
The University of Manchester Research

Making Autonomic Computing Systems Accountable: The
Problem of Human-Computer Interaction

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Anderson, S., Hartswood, M., Procter, R., Rouncefield, M., Slack, R., Soutter, J., & Voss, A. (2003). Making
Autonomic Computing Systems Accountable: The Problem of Human-Computer Interaction. In International
Conference on Database and Expert Systems Applications (pp. 718-724)

Published in:
International Conference on Database and Expert Systems Applications

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:26. Apr. 2024

https://research.manchester.ac.uk/en/publications/ddcd0152-baa7-4a8a-983a-0e3557212126

Making Autonomic Computing Systems Accountable: The Problem of Human-
Computer Interaction

Stuart Anderson1, Mark Hartswood1, Rob Procter1, Mark Rouncefield2, Roger Slack1, James Soutter1

and Alex Voss1
1School of Informatics, University of Edinburgh

2Computing Department, Lancaster University
1{mjh|rnp|rslack|jsoutter|av}@inf.ed.ac.uk

2m.rouncefield@lancs.ac.uk

Abstract

The vision of autonomic computing raises fundamental
questions about how we interact with computer systems.
In this paper, we outline these questions and propose
some strategies for addressing them. In particular, we
examine the problem of how we may make autonomic
computing systems accountable in interaction for their
behaviour. We conclude that there is no technological
solution to this problem. Rather, it calls for designers of
autonomic computing systems to engage with users so as
to undestand at first hand the challenges of being a user.

1. Introduction

The vision of autonomic computing, the automated
management of computing resources [4], calls for the
development of computing systems whose characteristics
include:
• Capacity to configure and re-configure themselves

under varying and unpredictable conditions;
• Constantly looking optimise their workings;
• Having knowledge of their environments and their

context of use, and acting accordingly;
• Anticipating the optimised resources required to meet

users’ needs while keeping their complexity hidden.
This vision, we argue, raises fundamental questions

about how we interact with computer systems. In this
paper, we outline the nature of these questions and
propose some strategies for addressing them. We wish to
stress that we take a very broad view of what ‘interacting
with autonomic computing systems’ means in practice.
This view assumes, inter alia, an inclusive definition of
the notion of user, interaction styles and timescales over
which this interaction takes place.

We begin by introducing the notion of system
accountability as a primary requirement for making sense
of and trusting system behaviour. We then take an
example of how accounts are typically provided in
interaction and show why they are often inadequate. We
consider some approaches to resolving the accountability

problem in autonomic computing systems. We conclude
by arguing for the importance of designers having a
situated understanding of how current and future
generations of computer systems are actually used.

2. The Problem of Human-Computer
Interaction

Current paradigms of human-computer interaction
exemplify the principle that users act and systems react.
User actions are performed through the interface input
mechanisms and their effects are signalled to the user as
system state changes via the interface output mechanisms.
Through this ‘on demand’ demonstration of a
deterministic relationship between cause and effect, users
learn to ‘make sense’ of a system’s behaviour and so to
‘trust’ what it does. Increasingly, however, we find that
this model of human-computer interaction fails to hold.
For example, it is difficult for distributed systems, such as
the WWW, to sustain observably deterministic behaviour
in the face of e.g., unpredictable network delays.

Our earlier research shows clearly that users often
demonstrate considerable resourcefulness in making sense
of, and in coping with, this apparently non-deterministic
behaviour [12]. This may often prove adequate for the
purposes at hand, but the fact remains that many systems
have ceased to be accountable in the ways in which
current human-computer interaction paradigms presume.
Being accountable means being able to provide an
explanation for ‘why things are this way’ that is adequate
for the purposes at hand. Accountability becomes even
more relevant for systems whose role calls for users to
make sense of their behaviour precisely and accurately
[8]. Accordingly, researchers have begun to question of
how systems might be made more accountable in
interaction (e.g., [3]). The problem is that what ‘counts’
as an account is a situated matter.

