
Improving Accessibility of Web-Based GIS Applications

Nieves R. Brisaboa, Miguel R. Luaces, José R. Paramá, David Trillo
Databases Laboratory. Department of Computer Science. University of A Coruña

Facultade de Informática, Campus de Elviña, s/n. 15071. A Coruña. Spain
(brisaboa, luaces, parama, trillo)@udc.es

José R. Viqueira
Systems Laboratory. Department of Electronics and Computer Science.

University of Santiago de Compostela
Instituto de Investigaciones Tecnológicas, Campus sur, 15782, Santiago de Compostela, Spain

joserios@usc.es

Abstract

A major problem of Vector Active Map formats such as
WebCGM and Scalable Vector Graphics (SVG) is that, in
order to display them in most web browsers, either a plug-
in has to be installed or an applet has to be downloaded. In
this paper, a web service is presented whose functionality
enables the transformation of vector active maps from SVG
to a new DHTML (HTML + JavaScript) Active Map Repre-
sentation, improving this way the accessibility of web-based
GIS applications. This new representation, which is also
part of the present work, includes a raster representation of
the map and a vector representation of its geographic ob-
jects. The former is used as a background image of the map
whereas the latter enables the response to user-triggered
events. An R-tree spatial index structure is used to access
the geographic objects affected by each event in order to
execute the relevant action.

1. Introduction

The research efforts undertaken during the last decade in
the areas of Geographic Information Systems (GIS) and the
World Wide Web (WWW), have lead to the development of
new technologies that enable the publishing of maps with
geographic information in the Web. Consequently, many
current GIS applications are directly accessible through the
Internet. A good example of the aforementioned develop-
ments is the widely used Web Map Service (WMS) speci-
fication [5], proposed by the Open Geospatial Consortium
Inc. (OGC). A compliant OGC WMS accepts an HTTP map
request and responses with the relevant map in either vector
or raster format.

Raster map formats, such as PNG, JPG and GIF, can
be directly inserted in HTML and displayed in any web
browser. However, the activity of these map formats is
quite restrictive. In particular, a geographic object con-
tained in a raster map cannot individually respond to user
events (mouse movements and clicks) with its own func-
tionality. This limitation is partially solved by the incorpo-
ration of an HTML tag <MAP>, however, the visualization
properties of an object cannot yet be changed as a response
to a user event. For example, it is not possible to change the
fill colour of a polygon as a response to a mouse click on it.

The limitations of functionality of raster formats are not
present in active vector formats, such as WebCGM [6] and
Scalable Vector Graphics (SVG)[7]. A major problem of
these formats is that, in general, either plug-ins or applets
have to be used to display them. It is well-known that the
use of these elements decreases the accessibility of web
pages.

In this paper, a new active map representation is pro-
posed that is fully implemented using DHTML and whose
functionality supports the common characteristics of SVG
active maps. The proposed DHTML code includes a raster
representation of the map and a vector representation of
each of its geographic objects coded in JavaScript. The for-
mer is used as a background image of the map whereas the
latter enables the map to respond to user triggered events.
An Event Controller, implemented in JavaScript, makes use
of an R-tree spatial index structure to access the geographic
objects affected by each mouse event, in order to execute
the relevant action (which is also coded in JavaScript). Fi-
nally, a web service was developed that transforms active
maps from SVG to the new DHTML representation.

The remainder of this paper is organized as follows. In
Section 2 the new DHTML Active Map Representation is

presented. The JavaScript Event Controller is described in
Section 3. Section 4 is devoted to the architecture of the web
service developed. Design decisions as well as the advan-
tages and drawback of the present approach are discussed in
Section 5. Finally, conclusions and pieces of further work
are identified the last section.

2. DHTML Active Map Representation

A DHTML active map representation is described in this
section that supports the subset of SVG that is typically used
to model active maps. Such subset is outlined below.

