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Abstract

In the domain of bioinformatics, the role played in the
biological process by proteins, that act as transmitters and
receivers of information thus ruling the mechanisms that
determine how organic systems function, has great impor-
tance. Recent studies produced evidence of a strict corre-
lation between the surface characteristics of proteins and
the way they interact. In this paper we propose an original
approach for discovering protein similarities based on their
surface characteristics represented in terms of surface pat-
terns. The approach starts from a detailed representation of
the protein surfaces and determines a set of characteristic
regions that defines a compact representation of the protein
surface that is the input for an ad-hoc data mining tech-
nique used to find the frequent patterns. Tests, carried out
on a benchmark dataset of molecules with suitably designed
surface mutations, show that surface patterns can be used
to correctly classify groups of similar proteins.

1 Introduction

Understanding the different functions carried out by pro-
teins is a basic issue in domains such as medicine, phar-
macology, and chemistry and is the most challenging task
of structural biology that tries to classify proteins according
to their structures. The main approaches to classification
devised so far are sequential alignment, that applies string
matching techniques to the primary structure [1], and struc-
tural alignment, that is based on both the secondary and ter-
tiary structures, thus considering the overall tridimensional
structure of the protein [2].

It is a widely accepted assumption that the overall struc-
ture deserves the appropriate distribution of chemical prop-
erties on the surface that the protein presents to its molecu-
lar target. Thanks to its ”appearance” the protein could have
the correct approach with the target or not. However, two
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proteins with similar structures may be divergent in their
sequence, thus playing different functions. The structural
classification as a tool for the individuation of a common
physiological role is misleading in this case and a surface
classification is considered necessary. Up to now, a suc-
cessful strategy has not yet been developed to reach such
a general goal: the most commonly exploited approach,
adopted for example in biomolecular docking [3], consists
in adopting a surface patch already recognized to play a key
role for a certain function and using it as a probe to ex-
plore the surfaces of all the proteins with known structures
[4]. This method, based on local features, is not always ef-
fective, since the properties of the whole protein could be
determined by a set of not necessarily neighboring regions;
furthermore, it will fail in all cases characterized by highly
adaptable surfaces and when portions of surface far from
the active site have a dominant allosteric effect on the func-
tional region of the protein.

In this paper we propose an original approach for mining
the set of complex surface patterns that occur frequently in
a database (DB) of proteins. Common patterns will drive
the search of unknown relationships between proteins and
in protein classifications. The approach, which has the ad-
vantage of being based neither on local surface features nor
on already known functional meanings, takes in as input, as
shown in Figure1, a detailed representation of the protein
surfaces and requires (1) adopting clustering techniques to
determine a set of characteristic regions; (2) defining a com-
pact and effective representation of the protein surface; and
(3) applying data mining techniques to these representations
to find the frequent patterns.

The main contributions of this paper are the following:

• The introduction of a compact representation for pro-
tein surfaces, based on graphs of homogeneous regions
rather than on single regions, and the associated defi-
nition of surface pattern (Section 2);

• An original mining algorithm to find out frequent sur-
face patterns (Section 3).

• A set of tests proving the effectiveness of the approach
(Section 4).



Figure 1. Approach overview: from protein
surfaces to frequent patterns

2 Surface Patterns

Let a collection of proteins be given; each one is associ-
ated with the vectorial representation of its surface in terms
of triangular meshes, labeled with a set of local features
such as electric potential and hydrophobicity. When study-
ing the interactions between proteins, moving to a less de-
tailed representation of the surface is encouraged not only
by constraints on the computational complexity, but also by
the following facts:

• Extension of the interaction areas. Both biologists and
chemists agree that, normally, two proteins can interact
only if the compatible surfaces cover at least 5% of the
whole surface, while the meshes typically used cover
an average area not larger than 0.01%.

• Interaction mode. During interaction, proteins show a
high flexibility that allows the shape of their surface to
be partially modified. Thus, exactly modelling those
details that have no impact on interaction is useless.

• Spatial information. Each single triangular mesh does
not carry the spatial information related to concavity
and convexity, that instead characterizes larger regions
and plays a basic role in interaction.

• Homogeneity of features. Interaction between proteins
depends on regions showing homogeneous features.

