
GMD –
Forschungszentrum
Informationstechnik
GmbH

GMD Report

Sigrid Gürgens, Peter Ochsenschläger

Carsten Rudolph

2001

151

Role based specifi cation
and security analysis of
cryptographic protocols
using asynchronous
product automata

© GMD 2001

GMD – Forschungszentrum Informationstechnik GmbH

Schloß Birlinghoven

D-53754 Sankt Augustin

Germany

Telefon +49 -2241 -14 -0

Telefax +49 -2241 -14 -2618

http://www.gmd.de

In der Reihe GMD Report werden Forschungs- und Entwicklungser-

gebnisse aus der GMD zum wissenschaftlichen, nichtkommerziellen

Gebrauch veröffentlicht. Jegliche Inhaltsänderung des Dokuments

sowie die entgeltliche Weitergabe sind verboten.

The purpose of the GMD Report is the dissemination of research work

for scientifi c non-commercial use. The commercial distribution of this

document is prohibited, as is any modifi cation of its content.

Anschrift der Verfasser/Address of the authors:

Dr. Sigrid Gürgens

Dr. Peter Ochsenschläger

Dr. Carsten Rudolph

Institut für sichere Telekooperation (SIT)

GMD – Forschungszentrum Informationstechnik GmbH

Rheinstraße 75

64204 Darmstadt

E-Mail: guergens@darmstadt.gmd.de

ochsenschlaeger@darmstadt.gmd.de

carsten.rudolph@darmstadt.gmd.de

ISSN 1435-2702

Abstract

Cryptographic protocols are formally specified as a system of protocol agents using
asynchronous product automata (APA). APA are a universal and very flexible opera-
tional description concept for communicating automata. Their specification, analysis
and verification is supported by the SH-verification tool (SHVT). The local state of each
agent is structured in several components describing its knowledge of keys, its ”view”
of the protocol and the goals to be reached within the protocol. Communication is
modelled by adding messages to and removing them from a shared state component
Network. Cryptography is modelled by symbolic functions with certain properties. In
addition to the regular protocol agents an intruder is specified, which has no access
to the agents’ local states but to Network. The intruder may intercept messages and
create new ones based on his initial knowledge and on what he can extract from inter-
cepted messages. Violations of the security goals can be found by state space analysis
performed by the SHVT. The method is demonstrated using the symmetric Needham-
Schroeder protocol, and an attack is presented that does not involve compromised ses-
sion keys. Our approach defers from others in that protocol specifications do not use
implicit assumptions, thus protocol security does not depend on whether some implicit
assumptions made are reasonable for a particular environment. Therefore, our protocol
specifications explicitly provide relevant information for secure implementations.

Keywords: Cryptographic protocols, role based specification, security analysis, model
checking, formal specification, asynchronous product automata

Zusammenfassung

Kryptographische Protokolle werden als ein System von Protokollagenten mittels
asynchroner Produktautomaten (APA) formal spezifiziert. APA sind ein universelles
und sehr flexibles formales Beschreibungsmittel für kommunizierende Automaten. Ihre
Spezifikation, Analyse und Verifikation wird von einem Werkzeug, dem SH-verification
tool (SHVT), unterstützt.

Der lokale Zustand eines Agenten ist in mehrere Komponenten aufgeteilt, welche
seine Kenntnis von Schlüsseln, seine ”‘Sicht”’ des Protokolls sowie die Ziele, die das
Protokoll erreichen soll, beschreiben. Kommunikation wird modelliert durch das Hinein-
legen und Wegnehmen von Nachrichten in bzw. aus einer Komponente Network, auf
die alle Agenten Zugriff haben.

Kryptographie wird mittels symbolischer Funktionen mit bestimmten Eigenschaften
modelliert. Zusätzlich zu den regulären Protokollagenten wird ein Angreifer spezifiziert,
der Zugriff auf Network, aber nicht auf die lokalen Zustände der Agenten hat. Er kann
Nachrichten abfangen und neue Nachrichten erzeugen basierend auf seinem Anfangswis-
sen und dem, was er aus abgefangenen Nachrichten extrahieren kann.

Die Verletzung von Sicherheitszielen wird automatisch (SHVT) mittels Erreich-
barkeitsanalyse gefunden. Die Methode wird am Beispiel des symmetrischen Needham-
Schroeder Protokolls demonstriert. Dabei wird eine Angriffsmöglichkeit aufgezeigt, die
nicht auf kompromitierte Session Keys zurückgreift.

Unser Ansatz unterscheidet sich von anderen darin, daß die Protokollspezifikatio-
nen keine impliziten Annahmen machen. Somit hängt die Sicherheit eines Protokolls
nicht davon ab, ob solche impliziten Annahmen für bestimmten Protokollumgebungen
sinnvoll sind oder nicht. Unsere Protokollspezifikationen enthalten daher explizit die
Information, die für eine sichere Implementation relevant ist.

Schlagworte: kryptographische Protokolle, rollenbasierte Spezifikation, Sicherheits-
analyse, Model-Checking, formale Spezifikation, asynchrone Produktautomaten

Part of this work is based on results of the project Valikrypt being funded
by the German Bundesamt für Sicherheit in der Informationstechnik (BSI),
Referat II 2.4.