< ="0 0 20 20" ="10px"
="10px">

</ >

svg viewbox width

height

svg

< ="text/ECMAScript">
<![[

change_colour(evt)
target= evt.target;

target.setAttribute("fill","white");

]]>
</ >

< ="black" ="silver"
=" (evt)">

< = "1 11 6 1 11 6.5 19 8
10 18">

</ >

script type

CDATA

function {

var

}

script

g stroke fill

onclick

polygon points

g

change_colour

Figure 1. Active Map in SVG Format.

Active Maps in SVG: For the purposes of the present pa-
per, an Active Map is a collection of geographic objects
(points, lines, and surfaces), each of them with: i) a visu-
alization style (outline and fill colours and patterns, icons,
etc.) and ii) a behaviour, expressed in some client scripting
language (ECMAScript, JavaScript, etc.), which enables
the map to respond to events such as mouse movements
or mouse clicks. An active map in SVG format [7] is an
XML document whose tags are used to describe the prop-
erties of the included geographic objects. The SVG docu-
ment in Figure 1 represents a map that contains a single sur-
face. The <svg> tag includes the geographic coordinates of
the minimum bounding rectangle (MBR) that surrounds the
map (viewbox in SVG), as well as the dimension in pixels
of the drawing area. Tags <g> are containers used to group
geographic objects that share some attributes, either visual-
ization styles or behaviour1 Visualization styles are defined
as tag attributes (see stroke = ”black” and fill = ”silver”
in Figure 1). Tag attributes are also used to link a function

1Notice that in GIS a map is typically composed of layers, each of them
consisting of objects of the same class (rivers, roads, municipalities, etc.)
and with the same visualization style and behaviour.

written in some scripting language to a given event, there-
fore defining the behaviour of the objects included in the
tag. Thus, in the map of Figure 1 it is defined that when-
ever a mouse click is done over some object, the function
change colour is used to set its fill colour to ”white”. Fi-
nally, various tags are supported to define the coordinates of
relevant graphic elements, such as rectangles, circles, poly-
lines, polygons, etc. (see tag <polygon> in Figure 1).

In order to support the above maps in the new DHTML
representation, a basic required preliminary functionality is
the rendering of vector elements in HTML. Such basic func-
tionality is obtained from the Vector Graphics Library im-
plemented by Walter Zorn [2].

(a) Vector

0 20105 15

2
0

1
0

5
1
5

(b) Raster (c) DHTML

Figure 2. Map Representations.

Walter Zorn’s JavaScript Vector Graphics Library: This
library contains a collection of JavaScript functions that en-
able the rendering of graphic elements (ellipses, lines, poly-
gons, etc.) in HTML, making use of well known algorithms
[3]. Roughly speaking, each pixel or set of pixels of the
raster representation of the input object is rendered as an
HTML <div> element. To illustrate this, consider again
the SVG map defined in Figure 1. This map contains one
polygon, whose vector geometric representation is shown
in Figure 2(a). The raster representation of this polygon is
shown in Figure 2(b). Figure 2(c) shows the HTML <div>
elements generated when the polygon is rendered with the
JavaScript Vector Graphics Library of Walter Zorn.

Rendering all geographic objects in map with HTML
<div> elements is too inefficient. To solve this, a back-
ground renderization of the map in raster format is included
in the representation. The drawing capabilities of the above
library are only used to change the visualization properties
of the objects as a result of some user event. A more pre-
cise description of each part of the developed representation
follows.

Coordinate Manager: It is a JavaScript object that
records the geographic coordinates of the MBR of the map
and the dimensions of the client drawing area for the map.

Raster Representation: A raster of the map, included in
HTML as an image (jpg, png, gif, etc.).

Vector Objects: A JavaScript array consisting of one
JavaScript object for each geographic object of the map.
Each such object contains as different attributes: the vector

representation of the relevant geographic object, its visual-
ization properties, and the name of the JavaScript function
to be executed for each possible user event.

Event Functions: The source code of the collection of
JavaScript functions referenced by the JavaScript objects
above. Notice that the code of these functions may change
the attributes of the above objects. The render functionality
of Water Zorn’s Libray is used to show these changes in the
web browser.