These considerations suggest that a representation based on
homogeneous regions of the surface, rather than on meshes,
should be adopted. Such regions can be determined by
means of clustering techniques based on the feature array
associated to each single mesh. Discussing such techniques
is outside the scope of this paper, thus we will assume a
starting point a protein surface clusterized1 in connected re-

1The clustering process we adopted starts by estimating the geometric
properties of the surface, which is carried out on the discrete mesh-based

Figure 2. (a) Region graph for a protein; (b)
Information used to compute the relative po-
sition of two regions

gions that are homogeneous with respect to a set of prop-
erties: in this work we considered electric potential, hy-
drophobicity, curvature and the size of the region.

The protein properties do not only depend on the set of
regions characterizing their surface, but also on their rela-
tive positioning and orientation. The compact representa-
tion we propose for protein Di is thus a completely con-
nected graph whose nodes are the regions di

1, . . . , di
m ob-

tained by clustering, each described by the average value of
features and by the area of the region (Figure 2.a). The arc
connecting two regions di

1, d
i
2 expresses their relative posi-

tion by means of: (1) the length γ of the vector connecting
the barycenters of the two regions, (2) the angles α1 and α2

this vector forms with the versors of the regions, and (3) the
angle β between the two versors, measured by projecting
them on the plane orthogonal to the vector connecting them
(Figure 2.b).

It is now possible to define a pattern P i belonging to
protein Di as a completely connected subgraph of the graph
that compactly represents its surface; we will call the level
of a pattern the number of regions it comprises. Using a
relative positioning system makes pattern matching easier
since similarities can be computed independently of trans-
lations and rotations.

3 Mining Complex Patterns

The mining algorithm proposed in this section starts
from the DB of proteins represented in their compact form,
D, to search for the frequent patterns including two or more

representation by computing indexes of average and Gaussian curvature
on the surface points. Such indexes are then used together with the local
features for determining, through a boundary-based approach [5].



for each Di ∈ D
{ Li

1 = GetFrequentRegions(Di);
MineFrequentPatterns(Li

1);
}

Figure 3. Main mining loop

regions. A pattern P is frequent if within D a set exists,
whose cardinality is at least equal to a threshold minsupp,
of patterns similar to P . This set is called the support of
P . The similarity function should take into account both
the local features of regions and their relative placement.

Finding frequent patterns whose level and composition
are unknown generates an exponential search space. To this
end, several techniques were proposed in the field of data
mining; their applicability depends on the specific features
of the domain [6]. In particular, our approach belongs to the
level-wise class since it iteratively generates patterns made
up of an increasing number of regions, however the problem
we are facing presents the following specific aspects that
make it impossible to directly apply the techniques known
in the literature:

• Similarity relationship between patterns : the relation-
ship used to compare patterns, and more specifically
when determining the support, is not equality but sim-
ilarity. Consequently, there is no set of reference re-
gions, but rather each region is unique within the DB.
Besides, similarity is not transitive, i.e. P ∼ Q ∧Q ∼
S 6⇒ P ∼ S.

• Presence of spatial constraints between the pattern re-
gions: part of the information that characterizes pat-
terns is not associated to the single regions but to the
arcs, i.e. patterns are also characterized by the spatial
placement of regions.

Based on these considerations we can argue that level-
wise horizontal algorithms (i.e. APriori) cannot be directly
applied since the pattern supports cannot be computed sim-
ply by counting the “item labels”. On the other hand, even
storing the pattern supports explicitly, as level-wise verti-
cal algorithms do, is not sufficient due to intransitivity of
similarity and consequently an access to the DB is still nec-
essary. Finally, we emphasize that, despite the relevance
of the information stored on the arcs, the problem does not
need to be handled as subgraph mining [7] that requires au-
tomorphism to be computed thus making the problem un-
tractable as soon as the pattern lengths increase [8].