Contents

1 Introduction 7

2 Asynchronous Product Automata 8
2.1 Formal APA definition . 9
2.2 The Needham-Schroeder protocol . 9
2.3 APA specification of the Needham-Schroeder Protocol 10

3 Protocol analysis 13
3.1 APA framework for protocol analysis . 13
3.2 A concrete scenario for the Needham-Schroeder protocol 16

4 Conclusions 18

A Appendix 20

7

1 Introduction

The principal goal of cryptographic protocols is to provide certain security services. If
a protocol is not designed correctly it may fail to provide the required security service
even if the underlying cryptographic algorithms are secure. Numerous cases exist where
protocol flaws have been very hard to detect. Consequently, the need for formal analysis of
cryptographic protocols is widely accepted and various different techniques including logics
of authentication and model-checking have been proposed and successfully applied to find
security flaws.

However, the security analysis of cryptographic protocols is mostly carried out in ide-
alised models of the computational environment and detached from the development of
systems the protocols are supposed to be used in. Protocol specifications used for imple-
mentations are often not completely formal. Protocols are specified as lists of messages to
be exchanged using certain cryptographic operations. Internal actions of protocol agents,
verification of messages and message parts on receipt, or assumptions about underlying
cryptographic algorithms are not formally specified. Therefore, the security of the protocol
depends on information that is either given as informal textual description or implicitly
assumed.

For example, many formal models for cryptographic protocols assume that all messages
are strongly typed and that in careful implementations these types are always checked (e.g.
[5], [10]). However, in real applications, attacks based on type confusion cannot always be
neglected. Smartcard applications for example allow to use message structures like ASN.1
but often use implicitly defined structures. This is the case for the authentication protocol
of the German DIN standard for digital signature smartcards [7]. Here the structure of
the messages is fixed and the specification of the algorithm includes the specification of
the message structure. Other smartcard applications use so-called headers to define the
message structure. The header specifies the type and length of each message part and the
message is interpreted accordingly. In these cases the messages itself do not carry any type
information.

We propose a formal model for cryptographic protocols that provides sufficient flexibility
for detailed protocol specifications. In particular, all nuances of typing from assuming that
no types are checked up to strong typing can be specified. In fact, in our model, all message
checks on receipt have to be explicitly specified.

By inserting a powerful intruder into the model, automated finite state analysis using
the SH verification tool [9] can be efficiently carried out.

In this paper we demonstrate our approach on the well known symmetric Needham-
Schroeder protocol and present an attack on this protocol that does not involve compromised
session keys and that was first published in [4]. The rest of the paper is organized as follows.
In the next section we give a general definition of APA and introduce our APA model for
protocols. In particular, we specify the crucial step of the symmetric Needham-Schroeder
protocol that allows the arity attack. In section 3 we extend the model to include an
intruder, we define its abilities, we specify a concrete scenario for the Needham-Schroeder
protocol, and finally we explain the arity attack. Section 4 gives our conclusions.

8 2 ASYNCHRONOUS PRODUCT AUTOMATA

2 Asynchronous Product Automata

We model a system of protocol agents using asynchronous product automata (APA). APA
are a universal and very flexible operational description concept for cooperating systems
[9]. It “naturally” emerges from formal language theory [8]. APA are supported by the SH-
verification tool that provides components for the complete cycle from formal specification
to exhaustive analysis and verification [9].

An APA can be seen as a family of elementary automata. The set of all possible
states of the whole APA is structured as a product set; each state is divided into state
components. In the following the set of all possible states is called state set. The state
sets of elementary automata consist of components of the state set of the APA. Different
elementary automata are “glued” by shared components of their state sets. Elementary
automata can “communicate” by changing the content of shared state components.

We view protocols as cooperating systems, thus APA are an adequate means for pro-
tocol formalization. Figure 1 shows the structure of an asynchronous product automaton
modelling a system of three protocol agents A, B and S. The circles represent state com-
ponents and boxes are elementary automata. Each agent P taking part in the protocol
is modelled by one elementary automaton P that performs the agent’s actions, and four
state components SymkeysP, AsymkeysP, StateP, and GoalsP to store the symmetric and
asymmetric keys of P, P’s local state and the security goals P should reach within the pro-
tocol, respectively. The only state component shared between all agents (all elementary
automata) is the component Network, which is used for communication. A message is sent
by adding it to the content of Network and received by removing it from Network. The
neighbourhood relation N (graphically represented by an arc) indicates which state compo-
nents are included in the state of an elementary automaton and may be changed by a state
transition of the elementary automaton. For example, automaton A may change StateA

and Network but cannot read or change the state of StateB. The figure shows the structure
of the automaton. The full specification of the automaton includes the state sets (the data
types), transition relations of the elementary automata and the initial state.