Spatial Access Structure: The JavaScript code of an R-
tree index structure constructed from the vector represen-
tation of the geographic objects of the map. This R-tree
is used by the JavaScript Event Controller, described in the
following section, to efficiently locate the JavaScript objects
affected by each mouse event, in order to execute the appro-
priate JavaScript functions.

3. JavaScript Event Controller

The JavaScript Event Controller described in this sec-
tion enables the execution of the activity defined in the
JavaScript functions of the DHTML representation of the
previous section. Its functionality obeys the following pseu-
docode.

while (true) (1)
begin (2)

event = captureMouseEvent() (3)
screenXY = obtainPointerLocation() (4)
mapXY = transform(screenXY) (5)
rough = rtreeSearch(rtree, mapXY) (6)
for each geo in rough do (7)
begin (8)

if contains(geo, mapXY) then (9)
begin (10)
responseToEvent(geo, event) (11)
if geo.changedStyle then (12)

drawGeometry(geo) (13)
end if (14)

end for (15)
end while (16)

r1

r2
r3

r5

r6

r1,g1 r2,g2 r3,g3 r4,g4

r5 r6
r4g1

g4

g3g2

mapXY

geo

(a) Rtree Index Structure (b) Point In Polygon

mapXY

Figure 3. Obtaining Affected Geographic Ob-
jects.

In line (3) the algorithm captures a triggered mouse event
(mouseMove, mouseUp, MouseDown, MouseClick, etc.).
Then in lines (4-5), the position of the mouse pointer is
obtained and transformed to the geographic coordinates of
the map. The R-tree available in the map representation
is searched in line (6) in order to obtain a collection of
JavaScript objects potentially containing the location of the
mouse pointer. As an example, let us consider the R-tree in
Figure 3(a). At the root node, the search algorithm detects
that the mouse pointer (mapXY) is contained in rectangle
r5 and continues the search in the left children. Given that
mapXY is also contained in r1, then object g1 is retrieved as
a potential result. For each object obtained from the R-tree,
the algorithm checks whether the mouse pointer is really
inside its geometry (line 9). To achieve this, well-known
algorithms from computational geometry are applied [4]. A
good example of one such algorithm checks whether a point
is contained in a polygon (see Figure 3(b)). Generally, point
mapXY is contained in a polygon geo if a half-infinite line
segment, drawn from mapXY either to the right or to the
left, intersects an odd number of segments of the boundary
of geo. If the above check returns true, then in line (11)
the JavaScript function associated to the processed event in
object geo is called. Finally, if the style attributes of the
object were modified during the execution of the aforemen-
tioned JavaScript function, then the functionality of the Wal-
ter Zorn’s Vector Graphics Library is used to render again
the object in the web browser.

4. SVGTODHTML Web Service Architecture

In order to display SVG maps obtained from standard
WMSs, a web service was developed as part of the present
work that enables the transformation of such maps from
SVG to the DHTML Active Map Representation presented
in Section 2. Besides, the JavaScript Event Controller de-
scribed in Section 3 may also be obtained from the web ser-
vice. The architecture of the SVG to DHTML Web Service
is shown in Figure 4.

The GIS Web Application accesses the functionality of
the SVGTODHTML web service through a POST request
that includes an XML document. The XML Schema of this
XML Request is shown is Figure 5(a). As it is shown in
the figure, the request may include either a SVG document
(element svg) or reference a URL (element url), where a
SVG document is ready to be downloaded2. Optionally,
the request may also include a response mode (element re-
sponseMode) whose possible values are the following: i)
dhtml: The service returns only the DHTML Active Map
Representation (see Section 2) generated for the SVG map
either included (element svg) or referenced (element url) in

2This element may be used to include the URL of a GetMap request to
a WMS.

