corresponds to the knowl-
edge we have about Nixon, i.e. a military-minded non-



ontology-definitions
class-defpacifists
class-deffootball fans
class-defrepublicans

subclass-of((NOT pacifists) AND football fans)
class-defquakers

subclass-ofpacifists
class-defpacifists

subclass-ofanti-military
class-deffootball fans

subclass-of NOTanti-military

Figure 2. Nixon’s anti-militarism

pacifist republican quaker. We pick-up the learning algo-
rithm after have seen these four examples. Our result setS
of learned Oboxes then becomesS = {{R v ¬P u F <
Q v P}, {F v ¬A < Q v P}}.

If one wishes to constrain this set of possible Oboxes,
one may consider more examples. Note however that addi-
tionally adding an example{Nixon} v ¬F would yield an
emptyS and we would be unable to make our knowledge
base consistent, simply because the ruleR v ¬PuF would
have no possible defeaters that effectively defeat the rule.

4. Conclusion and Directions for Further Re-
search

We believe thatOSHOQ(D) may be further exploited
as a tool for knowledge base integration and refinement. On
a theoretical level, the algorithm of Table 2 may come up
with too many solutions that, while theoretically optimal,
are not the most natural for fixing the problem at hand. A
more “focused” algorithm may incorporate the order gen-
eration into a tableau procedure for checking consistency
itself, adding required order items when an inconsistency
is detected. In addition, the algorithm may be further re-
fined by taking into account meta-properties of concepts
and roles, such as the ones described in [8], which may sug-
gest or forbid certain axioms to be defeasible. Experiments
with a planned implementation ofOSHOQ(D) will ver-
ify the practical feasibility of the approach with non-trivial
examples.

The ontology integration problem is much more com-
plex and layered than our simple Nixon-example suggests.
Nevertheless, we believe that also in more complicated inte-
gration problems, a key issue regarding the Semantic Web,
defeasible ontologies will prove useful.
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