S

A B

Network
StateB

SymkeysB

GoalsB

AsymkeysB

SymkeysA

AsymkeysA

StateA

GoalsA

AsymkeysS SymkeysSGoalsS StateS

Figure 1: Structure of the APA model for agents A, B and S

2.1 Formal APA definition 9

2.1 Formal APA definition

In this section we give the formal definition of APA.
An Asynchronous Product Automaton consists of a family of State Sets ZS , S ∈ �, a

family of Elementary Automata (Φe,∆e), e ∈ � and a Neighbourhood Relation N : � → P(�);
P(X) is the power set of X and � and � are index sets with the names of state components
and elementary automata. For each Elementary Automaton (Φe, ∆e),

• Φe is its Alphabet and

• ∆e ⊆��S∈N(e)(ZS)× Φe ×��S∈N(e)(ZS) is its State Transition Relation

For each element of Φe the state transition relation ∆e defines state transitions that change
only the state components in N(e).

Remark: The alphabets Φe of the elementary automata can be used in protocol speci-
fications to assign a label to any set of state transitions representing a particular protocol
step. This motivates the state transition notation described below.

An APA’s (global) States are elements of ��
S∈�(ZS). To avoid pathological cases it is

generally assumed that � =
⋃

e∈� (N(e)) and N(e) �= ∅ for all e ∈ � . Each APA has one
Initial State s0 = (q0S)

S∈� ∈��S∈�(ZS).
In total, an APA � is defined by � = ((ZS)

S∈�, (Φe, ∆e)e∈� , N, s0).
The behaviour of an APA is represented by all possible sequences of state transitions

starting with initial state s0. The sequence (s0, (e1, a1), s1)(s1, (e2, a2), s2)(s2, (e3, a3), s3) . . .
with ai ∈ Φei represents one possible sequence of actions of an APA.

State transitions (si, (e, a), si+1) may be interpreted as labeled edges of a directed graph
whose nodes are the states of an APA: (si, (e, a), si+1) is the edge leading from si to si+1

and labeled by (e, a). The subgraph reachable from the node s0 is called the reachability
graph of an APA.

2.2 The Needham-Schroeder protocol

To illustrate how APA can be used to model cryptographic protocols, we present the well-
known symmetric Needham-Schroeder protocol [6] the purpose of which is to distribute a
session key to agents A and B with the help of a key server S. The messages of the protocol
are as follows:

1. A −→ S : A,B,RA

2. S −→ A : {RA, B,KAB, {KAB, A}KBS
}KAS

3. A −→ B : {KAB, A}KBS

4. B −→ A : {RB}KAB

5. A −→ B : {RB − 1}KAB

In the first message agent A sends to S its name A, the name B of the desired com-
munication partner, and a random number RA which it generates for this protocol run. S
then generates a ciphertext for A, using the key KAS that it shares with A. This ciphertext
includes A’s random number, B’s name, the new key KAB, and a ciphertext intended for
B. The usage of the key KAS shall prove to agent A that the message was generated by
S. The inclusion of RA ensures A that this ciphertext and in particular the key KAB is
generated after the generation of RA, i.e. during the current protocol run. Agent A also
checks that the ciphertext includes B’s name, making sure that S sends the new key to B

10 2 ASYNCHRONOUS PRODUCT AUTOMATA

and not to someone else, and then forwards {KAB, A}KBS
to B. Then, in the last two steps

of the protocol, the fact that B’s random number RB − 1 is enciphered using the key KAB

shall convince B that this is a newly generated key. However, the well-known attack on
this protocol presented by Denning and Sacco [1] makes clear that this conclusion cannot
be drawn. This attack assumes that secrecy of session keys holds only for a limited time
period.

In this paper we show how our analysis approach can find a different attack first shown
in [4]. For a successful attack the intruder need not know past session keys. In fact, it
is possible that agent B accepts a random number generated by the intruder as a new
session key. This attack becomes possible when the number of components of a decrypted
message is not checked and random numbers can be accepted as session keys. The attack
and measures to avoid it are explained in more detail in section 3.

2.3 APA specification of the Needham-Schroeder Protocol

The APA structure in figure 1 shows the general structure of the APA for protocol specifi-
cation. As mentioned above, in order to model a specific cryptographic protocol, we need
to specify the set of messages, in particular cryptographic algorithms and keys, the state
sets for all state components and the state transition relations of the elementary automata.
In this section we only describe the details of APA protocol specifications that are needed
for the specification of the Needham-Schroeder protocol. In general, different types of cryp-
tographic algorithms with special properties (e.g. the homomorphic property of RSA [11])
can be modelled, a variety of data types can be defined, and additional security predicates
describing undesired states of the system can be specified.

State sets, messages and cryptography In the present paper we restrict our model to
very basic data types and the model of cryptography to symmetric algorithms for encryption
and decryption. For the definition of the domains of the state components as well as for
the definition of the set of messages, we need the following basic sets:

Agents set of agents’ names
Keywords {new session key, session key, start, respond,agent,server}
Keys {(P,Q, sym) |P, Q ∈ Agents}
Predicates set of predicates on global states
IN set of natural numbers

As we assume in this paper that agents cannot check the type of a message, the random
numbers used in a protocol are just natural numbers. However, if we want to model an
environment where agents do check types of messages, we can easily add basic message sets
as Random, N once etc. to enable type checks. The elements of Keywords are used to
direct the state transitions.