GIS Web Application

Request Processor

SVG
To

Raster

SVG
To

JavaScript

Response Generator

JavaScript
Event

Controller

XML
Request

XML
Response

DHTML
Active Map

Representation

SVG Raster
Image

JavaScript
Objects

SVG

SVGTODHTML Web Service

Figure 4. SVGTODHTML Web Service Archi-
tecture.

the request. ii) jsEventController: The service returns only
the source code of the JavaScript Event Controller (see sec-
tion 3), required to display the generated map in the web
browser. Neither svg nor url elements have to be included
in this case. iii) all: The service returns both the DHTML
Active Map Representation and the JavaScript Event Con-
troller. This is also the default option when the response
mode is not included in the request.

The XML Schema of the XML response generated by the
web service is given in Figure 5(b). This response consists
of two optional elements: i) jsEventController: It includes
the source code of the JavaScript Event Controller. ii)
dhtml: It includes the source code of the generated DHTML
Active Map Representation. This element is composed of
other two elements. Element raster includes the raster im-
age of the DHTML representation and element javaScript
includes the JavaScript code of the DHTML representation.

A brief description of each module follows.
Request Processor: The request sent by the client appli-

cation is parsed and processed by this module. In the sim-
plest case, if the response mode jsEventController is speci-
fied, then the Response Generator is called to include only
the JavaScript Event Controller in the response. Otherwise,
the DHML Active Map Representation must be generated
from the SVG document of the request. To achieve this, the
SVG To Raster module is used to generate the raster image
and the SVG To JavaScript module is used to generate the
required JavaScript code.

SVG To Raster: It renders the SVG obtained from the
request in a raster image. The required functionality is sup-
plied by the Open Source tool Batik [1].

SVG To JavaScript: It processes the SVG document ob-
tained from the request and generates the JavaScript code
of the DHTML Active Map Representation. More precisely,
first the JavaScript code of the object that records the ge-
ographic coordinates of the MBR of the map and the di-
mensions of the client drawing area is generated from the
<svg> tag of the SVG document. Next, each scripting

<?xml version="1.0"?>
<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name=" ">
<xs:complexType>
<xs:sequence>

<xs:choice minOccurs="0">
<xs:element name=" " type="xs:string"/>
<xs:element name=" " type="xs:anyURI"/>

</xs:choice>
<xs:element name=" " minOccurs="0">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value=" "/>
<xs:enumeration value=" "/>
<xs:enumeration value=" "/>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

svgToDhtmlRequest

svg

url

requestMode

dhtml

jsEventController

all

<?xml version="1.0"?>
<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name = " ">
<xs:complexType>
<xs:sequence>
<xs:element name = " "

type = "xs:string"
minOccurs = "0"/>

<xs:element name = " " minOccurs = "0">
<xs:complexType>
<xs:sequence>

<xs:element name = " "
type = "xs:base64Binary"/>

<xs:element name = " "
type = "xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

svgToDhtmlResponse

jsEventController

dhtml

raster

javascript

(a) Request XML Scheme

(b) ResponseXML Scheme

Figure 5. Request and Response Schema.

function contained in the SVG document is transformed
to a JavaScript function, with identical name, in the result
JavaScript code. Then, the containers (<g> tags) of the
input SVG document are recursively processed to obtain a
collection of objects, each of them recording: i) geographic
coordinates of the relevant geographic object, ii) visualiza-
tion properties and iii) the name of the JavaScript function
to be called for each possible event. Next, the above collec-
tion of objects is processed to generate the JavaScript code
of the array that will contain the relevant JavaScript objects.
Notice that during this process, the geographic coordinates
of each object have to be transformed from the geographic
coordinate system of the map to the coordinate system of
the drawing area. For this purpose the information recorded
in the JavaScript object generated in step 1 is required. Fi-

nally, the obtained objects are processed again to generate
the JavaScript code of the relevant R-tree index structure.

Response Generator: It constructs the XML Response
from the DHTML Active Map Representation generated by
the Request Processor and the source code of the JavaScript
Event Controller.