We argue that accountability is a critical issue for
autonomic systems. Further, we suggest that there may be
different levels of autonomy and that there are attendant
levels of accountability. In other words, there are

‘grammars’ of autonomy. In this paper we consider these
two points as a preface to opening up the issues of ‘sense
making’, ‘trust’ and ‘repair’ in autonomic computing
systems. The issues we wish to address are these: what
forms might autonomy take, how can it be made
accountable and what character would that accountability
take?

Drawing on our own studies of pre-autonomic – but
still holdable-to-account – technologies [8,13], we will
address issues of what types of information might be
required to have trustable systems and how we might be
able to integrate such systems into the fabric of daily life.
We wish to examine questions around contingencies (how
far must and how far can the world be ‘tamed’ to be
suitable for autonomic computing systems?); the
relationships of information, autonomy and context (does
more information ‘solve’ the problem of context and how
might this be employed in autonomic computing
systems); and the ways that autonomic computing
systems might be designed (can autonomy be a property
of a generic system or is there a need to have bespoke
systems?). In particular, we will examine the suggestion
made by Dourish and Button [3] that we can treat
accounts of system behaviour given by systems
themselves as layered in character and thereby made
relevant to different user populations and needs.

3. The Issue of Systems Management

We will take systems management as the focus for our

examination of autonomic computing systems interaction
issues. We may define systems management as the fine-
tuning of system performance and configuration to meet
specific organisational needs and practices, attempting to
match these at all times to changes in the organisation’s
context. The point is that systems management as an
activity may change, but will not disappear with the
advent of autonomic computing systems.

Systems managers may need to be able to define and
manipulate descriptions of organisational goals,
configuration policies, to make sense of system
performance data in terms of these descriptions so as to
verify that goals are being met, and to identify, diagnose
and correct goal failures. The interactional problems here
are, in some senses, quite familiar. They stem from the
difficulties of relating high-level, abstract system
descriptions, as represented by organisational goals,
configuration policies, etc., to low-level, behavioural data,
with the added complexity of the likely dissociation of
cause and effect due to inertia in system responses to
configurational changes.

Our research into the static configuration of complex
software systems suggests there are other issues with
which we will have to grapple. For example, there is a
tension between strict adherence to principles of ‘good’,
standardised organisational practice and the needs that
arise in local contexts of use [2,13]. Our research suggests
that software systems architectures, and the additional
overheads faced by systems managers, make this often
very difficult to achieve in practice [2]. The intriguing
question is whether autonomic computing systems offer a
way out of this problem by eliminating much (if not all)
of the management overheads associated with local
configuration management, or make them worse because
the system becomes more opaque and complex.

4. An Example of The Problem of Accounts

We now present an illustration of how, even with pre-
autonomic technologies, it is difficult for systems to
provide users with an adequate account of their
behaviour. In Figures 1 and 2, we give an example of the
use of layered accounts of system behaviour which
demonstrates both how these have become commonplace
in interaction and how they still fall short of

Figure 1: An example of a ‘level one’ account.

Figure 2: A ‘level two’ account derived from the level one account in Figure 1.

what the user actually needs in order to understand or to
‘trust’ the system. The example demonstrates the
implementation of system security policy for potentially
problematic Internet transactions. We develop this
example to explore the implications of an autonomic
approach to security policy implementation.

In Figure 1, we see what we call a ‘level one’ account
of a situation in which the user is called upon to make a
decision: a firewall has produced an alert concerning an
application’s attempt to access the Internet. Clearly,
access to the Internet for downloading or uploading data
to/from the system can be an accountable matter for
system security. The firewall’s implementation of policy
with respect to these transactions is statically configured
and involves calling upon the user to decide if access
requests are appropriate and can be proceeded with.

Figure 2 shows the ‘level two’ account produced by
the system in response to the user’s request for more
information. Note that the policy implementation requires
user involvement since the firewall software cannot by
itself determine if the transaction is to be viewed as a safe
one. It is expected that the user has responsibility for
deciding whether the transaction should be continued, and
that the user has the requisite knowledge to decide
whether the remote site is a trustworthy, whether the
transaction is legitimate for this application and so on.
Thus, implementation of the policy can be thought of as
partial, requiring the user to ‘fill in the gaps’ on the
occasion of its application. A key question is the degree to
which it is feasible for automation to close these gaps. We
return to this question later in the paper.