The union of the sets Agents, Keywords, Keys, and IN represents the set of atomic
messages, based on which we define a set M of messages in the following way:

1. Every atomic message is element ofM.

2. If m1, . . . ,mr ∈M, then (m1, . . . ,mr) ∈M.

3. If k, m ∈M, then encrypt(k,m) ∈M and decrypt(k, m) ∈M.

2.3 APA specification of the Needham-Schroeder Protocol 11

4. If m ∈M, then sub(m, 1) ∈M.

We define the standard functions elem(k, . . .) and length on tuples (m1, . . . ,mr) which
return the kth component (or, if k ≥ r, the rth component) and the number of components
of a tuple, respectively.

For all P ∈ Agents and k,m ∈ M we define the following properties of the symbolic
functions encrypt and decrypt, and a symmetric relation inv on Keys, respectively:

1. decrypt(k, encrypt(k,m)) = m and encrypt(k, decrypt(k, m)) = m

2. inv((P,Q, sym), (P,Q, sym)) and (P,Q, sym) = (Q, P, sym)

Our general model provides additional symbolic functions for the specification of other
cryptographic protocols. In this paper we restrict the model to those specifically necessary
for the specification of the symmetric Needham-Schroeder protocol.

The above properties define for each m ∈ M a unique shortest normal form (modulo
commutativity). The setMessages is the set of all these normal forms of elements m ∈M.

Now elements ofMessages constitute the content of State components, while Network
contains tuples ofAgents×Messages, where the first component gives the intended message
recipient. A symmetric key key is stored in SymkeysP using a tuple (Q, sym, key), where
Q is the name of the agent that P’s automaton will use to find the key and sym is the flag
specifying a symmetric key used for encryption and decryption. (We use different flags to
specify other types of keys used for example for the generation of a message authentication
code.)

The symbolic functions encrypt and decrypt together with the above listed properties
model a symmetric algorithm. For this paper, we assume “perfect encryption”, i.e. we
assume that keys cannot be guessed, that for generating encrypt(k, m), both k and m
need to be known, and that encrypt(k, m) = encrypt(k′, m′) implies k = k′ and m = m′.
Using more elaborated normal forms, we can relax these assumptions and model, for
example, the symbolic function blockcrypt with the property blockcrypt(k, (m1.m2)) =
(blockcrypt(k,m1).blockcrypt(k, m2)), thus modelling the fact that some cryptographic al-
gorithms under some assumptions allow ciphertexts to be generated by concatenation of
blocks of ciphertexts.

Formally, for each state component C ∈ � its state set ZC has to be defined. The state
of a state component is a multiset. Therefore, state sets are sets of multisets. A multiset
of a set M is formally defined as a function f ∈ INM , where for x ∈ M , f(x) indicates the
multiplicity of x in the multiset of M . If f(x) > 0 for x ∈ M , we say that x is element of
the multiset f of M (denoted by x ∈ f). INM is the set of all multisets of M , which we
shortly denote by P̄(M). For each state component C ∈ � a set MC has to be specified
such that the state set ZC is defined as ZC = INMC = P̄(MC).

Using the sets defined above and appropriate sets for Symflags and Asymflags (in
this paper, Symflags = {sym}), domains of the state components of a protocol APA can
now be defined as follows:

ZNetwork = P̄(Agents×Messages)
ZStateP

= P̄(Messages)
ZSymkeysP

= P̄(Agents× Symflags×Messages)
ZAsymkeysP

= P̄(Agents×Asymflags×Keys)
ZGoalsP

= P̄(Predicates)

12 2 ASYNCHRONOUS PRODUCT AUTOMATA

Initial state To model a protocol, it is necessary to give the initial state, that is, the
content of all state components in the state the protocol starts with. For the symmetric
Needham-Schroeder protocol this can be specified in the following way:

StateA := {(B, agent), (S, server), (start,B)}
SymkeysA := {(S, sym, (A,S, sym))}
StateB := {(A, agent), (S, server), (respond,A)}
SymkeysB := {(S, sym, (B,S, sym))}
StateS := {(A, agent), (B, agent)}
SymkeysS := {(A, sym, (A,S, sym)), (B, sym, (B,S, sym))}

Agents A and B know each other and know the server S, A can start a protocol run with
B, while B can respond to protocol runs started by A (indicated by the keywords start and
respond, respectively). Each of the agents owns a symmetric key shared with S. S on the
other hand knows the agents A and B and owns the respective keys. The agents do not use
asymmetric keys in this protocol, thus the components Asymkeys as well as Network are
empty in the initial state.