Figure 3 shows the main loop of the proposed algorithm:
procedure GetFrequentRegions(Di) determines the
set Li

1 of the single frequent regions (level-1 patterns) of
protein Di, while MineFrequentPatterns(Li

1) trig-
gers the true mining process. Though, on the one hand,
the fact that the results of mining depend on what pattern

1. MineFrequentPatterns(Li
1)

2. { for (k = 2, Li
k−1 6= ∅, k + +) do

3. { C = CandidatePatterns(Li
k−1);

4. for each Dj ∈ D do
5. for each P i ∈ C; Dj ∈ Prot(P i) do
6. { for each Qj ∈ Suppj(P

i) do
7. if Simil(Qj,P i)< σ
8. Supp(P i)\ = {Qj};
9. }
10. Li

k = {P i ∈ C; | Supp(P i) |≥ minsupp};
11. }
12.}

Figure 4. Mining algorithm

D = {D1, . . . , Dn} Protein database
Lk

i Frequent patterns of level k in
protein Di

C Set of candidate patterns
P i = (pi

1, . . . , pi
k) Patterns of level k in protein Di

Supp(P ) Patterns in the support of P
Suppj(P ) Subset of patterns in Supp(P )

that belong to Dj

Prot(P ) Set of proteins to which at least
one pattern in Supp(P ) belongs

σ Similarity threshold for patterns

Table 1. Legend of the symbols used in the
algorithm

is used as a prototype makes the problem computationally
harder, on the other, it allows a larger number of additional
data structures in MineFrequentPatterns, since the
number of frequent patterns for each protein will obviously
be small in comparison with that of the whole DB. Please
note that the pseudo-code reported in Figure 3 is merely
aimed at explanation: in fact, when implementing, groups
of proteins can be processed at the same time in order to re-
duce the number of iterations, the size of the groups being
a function of the available space in main memory.

Figure 4 reports the core of pseudo-code for the algo-
rithm, while Table 3 summarizes the legend of symbols en-
abling its interpretation. We used uppercase letters from P
to T to denote patterns, and the corresponding lowercase
letters to denote their regions: in order to emphasize that
a pattern/region belongs to protein Di, it will be decorated
with superscript i. The algorithm works iteratively by gen-
erating, at each step, the set Lk

i of the frequent patterns of
increasing level k in protein Di (row 2); the output of a step
is the input of the next step. To increase performance, the
algorithm works on a simplified representation of patterns,
consisting of a sequence of pointers to the regions they in-
clude. For this reason, after the set C of potentially frequent
patterns has been generated, the DB must be accessed to
verify if the similarity constraint is actually met (row 7):
function Simil(P,Q) loads P and Q from the DB and



1. CandidatePatterns(Li
k−1)

2. { C = ∅;
3. for each P i, Qi ∈ Li

k−1;

Mergeable(P i, Qi)∧
∧ | Prot(P i) ∩ Prot(Qi) |≥ minsupp

4. { T i = (pi
1, · · · , pi

k−1, qi
k−1);

5. Supp(T i) = {(rl
1, · · · , rl

k−1, sl
k−1);

Rl ∈ Supp(P i) ∧ Sl ∈ Supp(P i)∧
∧Mergeable(Rl, Sl)};

6. if (| Supp(T i) |≥ minsupp)
7. C∪ = {T i};
8. }
9. return C;
10.}

Figure 5. Algorithm for generating candidate
patterns

calculates their similarity, taking both the surface features
and their spatial relationship into account. It is remarkable
that the access to the DB is optimized by reading, exactly
once, only the proteins that include at least one pattern be-
longing to one of the supports of candidate patterns (rows
4-6). The patterns whose support has cardinality higher than
threshold minsupp are inserted into the set of frequent pat-
terns (row10).

The core of the algorithm is procedure
CandidatePatterns (Figure 5), that generates
the candidate patterns of level k by merging couples of
patterns of level k − 1.

The algorithm considers all possible couples of patterns
in input (row 2) and carries out a pre-selection of candidates
based on the constraints necessarily they must satisfy:

• Region matching: in order to obtain patterns of level
k, two patterns that share k − 2 regions must be
merged. This constraint is verified within proce-
dure Mergeable, whose code has been omitted for
brevity. The procedure ensures non-redundant genera-
tion of patterns by posing a lexicographic ordering on
regions.