What the firewall system dialogues offer are accounts
at varying ‘levels’ of description. The ‘level one’ account
informs that there is some action required and gives some
basic details. The ‘level two’ account furnishes further
details about the nature of the transaction at a protocol
level. The level two account is intended to help a user
reach a decision about whether or not to allow the
transaction to proceed, but unless the user has prior
knowledge of the trustworthiness or otherwise of the
given www site or is able to spot irregularities in the
details of the transaction, then such accounts will be of
little use. The account omits, for example, a description of
why it was necessary for the application to make this
particular transaction at this particular time. An improved
basis for decision-making might be afforded by the
firewall accounting for the context of the transaction: has
the message appeared in response to the user’s action or
due to some background process? Is this a legitimate
transaction for this application at this time? What are the
potential consequences of the transaction?

 One problem is that the ‘designed for’ layered account
has a finite depth and extent; if, when the user has reached
the last account, the explanation is still not adequate, the
user is still unable to make a decision. Of course, it is
relatively easy (technically) to supply accounts with
increasing depth, but it is more difficult to increase the
extent (or ‘breadth’) of the account, that is, to relate what
the application might be trying to achieve, the
implications of this in the context of the user’s activity,
location, and so on, until an account is produced that is
relevant to the user’s needs at that moment.

That there are many possible accounts that the firewall
may provide raises the question of what sorts of accounts
are likely to be useful. What our example accounts afford
is “emer(gent) in the context of material encounters
between actors and objects.” ([9], p. 27). The question is,
then, what do these accounts afford? An experienced
system manager looking at these accounts might know
what to do, but what of a more ‘regular’ end-user? How
would such a user know what action to take, as well as
what action the system was about to do? The firewall
application provides a ‘one size fits all’ account, rather
than accounts that are ‘recipient designed’ for particular
users.

We should also note the role of organisational
knowledge here: consider a user who knows what to do
when she encounters a situation of this type. She will be
able to take action based not on some concerted inquiry
into the deep structure of the situation, but on some sui
generis knowledge. Yet, there will also be occasions
when this is not the case and when an understanding will
be required. We will return to this point.

5. Autonomic Computing Systens and
Accountability

5.1 The Stranger in the Loop?

“… automation reduces the chance for users to obtain
hands-on experience; having been taken out of the loop,
they are no longer vigilant or completely unaware of the
current operating context. Thus, ironically, autonomic
computing can decrease system transparency, increase
system complexity and limit opportunities for human-
computer interactions, all of which can make a computer
system harder for people to use and make it more likely
that they will make mistakes” ([10], p. 179).

This is at the heart of the problem of interacting with
autonomic systems: autonomic computing systems are
designed to work without users intervention most of the
time, yet there is a sense in which users have to be in ‘the
loop’ just enough to allow them not to be strangers to the
system and what it is doing. We might think of this as the
paradox of interactional satisficing, just enough
involvement to know what is going on and what might
need to be fixed without having to tend the system all the
time. Yet, as in our example, it is only when things go
beyond the rule set by which the system can make
decisions itself that the system calls on the user. Should
the user – in keeping with the aims of autonomic
computing systems – have been getting on with other
things, she is confronted with a system message into
which she has to make a concerted inquiry.

5.2. Contextual Application of Policy and Accounts

One called for characteristic of autonomic computing
systems is that they have access to contextual
information, i.e., their operational environment and the
activities of users. The question is, does such contextual
information provide a solution to the problem of making
autonomic computing systems accountable? There are
two issues here. The first concerns whether
contextualising autonomic computing systems makes
their actions more reliable. The second is whether this can
help shape accounts so that their actions are seen as more
understandable, relevant and timely by their users.