State transition relation To specify the agents’ actions we use so-called state transition
patterns describing state transitions of the corresponding elementary automaton. Step 4 of
the Needham-Schroeder protocol for example, where agent B receives message {KAB, A}KBS

forwarded by A, can be specified as shown in Table 1.

step 4 (A,S, M, KBS , KAB, RB) Variables used in the pattern

(B, M) ∈ Network Message M with B as recipient
in Network

(respond, A) ∈ StateB B can respond to protocol started
by A

(A, agent) ∈ StateB B knows agent A
(S, server) ∈ StateB B knows server S
(S, sym, KBS) ∈ SymkeysB B shares symmetric key KBS with S
elem(2, decrypt(KBS , M)) = A after decryption with KBS , second

component of resulting plaintext is A
B→ state transition is performed by B
KAB := elem(1, decrypt(KBS , M)) B assigns first plaintext component

to KAB

RB ∈ new random B generates new random numberRB

(B, M) ←↩ Network B removes message from Network
(new session key, A, KAB, RB) ↪→ StateB B stores KAB as new session key
(A, (encrypt(KAB, RB))) ↪→ Network B sends next message

Table 1: Step 4 of the Needham-Schroeder protocol

The lines above B→ indicate the necessary conditions for automaton B to transform a
state transition, the lines behind specify the changes of the state. ↪→ and ←↩ denote that
some data is added to and removed from a state component, respectively. B does not
perform any other changes within this state transition.

13

See the appendix for the full specification of the state transition patterns for the sym-
metric Needham-Schroeder protocol. The syntax and semantics of state transition patterns
for APA is explained in more detail in [2].

So far the specification defines the functionality of one protocol run. A complete speci-
fication in the APA framework additionally contains security relevant information. Exem-
plary, in the following two paragraphs we give the information relevant for the Needham-
Schroeder example.

Role specification of cryptographic protocols In the above state transition pattern
as well as in the protocol description given in section 2.2, A, B, etc. are addressed as agents.
However, any agent acting as B will behave in the above described way. Thus, the state
transition patterns describe the actions of an agent acting in role B rather than describing
an agent’s actions.

In some environments it may not be possible that an agent acting in role A or B can
also act as a server S. Additionally, some agent’s roles may be regarded as secure, that is,
we may assume these agents’ roles cannot be played by an intruder. Thus for the formal
specification of a protocol, the combination of roles that is forbidden has to be specified and
those roles that might be compromised have to be determined. A possible specification for
the Needham-Schroeder protocol is to forbid agents acting as A or B to act as S and vice
versa, and to assume that A and B may be compromised.

Security goals The security of a protocol is defined relative to the specified security
goals. Therefore the security goals are part of the protocol specification. Typical security
goals are, for example, authenticity and confidentiality of transmitted data, such as new
session keys, or the authenticity of agents taking part in the protocol. In our model, the
state components Goals are used to specify security goals. Whenever an agent P performs
a state transition after which a specific security goal shall hold from the agent’s view, a
predicate representing the goal is added to the state of GoalsP. Note that the content of
Goals has no influence on state transitions.

A protocol is secure (within the scope of our model) if a predicate is true whenever it is
in a Goals component.

In the Needham-Schroeder protocol, one security goal is that after B’s final step the
new session key which is added to StateB is not known to any agent except A and B, i.e.
the key is not contained in any state component StateP for all P ∈ Agents \ {A,B}. In
terms of transition patterns the relevant parts of step 5 are:

B→
(new key, KAB, A) ↪→ StateB The value of variable

KAB is accepted as
new session key

(∀P ∈ Agents \ {A, B} : not knows(P,KAB)) ↪→ GoalsB

3 Protocol analysis

3.1 APA framework for protocol analysis

The APA specification of a protocol maintains an abstraction level where details like random
number generation, number of runs that shall be performed, the actions of agents, etc. are

14 3 PROTOCOL ANALYSIS

specified on an abstract level. This has to be transfered to an abstraction level where
the SHVT can actually perform a state search. This includes to specify the number and
nature of runs that shall be validated (only finitely many runs can be checked), the agents
taking part in these runs and their roles, and additional details like data that will be lost
(for example, a session key might get lost after the end of the protocol). Additionally, the
intruder has to be added to the model.

Interpretation of roles Since in the APA specification, A,B, etc. represent roles rather
than agents, (B, agent) in A’s State component in the initial state does not mean that an
agent in role A only knows one single agent in role B. Rather, (B, agent) represents a subset
of Agents×{agent} which contains one element for each agent that can act in role B. Thus,
(B, agent) can be viewed as a characteristic element for the possible interpretations. If, for
example, Alice and Bob can act in role B, then (B, agent) represents the set {(Alice,agent),
(Bob,agent)}.

When interpreting such a tuple, the name of the agent owning the state component the
tuple is an element of is excluded from the interpretation. For determining the initial state
of SymkeysBob, the only value possible for B in the tuple {(S, sym, (B,S, sym))} is Bob, as
Bob knows all keys he shares with all servers, but does not know keys some other agent shares
with a server. As servers may vary, the set may contain tuples {(S1, sym, (B,S1, sym))},
{(S2, sym, (B,S2, sym))}, etc.

To derive a concrete scenario for the analysis, the characteristic elements of the role
specification are replaced by the respective sets. The initial state for a state component is
then the result of the union of all these sets.

The analysis APA Every concrete agent P acting honestly (i.e. according to the protocol
specification) is modelled by one elementary automaton P and the state components StateP,
SymkeysP, AsymkeysP, GoalsP and Network in its neighbourhood relation. The elementary
automaton P performs state transitions according to the patterns given in the protocol
specification. Additionally, an analysis APA contains a state component Global that can be
accessed by all elementary automata. This state component can be used for the generation
of random numbers, for the storage of data that can be used to interrupt a protocol run,
etc. The APA also contains a further elementary automaton G to globally direct some state
transitions. G has access to all agents’ and the intruder’s State components (see below)
and to Network and Global.

