Tightly-coupled Wrappers with Event Detection Subsystem for
Heterogeneous Information Systems

Christopher Popfinger and Stefan Conrad
Databases and Information Systems
University of Diisseldorf, D-40225 Diisseldorf, Germany
{popfinger, conrad } @cs.uni-duesseldorf.de

Abstract

The interconnection of heterogeneous and autonomous
data sources for information sharing demands for flexible
and extensible integrative components. In this paper we
present a universal architecture for building wrapper com-
ponents to access various types of heterogeneous informa-
tion sources. The wrapper comprises an event detection
subsystem to detect and propagate modifications of the data
stock. The architecture proposed especially supports En-
hanced Active Database Systems, which are able to actively
notify their tightly-coupled wrapper components about data
changes.

1 Introduction

Wrappers are a well-known concept to the database com-
munity. They encapsulate heterogeneous data sources to
provide clients with a common query interface. Queries
and data are translated from the data model of the source
to the data model the client expects and vice versa. Be-
sides the query translation, a wrapper can be used to extend
the functionality of an encapsulated data source. Additional
functions are implemented in the wrapper and offered to the
client or mediator.

Although many research projects that deal with infor-
mation sharing among multiple heterogeneous sources rely
on event detection to notify mediators of data or schema
changes, there is only a few detailed information available.
The TSIMMIS System [1], for example, uses template-
based wrappers to access information from a variety of het-
erogeneous information sources. Although the system sup-
ports constraint management, there is no detailed informa-
tion about the detection of events in the data stock. Another
wrapper architecture for heterogeneous data sources is pre-
sented in [8] which contains a schema change detector to
report schema changes to the mediator. Again, there is no
description of the detection and notification process.

In this paper we present a universal wrapper architecture

for heterogeneous information systems supporting various
types of data sources. It comprises an event detection sub-
system to react on modifications of the local data stock. The
architecture is especially designed to wrap database systems
with enhanced activity which are able to actively notify the
wrapper component about data changes.

We start introducing Enhanced Active Database Systems
in Section 2, followed by a description of the components of
the architecture in Section 3. Section 4 explains the event
detection and notification mechanisms of the event detec-
tion subsystem, while Section 5 concludes and draws up
future work.

2 Enhanced Active Database Systems

Active database systems assist applications by migrating re-
active behavior from the application to the DBMS. They are
able to observe special requirements of applications and re-
act in a convenient way if necessary to preserve data con-
sistency and integrity. The integration of active behavior in
relational database systems is not particularly new and most
commercial database systems provide an active rule system.
Unfortunately, the scope of triggers and stored procedures
in active database systems has until recently been limited
to the isolated databases they were defined at. Subsequent
developments integrated special purpose programming lan-
guages (e.g. PL/SQL) into the database management sys-
tem to overcome some limitations of the query language and
to provide a more complex programming solution for crit-
ical applications. But again, the scope of these extensions
was strictly limited to the system borders of the database
system, so an interaction with its environment was very
limited or simply impossible. Recent developments, espe-
cially in commercial database systems, take their function-
ality beyond former limits. The significant improvement,
on which this work is based on, is the ability of modern
database systems to execute programs or methods written
in a standalone programming language from within trig-
gers and stored procedures. In the following, the ability



of a database system to execute programs or methods from
within its database management system to interact with its
execution environment shall be called enhanced activity. A
database system with enhanced activity is an Enhanced Ac-
tive Database System (EADBS). The execution of a program
or method in this context shall be called an External Pro-
gram Call.

The execution of complex programs from inside a
DBMS offers new perspectives to data management in a
database system. It can, for instance, be used to perform
complex interactions with its execution environment, like
global integrity maintenance in federations. In this pa-
per, we use the enhanced activity to enable a database
system to interact with its corresponding wrapper compo-
nent. It establishes a connection and signals changes of
the data stock to the wrapper’s event detection subsystem.
Due to this bidirectional communication of the wrapper
and the underlaying database system, we say the wrap-
per is tightly-coupled to the data source. The program-
ming language for coding the external programs must be
able to interact with other standalone programs via sock-
ets or a Remote Method Execution Protocol. Within recent
commercial database systems a commonly supported pro-
gramming language which meets these requirements is Java
(e.g. Java Stored Procedures or Java UDFs). It comprises
a comprehensive package list for networking and remote
method invocation. Furthermore, it contains JDBC, a com-
mon database connectivity framework, to provide a stan-
dardized interface for a multitude of different data sources
like relational databases or even flat files (CSV). Although
we exemplify our concept in the context of Java, it can be
adapted to other database systems supporting different pro-
gramming languages that fulfill the requirements just men-
tioned.