To contextualise our firewall example in a simple way,
a list of ‘trustworthy’ sites might be maintained for
various sorts of Internet transactions. Rather than asking
the user, access to non-trustworthy sites is denied. It may
become more difficult to make sense of the system’s
behaviour, since some transactions of a particular sort
may be allowed and others of the same sort denied. An
account would need to be given in terms of the policy’s
implementation (i.e., listed and non-listed sites) for this
to make sense. If the implementation is too restrictive,
then it could frustrate users in their attempts to carry out
their legitimate work. A less strict security policy might
be to deny access to a known list of untrustworthy sites.

In order to mitigate some of these problems, one can
envisage a more complex agent-based system that
actively sought security information (from trusted
sources) and maintained an access control list of known
trusted and known untrusted sites. The system might also
look intelligently for discrepancies in the transaction
protocol for signs that a transaction may be
untrustworthy. Although this may provide for a more
specific policy implementation, it would also result in a
system that which increasingly behaves in an apparently
non-deterministic fashion (for some sites the system may
deny access, for others it may allow access, and for a final
group it may refer the decision to the user).

So, the availability of contextual information does not
make the problem of providing accounts of system
behaviour that the user can understand and trust go away;
indeed, it gets more complicated. There are now three
requirements these accounts must satisfy if the user is to
be able to determine that the system’s behaviour is
consistent with that policy: they must provide a
representation of the policy, some mechanism for
providing evidence that will enable the user to trust that
the policy is being conformed to, and some means of
accounting for the system’s behaviour in response to user
demands.

Perhaps, however, if the contextualisation of
autonomic computing system behaviour extends to
knowing what the user is doing and what she intends by
it, then this can provide a solution to an apparently
escalating problem. In fact, there are two issues here.
First, our studies show that organisational policies that are
implemented without factoring in the user context are

likely to only make systems less usable and useful [2,13].
So, the decision-making context within which an
autonomic computing system operates ought to be
sensitive to what the user is doing, or intends to do. Role-
based security policies, for example, are on attempt to
incorporate the user context into system decisions. Here,
organisational roles are used as rough and ready ‘models’
of users’ access requirements. Arguably, such static user
modelling techniques are better than none at all, but they
are brittle in that they seldom capture the full extent of
their application. The second issue concerns whether
knowing what the user is doing and what she intends by it
can be used to shape the accounts the system provides to
its users. Here, the prospects are distinctly less promising.
It is, as anyone who has had experience of so-called
‘intelligent’ user agents1, is a very hard problem with, we
argue, no foreseeable solution.

5.3 The limits of policy implementation

Policy cannot be enacted in each and every instance by
the system, since there will be occasions when the system
would not be able to specify what complying with the
policy would be. That is, no rule specifies within itself all
instances of its application [14]. There will, therefore, be
times when the user is required to decide what action
complies with policy. Just as a no entry sign means no
entry on occasions when one is not driving a fire engine
to a fire, but entry when one is, so a file might not be
downloadable from a site on all occasions save for this
one. That is, there are exceptions and humans are best at
coping with these. Of course, there will be times when the
exception does, in fact, become the rule and, again, it is
up to humans to devise when this will be and to enable
systems to make the required changes to realise this.

No system, therefore, can be wholly autonomic as
there will be at some stage the need to have a human user
input to decide policy and how to realise this – attendant
to this is the need to keep the user informed about, inter
alia, potential security threats, other changes in the
environment and problems with fulfilling the security
policy. This is not a trivial observation, since it turns on
the accountability of systems, and the ways that they
make problems, threats and shortcomings visible to users,
and what users do about them. A problematic account
might mean that a substantial amount of effort is required
to ‘excavate’ the problem and formulate its solution.
Therefore, when we talk about accountability we are
talking about a pervasive and foundational phenomenon.