The resulting APA together with a specification of analysis details (which are the agents
acting, how many runs, etc.) can be used to check that the protocol specification without
malicious behaviour results in the desired state transition sequence and that in particular
the expected final states of the agents are reached.

Including an intruder In order to perform a security analysis, our model includes the
explicit specification of an intruder E ∈ Agents. For this we further extend the analysis
APA and add state components SymkeysE and AsymkeysE to store E’s keys, StateE to store
what E learns from messages while listening to Network, and SentE in order to avoid sending
of messages more than once. E also owns an elementary automaton E that has access to
E’s state components, Network and Global, and that performs E’s actions. Figure 2 shows
the complete APA for the analysis.

3.1 APA framework for protocol analysis 15

StateAlice

SymkeysAlice

AsymkeysAlice

GoalsAlice

StateServer

StateE

StateBob

SymkeysBob

AsymkeysBob

GoalsBob

GoalsServerSymkeysServer AsymkeysServer

AsymkeysESymkeysE SentE

Global

Server

Alice Bob

EG

Network

Figure 2: Structure of the analysis APA for agents Alice, Bob and Server, including E

The intruder’s elementary automaton E can remove all tuples from Network indepen-
dently from being named as the intended recipient. It can extract new knowledge from the
messages and add this knowledge to the respective state components. Additionally E can
add the intended recipient of a message as a possible recipient of his own messages to his
knowledge base. The intruder’s knowledge can be defined recursively in the following way:

1. The intruder knows all data being part of his initial state (for example the names of
other protocol agents, the keys he shares with the key server, etc.)

2. The intruder knows all agents’ names he extracts from a tuple in Network as the
intended recipient of that message.

3. The intruder knows all messages he removed (as the second component of a tuple)
from Network.

4. The intruder knows all parts of messages he removed from Network (where a ciphertext
is viewed as one message part).

5. The intruder knows all messages he can generate by concatenation of messages he
knows.

6. The intruder can generate new messages by applying the function encrypt to messages
he knows. (Note that he can use any message in his knowledge base as a key.)

7. The intruder can generate random numbers.

16 3 PROTOCOL ANALYSIS

8. The intruder knows all plaintexts he can generate by deciphering a ciphertext he
knows, provided he knows the necessary key as well.

9. The intruder knows all messages he can generate by applying the symbolic function
sub to messages he knows.

With new messages generated according to the above rules, in every state of the system,
the intruder’s elementary automaton E can add new tuples (recipient,message) to Network,
recipient being one possible message recipient in his State component.

3.2 A concrete scenario for the Needham-Schroeder protocol

We now introduce a concrete scenario for the symmetric Needham-Schroeder protocol. Us-
ing the SH verification tool we want to automatically analyse a scenario where Alice (in
role A) starts a protocol run with Bob (in role B), and Server acts in role S. These agents
are acting honestly, thus the system includes an outside intruder E not taking part in
the protocol run as an honest agent, which means in particular that E does not own a
symmetric key shared with the server. However, E knows agents’ and the server’s names.
We then want to analyse whether there is a state in which Bob believes to share a ses-
sion key with Alice which is known by the intruder, i.e. whether or not every predicate
(∀P ∈ Agents \ {Alice,Bob} : not knows(P,K)) holds in the state in which Bob adds this
predicate to the state component GoalsB (which is the last step of the protocol). The initial
state for this scenario includes

StateAlice(s0) = {(Bob,agent), (Server,server), (start,Bob)}
SymkeysAlice(s0) = {(Server,sym,(Alice,Server,sym))}
StateBob(s0) = {(Alice,agent), (Server,server), (respond,Alice)}
SymkeysBob(s0) = {(Server,sym,(Bob,Server,sym))}
StateServer(s0) = {(Bob,agent), (Alice,agent)}
SymkeysServer(s0) = {(Alice,sym,(Alice,Server,sym)), (Bob,sym,(Bob,Server,sym))}
StateE(s0) = {(Alice,agent), (Bob,agent), (Server,server)}

The Asymkeys and Goals components, Global, Network and SymkeysE and SentE are
empty in the initial state.

Starting with the initial state, the SHVT computes all reachable states until it finds
a state in which the intruder knows a key that is accepted as a new session key by Alice
or Bob. The SHVT outputs the state indicating a successful attack. Now one can let the
SHVT compute a path from the initial state to this attack state. This path shows how the
attack works. The remainder of this section explains the actions of Bob and the intruder
E. Alice is not involved in the attack at all.