• Upper-bound of support cardinality: if the number of
proteins including patterns shared by the supports of
the two generators is less than minsupp, the gener-
ated pattern cannot be frequent (row 3). Note that
the value computed in this way is an upper bound
since the actual matching of patterns within the protein
is not checked. This check is computationally more
complex, so it is carried out only for the patterns that
passed the first check (rows 5-6).

The couples that meet the requirements above are merged
(row 4) to generate a pattern of level k, and the correspond-
ing support is computed (row 5). We explicitly represent

the support, as typically done in vertical mining algorithms,
to avoid accessing the DB even when generating candidates
and to avoid computation of pattern isomorphisms. In this
representation, we do not only represent the set of proteins
that include a pattern similar to the one considered, but we
directly specify the set of region sequences that makes them
up, thus enabling verification of matching based on iden-
tifiers. Note, however, that accessing the DB is still nec-
essary in MineFrequentPatterns, since the similar-
ity between candidate patterns and their support, granted at
level k − 1, does not imply similarity at level k.

4 Tests

The tests we carried out are aimed at proving that sur-
face patterns are useful to characterize the similarities be-
tween protein surfaces. For each couple of proteins similar-
ity Sim(Di, Dj) is computed according to the number of
shared patterns [9].

1
kmax − 1

kmax∑
k=2

|{Ps.t.P ∈ Lk
i ∧ Suppj(P ) 6= ∅}|

|{Ps.t.P ∈ Lk
i }|

where kmax is the maximum level of patterns between Di

and Dj .
Our benchmark dataset is made up of 25 molecules ob-

tained from the calmodulin-like protein (Protein Data Bank
code 1cll) that has undergone two different chains of pro-
gressive surface mutations (introduced with the homology
modelling technique) thus making mutants more and more
different from the generating seed (labelled S). In the first
chain the mutations applied are conservative (labelled c nr)
while in the second one they are non-conservative (labelled
nc nr), consequently the differences in the second chain
will be more evident. Given the limited size of the dataset
minsupp has been set equal to 2 and the mining algorithm
discovered 270 patterns whose levels range from 2 to 4. Fig-
ure 6.(a) shows the similarities between proteins computed
according to Sim(Di, Dj). It is evident that the similarity
between the seed and a mutant decreases proportionally to
the number of mutations, while the similarity between mu-
tants that are close in the mutation chain is always high. On
the other hand, similarity between proteins obtained in dif-
ferent chains is always low. Finally, the average similarity
of the conservative mutations is higher, thus confirming that
surface patterns are effective in representing surface simi-
larities.

In order to further verify the effectiveness of the infor-
mation stored in patterns we classified the proteins using the
similarity function defined so far. We intentionally adopted
a simple agglomerative hierarchical algorithm that, starting
from clusters each containing one protein, iteratively joins
the two most similar clusters. Cluster similarity has been



Figure 6. (a) Similarity map between couples
of proteins in the dataset: darker colors mean
higher similarity;(b) compactness of the clus-
ters for different clustering levels

computed according to the complete linkage rule [10]. Fig-
ure 6.(b) shows the compactness of the clusters obtained at
different levels of the clustering hierarchy. Assuming that
an optimal clustering should divide the chains to fragments
of sequential mutations, compactness is computed as the av-
erage density of each cluster with respect to the length of
the corresponding fragment. The number of errors is par-
ticularly low for large clusters showing that the algorithm
successfully creates a coarse-grained classification while it
is more subject to errors when a higher number of classes
(clusters) are present. It should be noted that the algo-
rithm never creates clusters containing proteins from dif-
ferent chains.

5 Conclusions and Future Work

In this paper we described an approach for determining
recurrent patterns on protein surfaces. Patterns model simi-
larities between protein surfaces and can drive the search of
unknown relationships between proteins as well as that for
classification. This approach is the first attempt, known in

the literature, to determine the similarities between proteins
using global surface features and without exploiting any
known functional meanings. The tests carried out show the
effectiveness of the information extracted from the surfaces
in classifying proteins and clear the way to a huge num-
ber of applications. Our future work includes the study of
more sophisticated classification algorithms handling local
maxima of the similarity function (that are at the origin of
errors in classification) and overlapped classifications. As
for applications, we will investigate cases in which protein
functions are related to the overall surface characteristics,
and when this type of analysis can overcome or complete
the structural and sequential ones.
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