 We are left with the problem of rendering the action
(or inaction) of an autonomic computing system
accountable as increasing complexity of the system makes
its behaviour more opaque to end users. One solution

1 Microsoft’s ‘paper clip’ is probably the most common example of this
user interface technology.

might be to provide more complex accounts of the
system’s behaviour, why a transaction might be available
one day, but not the next, on one machine but not on
another, and so on. It behoves us to suggest what type of
account we would add here, and in answer to that
question we want to propose not simply one account, but
a series of potential accounts linked to what, following
[11], we call ‘finite provinces of meaning’. That is to say,
in recognising that there is no universal account that
would ‘do’ for all practical purposes, we must develop a
series of accounts that will do for the situated purposes –
the finite provinces of meaning – that users might come
up against2.

Here, then, we turn to the notion of glossing. Glosses
are “methods for producing observable-reportable
understandings ... a multitude of ways for exhibiting-in-
speaking and exhibiting-for-the-telling that and how
speaking is understood.” ([6], cited in [3], p. 16. Italics in
original.) As Dourish and Button [3] point out: unlike
machines, humans make their actions available in, and as
a part of, their doing them – that is to say glosses are in
vivo phenomenon for humans in a way that they are not
for machines. We said above that accounts are constituent
features of the circumstances they describe and are
elaborated by those circumstances – this accountability is
in part a gloss – after all one could not say everything
about an activity to a person, there is always something
more to say. Yet that does not mean that the gloss is
opaque – no, the gloss is for all practical purposes here
and now, elaborating and being elaborated by the things
that it glosses. It is this that machines cannot do, as
Dourish and Button [3] rightly point out.

Looking at the system accounts in the Figures 1 and 2,
we find that they have been generated by a series of rules,
rules decided by its designers when the system was
created. These rules are to the effect that “if this or that
happens put up this warning screen and make these
choices available”. Leaving aside for the moment the
issue of how this could happen in a dynamic system, we
might ask what use such an invariant account could be.
This becomes especially important if one compares it with
the activities of, say, a child on a merry-go-round: the
child can tell about their experience as it is going on and
do so in a number of ways that inform and are informed
by the activity itself – that is, they can make the situation
accountable in myriad ways. Therefore, one might ask the
question “how do we get at these situated accounts?”
Surely, a computing system cannot be expected to provide
such accounts? We agree that it is problematic for a
computing system – whatever its purported ‘intelligence’
– to produce such accounts.

2 Indeed, we would argue that a substantial part of the problem in the
examples given in Figures 1 and 2 is that they are designed to ‘do’ for all
practical purposes.

Our solution is to be found in the examination of uses
of a system and potential accounts that might come up,
and to engage with users as to how the accounts might be
designed so as to afford the kinds of information required.
Users are not uniform, but when we look at policies and
organisational arrangements we can see how ‘what
usually happens’ and ‘what is policy’ might be resources
to afford information, not to some idealised ‘user’, but to
a ‘member’ – i.e., someone who knows what is going on
around here and what are routine grounds for action and
what are exceptions. We must, therefore, examine the
constitution of membership by engaging with users in
workplaces to develop accounts that afford what Gibson
[7] termed ‘information pickup’ – i.e., information for the
‘individual-in-the-social-context’ as Anderson and
Sharrock [1] put it. This also suggests that accounts
should not be invariant – there will be a need to provide
some information about the event within the account – but
again, we argue that this can be realised through an
engagement with users.

6. Conclusions

Autonomic computing systems will not eliminate the
need for users to interact with them from a foundation of
understanding and trust. In fact, as we have argued, they
make this understanding and trust potentially more
difficult to achieve. We might ask how far it would be
intrusive (would we want to know what the system is
doing at all times and, if not, when?). We do not need to
know about the workings of the postal service to post a
letter. Of course, we might want to inquire into these
workings if a letter is late or undelivered. Yet, we would
be unhappy if the post office called at midnight to say that
our letter had been put into a train or the like. The point is
that the system might be inquirable-into but it should not
be obtrusive – that is to say, it should afford inquiry while
not making operations obtrusive. In contrast, how far we
would accept a more ‘silent’ approach (is the system
working and what exactly is it doing?). This is an issue
because it relates to trust; how can we trust a system when
we are unaware of what it is doing? Trust is not an either
or category, but depends on situated judgements which
themselves turn on accountability, yet if the system does
what it does in the background, so to speak, and, if it
adapts, how can we know what dimensions are trustable?