First, the intruder E pretends to be Bob starting a protocol run with Alice. E generates
a random number randomE and sends the first message to Server (see the appendix for the
respective state transition pattern). This results in

StateE(s1) = {randomE,(Alice,agent),(Bob,agent),(Server,server)}
Network(s1) = {(Server,(Bob,Alice,randomE))}

The server as the intended recipient of this message removes it from Network. It then
generates a new session key K and a ciphertext encrypt((Bob,Server,sym), (randomE,Alice,
K, encrypt((Alice, Server,sym), (K,Bob)))) using the symmetric keys it shares with Bob
and Alice, respectively. The server adds Bob’s name as the intended recipient and adds the
complete tuple to Network:

3.2 A concrete scenario for the Needham-Schroeder protocol 17

Network(s2) = {(Bob, (encrypt((Bob,Server,sym), (randomE,Alice, K,
encrypt((Alice,Server,sym), (K,Bob))))))}

In the next state transition, according to the state transition pattern presented in sec-
tion 2.3, Bob’s elementary automaton checks that he owns a server’s key to decipher the
ciphertext with, that the second component of the resulting plaintext contains the name
of an agent Bob knows (namely Alice), that he is allowed to respond to a protocol run
started by Alice, and then accepts this message. Thus Bob accepts this message (that was
meant to be the second message of a protocol run) as the third message of a protocol run
started by Alice. Therefore, Bob removes the message from Network, stores the first part
of the plaintext, namely randomE, as a new session key to be shared with Alice, generates
a random number randomB, enciphers this random number using the new “session key”
randomE, and then adds (Alice,encrypt(randomE,(randomB))) to Network:

StateBob(s3) = {(new session key,Alice,randomE,randomB),(Alice,agent),
(Server,server)}

Network(s3) = (Alice,(encrypt(randomE,(randomB))))

The intruder E removes this tuple from Network, deciphers the ciphertext (as he knows
randomE), applies the symbolic function sub and adds (Bob,(encrypt (randomE,(sub(ran-
domB,1))))) to Network:

Network(s4) = (Bob,(encrypt(randomE,(sub(randomB,1)))))

Finally, Bob removes this tuple from Network, deciphers it using again what he takes to
be the new session key, checks that the result is sub(randomB, 1) (using randomB stored
in his State component) and stores randomE as the final session key shared with Alice.
Finally, the predicate describing that randomE is a session key shared with Alice is added
to Bob’s Goals component:

StateBob(s5) = {(session key,Alice,randomE),(Alice,agent),(Server,server)}
GoalsBob(s5) = {(∀P ∈ Agents \ {Alice,Bob} : not knows(P, randomE))}

So the final state includes randomE being stored by Bob as a new session key shared
with Alice, while at the same time randomE is element of the intruder’s State component.
Thus the analysis has found a state where the not knows predicate is in a Goals component
and does not hold, i.e. the analysis shows that the Needham-Schroeder protocol is not
secure. The attack the SHVT has found is the arity attack described in [4]. It can be
avoided if Bob’s actions when receiving message 3 of the protocol include the check that the
ciphertext contains exactly two message items (length(decrypt(Bob,Server,sym),M) = 2).
However, it is not trivial to realize such a check in real environments, as the length of the
ciphertext itself does not necessarily allow to deduce the number of message items. For
example, it is not obvious how to distinguish between random numbers used as padding
data and other message parts. Note that the attack is also not possible if the protocol
is run in an environment where agents can distinguish between types of keys and random
numbers. We can model this by adding a check KAB ∈ Keys to the state transition pattern
describing Bob’s actions when receiving message 3 of the protocol.

The attack was automatically found after computing 579 states in less than a minute
on a Pentium III, 550 MHz system.

18 REFERENCES

4 Conclusions

In this paper we have presented a methodology for the security analysis of cryptographic
protocols. We view the agents taking part in such a protocol as communicating systems and
model them using asynchronous product automata (APA), each agent being represented by
one elementary automaton. Cryptography is modelled by symbolic functions with certain
properties. The analysis APA explicitly includes the specification of an intruder’s actions.
Security of a protocol is defined relative to the specified security goals which are part of the
specification. A protocol is secure (within the scope of our model) if whenever a predicate
describing a security goal is in the state of an agent, it holds in the global state. We use the
SH-verification tool [9] to perform a protocol analysis. We have demonstrated our methods
using the well-known symmetric Needham-Schroeder protocol and presented an attack (the
arity attack, see [4]).

Our methods do not provide proofs of security, but are similar to model checking analysis
approaches where a finite state space is searched for insecure states (see, for example, [5]
or [12]). Different approaches are concerned with the verification, i.e. the proof of certain
security properties relative to a particular computational model (see for example [10] or
[13]).

Compared to other approaches, our methods are both very flexible and minimal with
respect to implicit assumptions used. Lowe and others as well for example use the assump-
tion that every check an agent can perform is indeed performed, and that agents are able to
distinguish between different data types. Our methods on the other hand allow the analysis
of systems where these assumptions hold by adding the respective checks as well as the
analysis of systems where these assumptions do not hold. Such systems exist, smartcard
applications for example often use implicit data structures (see [7]).

For the work presented in this paper we have assumed perfect encryption. Ongoing
work includes to relax this assumption and use additional symbolic functions to model for
example the homomorphic property of RSA [11]. Additionally the way of reducing the state
space without restricting the powers of the intruder is subject to future work.

References

[1] D. Denning and G. Sacco. Timestamps in key distribution protocols. Communications
of the ACM, 24:533–536, 1982.