5. Discussion

The advanced functionality of maps in Active Vector
Represenations were already discussed in Section 1. It was
also stated that a major problem of these maps is that they
require the use of either plug-ins or applets to be displayed
in a web browser3. Plug-ins are the most efficient way to ex-
tend the functionality of a web browser. However they have
two important drawbacks: i) Due to potential problems of
security, they have to be installed by a user with adminis-
tration rights and ii) they are dependent of a particular web
browser. On the other hand, applets solve the security and
platform dependence problems of plug-ins. However, they
have to be downloaded every time the host web page is vis-
ited, which leads to efficiency problems. Besides, in some
platforms, such as Windows 2003 Server, the Java Virtual
Machine required to execute applets is not natively incor-
porated.

An opposite approach in terms of functionality is the use
of a raster representation, which can be easily be displayed
in any web browser. Geographic objects of these maps are
not enabled to respond to mouse event. The use of the
HTML <MAP> tag may incorporate a certain degree of ac-
tivity in raster maps, however, such activity is still far from
the functionality of SVG (for example, it is not possible to
change the visualization properties of geographic objects).

The DHTML Active Map Representation proposed in the
present paper approximates the functionality of an active
vector representation with the accessibility properties of a
raster representation. In particular, contrary to active vec-
tor representations, it can be directly displayed in any web
browser with neither the need to install a plug-in nor the
need to download an applet. Furthermore, contrary to raster
representations, it enables the incorporation of active geo-
graphic objects that respond to mouse events by the execu-
tion of client script functions, enabling the change of the
visualization properties of these objects.

Disadvantages of the DHTML Active Map Representa-
tion, in comparison with an active vector representation are
the following. First, the response to mouse events is much
faster if vector representations are displayed using plug-ins
or applets. Second, the whole functionality of formats such
as SVG cannot be supported in the present approach. For in-
stance, many of the style properties that may be defined for

3An exception to the above rule are the web browser Mozilla and the
SVG format.

an object are not supported by the present implementation.
Finally, the present approach would turn to be completely
useless if SVG becomes a standard supported natively by
any web browser. A prototype implementation of the web
service described in section 4 was already completed. To
the best of these authors knowledge, no other DHTML Ac-
tive Map Representation can be found in the literature with
characteristics similar to those of the present one.

6. Conclusions and Further Work

A new DHTML Active Map Representation is proposed
that enables the implementation of the functionality com-
monly included in SVG maps. A JavaScript Event Con-
troller, also part of the present work, enables the display of
the present representation in any web browser. Therefore,
neither plug-ins have to be installed nor applets have to be
downloaded. A web service was also developed that en-
ables the transformation of maps from SVG format to the
new DHTML representation. Pieces of further research in-
clude the following: i) To choose the spatial indexing struc-
ture that better fits the proposed approach. ii) To optimize
the Event Controller implementation, to avoid rendering the
changes of an object when those changes return the object
to its initial state. iii) To improve the rendering algorithms
of the Vector Graphics Library provided by Walter Zorn, by
minimizing the number of <div> elements. iv) To incorpo-
rate all the event types of SVG to the developed prototype.

Acknowledgement
This work was partially granted by MCYT (PGE and
FEDER) ref. TIC2003-06593.

References

[1] Batik svg toolkit home page. Retrieved March 2005 from
http://xml.apache.org/batik/.

[2] Walter zorn’s vector graphics library home page. Retrieved
March 2005 from: http://www.walterzorn.com/.

[3] J. Bresenham. Algorithm for computer control of a digital
plotter. IBM Systems Journal, 4(1):25–30, 1965.

[4] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and
S. Schonherr. On the design of cgal a computational geom-
etry algorithms library. Software Practice and Experience,
30:1167–1202, 2000.

[5] Open Geospatial Consortium (OGC). Web Map Service
(WMS). 04-024. Version 1.3, 2004. Retrieved April 2005
from: http://www.opengeospatial.org.

[6] World Wide Web Consortium (W3C). WebCGM 1.0
Second Release, 2001. Retrieved April 2005 from:
http://www.w3.org/TR/REC-WebCGM/.

[7] World Wide Web Consortium (W3C). Scalable Vector Graph-
ics (SVG) 1.1 Specification, 2003. Retrieved April 2005 from:
http://www.w3.org/TR/SVG11/.