As we have seen, solutions to this might involve the
use of layered accounts that progressively divulge more
information to the user on demand. They might also
involve the exploitation by autonomic computing systems
of contextual information as a means, for example, to
guide its behaviour and for determining what account is
likely to be called for by the user at any given moment.
We have argued, however, that neither of these
approaches can deliver a solution in themselves. All such
‘designed for’ accounts must have finite depth and

therefore are limited in their capacity to answer what we
take to be the user’s canonical interaction question: ‘why
that now?’ Similarly, contextualisation, in as far as it may
be applied to the user’s actions, can deliver little real
benefit.

The overriding question is what do accounts generated
by autonomic computing systems afford users, how might
these accounts be assembled and for whom? We argue
that it is through the consideration of these “seen but
unnoticed” [5] issues that only comes from engagement
with users that designers will be able to provide the kinds
of accountability that users will need in order to make
sense of, and to trust, autonomic computing systems.

7. References
[1] R.J. Anderson, and W.W. Sharrock. Can Organisations
Afford Knowledge? Computer Supported Co-operative Work 1;
143-161, 1993.
[2] S. Anderson, G. Hardstone, R. Procter, and R. Williams.
Down in the (Data)base(ment): Supporting Configuration in
Organisational Information Systems. 1st DIRC Conference on
Dependable Computing Systems, Royal Statistical Society,
London, November, 2002.
[3] P. Dourish, and G. Button. On “Technomethodology”:
Foundational relationships between Ethnomethodology and
System Design. Human-Computer Interaction 13(4); 395-432,
1998.
[4] A.G. Ganek, and T.A. Corbi. The dawning of the
autonomic computing era. IBM Systems Journal. 43(1); 5-18,
2003.
[5] H. Garfinkel. Studies in Ethnomethodology. Englewood
Cliffs, New Jersey: Prentice Hall, 1967.
[6] H. Garfinkel, and H. Sacks. On Formal Structures of
Practical Actions. In J. C. McKinney and E. A. Tiryakian (Eds)
Theoretical Sociology. New York: Appleton Century Crofts.
[7] J.J. Gibson. The senses considered as perceptual systems.
Boston: Houghton Mifflin, 1966.
[8] M. Hartswood, R. Procter, M. Rouncefield, and R. Slack.
Finding Order in the Machine: Computer-Aided Detection Tools
in Mammography. In Proceedings of the 1st DIRC Conference
on Dependable Computing Systems, Royal Statistical Society,
London, November, 2002.
[9] I. Hutchby. Conversation and Technology. Cambridge:
Polity, 2001.
[10] D.M. Russell, P.P. Magio, R. Dordick, and C. Neti. Dealing
with Ghosts: Managing the user experience of autonomic
computing. IBM Systems Journal. 43(1); 177-188, 2003.
[11] A. Schütz. The Phenomenology of the Social World.
Evanston: Northwest University Press, 1967.
[12] D. Stanyer, and R. Procter. Improving Web Usability with
the Link Lens. In Mendelzon, A. et al. (Eds.), Journal of
Computer Networks and ISDN Systems, Vol. 31, Proceedings of
the Eighth International WWW Conference, Toronto, May,
1999. Elsevier, pp. 455-66.
[13] A. Voss, R. Slack, R. Procter, R. Williams, M. Hartswood,
and M. Rouncefield. Dependability as Ordinary Action. In S.
Anderson, S. Bologna, and M. Felici (Eds.) Proceedings of the
International Conference on Computer Safety, Reliability and
Security (Safecomp), Catania, September, 2002. Lecture Notes
in Computer Science v 2434. Springer-Verlag, pp. 32-43.

[14] L. Wittgenstein. Philosophical Investigations. Oxford:
Blackwell, 1953.