[2] S. Gürgens, P. Ochsenschläger, and C. Rudolph. Authenticity and provability – a
formal framework. GMD Report 150, GMD – Forschungszentrum Informationstechnik
GmbH, 2001.

[3] S. Gürgens, P. Ochsenschläger, and C. Rudolph. Role based specification and secu-
rity analysis of cryptographic protocols using asynchronous product automata. GMD
Report 151, GMD – Forschungszentrum Informationstechnik GmbH, 2001.

[4] S. Gürgens and R. Peralta. Validation of Cryptographic Protocols by Efficient Auto-
mated Testing. In FLAIRS2000, pages 7–12. AAAI Press, May 2000.

[5] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using CSP
and FDR. In Second International Workshop, TACAS ’96, volume 1055 of LNCS,
pages 147–166. SV, 1996.

REFERENCES 19

[6] R. Needham and M. Schroeder. Using encryption for authentication in large networks
of computers. Communications of the ACM, pages 993–999, 1978.

[7] DIN NI-17. Chipkarten mit Digitaler Signatur - Anwendung/Funktion nach SigG und
SigV - Teil 1: Anwendungsschnittstelle. DIN, April 2000.

[8] P. Ochsenschläger, J. Repp, and R. Rieke. Abstraction and composition – a verification
method for co-operating systems. Journal of Experimental and Theoretical Artificial
Intelligence, 12:447–459, June 2000.

[9] P. Ochsenschläger, J. Repp, R. Rieke, and U. Nitsche. The SH-Verification Tool –
Abstraction-Based Verification of Co-operating Systems. Formal Aspects of Comput-
ing, The International Journal of Formal Method, 11:1–24, 1999.

[10] L. C. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of Computer Security, 6:85–128, 1998.

[11] R. L. Rivest, A. Shamir, and L. A. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[12] B. Roscoe, P. Ryan, S. Schneider, M. Goldsmith, and G. Lowe. The modelling and
Analysis of Security Protocols. Addison Wesley, 2000.

[13] D. Song, S. Berezin, and A. Perrig. Athena, a novel approach to efficient automatic
security protocol analysis. Journal of Computer Security, 1,2(9):47–74, 2001.

20 A APPENDIX

A Appendix

Step 1 Variables: RA, B, S

(start, B) ∈ StateA

(B, agent) ∈ StateA

(S, server) ∈ StateA
A→
RA ∈ new nonce
(start, B) ←↩ StateA

(B, RA, S) ↪→ StateA

(S, (A,B,RA)) ↪→ Network

Step 2 Variables: A,B,M,KAS , KBS , KAB, RA

(S, M) ∈ Network
(A, agent) ∈ StateS ∧ elem(1,M) = A
(B, agent) ∈ StateS ∧ elem(2,M) = B
(A, sym,KAS) ∈ SymkeysS

(B, sym,KBS) ∈ SymkeysS
S→
RA := elem(3,M)
(A,B, sym) ∈ new key
KAB := (A,B, sym)
(S, M) ←↩ Network
(A, (encrypt(KAS , (RA, B, KAB,
encrypt(KBS , (KAB, A)))))) ↪→ Network

Step 3 Variables: B, S, M,C,KAS , KAB, RA

(A,M) ∈ Network
(B, RA, S) ∈ StateA

(S, sym, KAS) ∈ SymkeysA
elem(1, decrypt(KAS , M)) = RA

elem(2, decrypt(KAS , M)) = B
A→
KAB := elem(3, decrypt(KAS ,M))
C := elem(4, decrypt(KAS ,M))
(A,M) ←↩ Network
(B, RA, S) ←↩ StateA

(new session key, B, KAB) ↪→ StateA

(B, C) ↪→ Network

21

Step 4 Variables: A,S, M,KBS ,KAB, RB

(B,M) ∈ Network
(respond, A) ∈ StateB

(A, agent) ∈ StateB

(S, server) ∈ StateB

(S, sym,KBS) ∈ SymkeysB
elem(2, decrypt(KBS ,M)) = A
B→
KAB := elem(1, decrypt(KBS ,M))
RB ∈ new nonce
(B,M) ←↩ Network
(new session key, A,KAB, RB) ↪→ StateB

(A, (encrypt(KAB, RB))) ↪→ Network

Step 5a Variables: B,M,KAB, RB

(A, M) ∈ Network
(new session key, B,KAB) ∈ StateA
A→
RB := elem(1, decrypt(KAB,M))
(A, M) ←↩ Network
(new session key, B,KAB) ←↩ StateA

(session key, B, KAB) ↪→ StateA

(∀P ∈ Agents \ {A,B} : not knows(P, KAB)) ↪→ GoalsA
(B, (encrypt(KAB, sub(RB, 1)))) ↪→ Network

Step 5b Variables: A,M,KAB, RB

(B,M) ∈ Network
(new session key, A,KAB, RB) ∈ StateB

elem(1, decrypt(KAB, M)) = sub(RB, 1)
B→
(B,M) ←↩ Network
(new session key, A,KAB, RB) ←↩ StateB

(session key, A, KAB) ↪→ StateB

(∀P ∈ Agents \ {A,B} : not knows(P, KAB)) ↪→ GoalsB