3 Wrapper Architecture

We now present the wrapper architecture for various data
sources, which comprises both, a query subsystem and an
event detection subsystem to detect and propagate modi-
fications of the data stock. Our architecture is especially
designed for the implementation of heterogeneous informa-
tion systems where data is stored on multiple autonomous
sources that are interconnected by a mediation layer. It par-
ticularly provides a notification interface for Enhanced Ac-
tive Component Systems to actively signal modifications of
the data stock to the tightly-coupled wrapper (see 4.2). The
components of the wrapper itself communicate via meth-
ods and function calls written in the wrapper programming
language and return data types or objects. Figure 1 depicts
the components of the wrapper architecture, which will be
described in the following.

Heterogeneous Data Sources Our architecture basically
supports any type of data source, but the functionality

that can be offered to the mediation layer by the wrapper
strongly depends on the capabilities of the underlaying data
source. A data source is connected to the wrapper by a
source specific query interface. Types of data sources can
be, for example, unstructured or semi-structured files, rela-
tional or object-oriented database systems, or directory sys-
tems, with our without integrated active mechanisms. The
architecture is especially designed to wrap EADBSs with
the ability to signal data modifications to the wrapper.

Source Specific Query Interface The source specific
query interface is a software component that provides ba-
sic operations on the data stock. It knows how to open and
close a connection to a source and what types of queries
are supported. Furthermore it translates query results into
a representation format of the programming language. This
can be, for example, a result set, a multidimensional array,
or a heterogeneous collection of basic data types. The re-
quired query language and the returned query results sig-
nificantly depend on the functionality provided by the data
source. Most databases with database management systems
support SQL as a standardized query language and return
a resource identifier which points to the result of a specific
query. A well-established package which can be associated
to this architectural component is the Java Database Con-
nectivity Framework (JDBC). It supports various types of
data sources including even query interfaces for flat or XML
files. The query manager calls functions of the source spe-
cific query interface to communicate with the data source
and to read or modify its data stock.

Query Manager The query manager consists of a set of
functions which encapsulate the entire communication from
the wrapper components to the data source. These functions
are specifically designed for the desired data source func-
tionality of the overall system. The query manager uses
the source specific query interface to open and close con-
nections, send queries, and receive corresponding results.
Each query function executes a single query or a parameter-
ized family of queries to read or modify the data stock. The
functions can be divided into two types of interaction: data
requests and repository requests. Data request functions
provide an interface to access local data in the data source,
whereas repository requests are used to access meta data
stored in the repository. Both, controller and event monitor,
call the predefined query functions to interact with the data
source. They receive the corresponding query result as data
types or objects as return values from the functions. Due
to the centralization of the data source access in the query
manager and the separation of query manager and source
specific query interface we achieve a portable wrapper so-
lution for heterogeneous information systems.

Converter Since a wrapper is used to convert queries and

data from one model to another, we need a component to
convert source specific data into an exchange format the



| ¢

L2 |
Event ‘ Mediator Interface ‘
Event Monitor I
Processor LY [
! Controller ‘
v l T
Notification
ery Manager
Interface‘ Conver‘(er:‘ Query 9 ‘
A
: v 1
Source Specific Query Interface
Y b N b Y
éactive event event event event :
. notification polling polling polling
: E v v v A 4
(%) (%)
Elm Integrated S | Integrated Active DBMS ‘ A AN J
D [Active Mechanisms 2 | Mechanisms
)
i)
a
Database Database Database &
Repository Repository Repository
Enhanced Active Active Passive Flat File/XML

Database System Database System

Database System Data Source

Figure 1. Wrapper architecture with event detection subsystem for various types of data sources.

mediation layer expects and vice versa. This conversion
is done by the converter component. On the one hand, it
is used by the query manager and the event processor to
transform local data into the desired exchange format be-
fore it is send to the mediation layer. On the other hand
it converts external data received from the mediation layer
into the internal representation format understandable to the
query manager. In this paper we do not provide a specific
exchange format, since the choice of a format depends on
the properties, characteristics, and functionality of the over-
all system. However, a common exchange format for the
use in the mediation layer of a heterogeneous information
systems could be based on RDF or OWL.

Controller The controller controls the interaction be-
tween the mediation layer and the data source. In particular,
it maps external requests to internal query functions of the
query manager, and forwards results for output. An exter-
nal request may result in a sequence of database operations
which are also coordinated and processed by the controller
component. Furthermore, it manages all the meta data re-
quired in the repository. The controller also provides a set
of event notification functions, which are used by the event
processor to signal data modifications of the local source.
Events can thus be reported to the mediation layer for fur-
ther processing.

Mediator Interface The mediator interface is the com-
munication unit for interaction with the mediation layer.
The functionality and concrete implementation of the inter-
face depends on the type of infrastructure to be established.
Possible infrastructures for mediation layers could be based
on for example RMI or CORBA, Server-Client commu-

nication over specified protocols, web services, publish-
subscribe, or peer-to-peer. The mediator interface estab-
lishes connections to remote systems and handles incoming
or outgoing requests between the mediation layer and the
wrapper controller.

Repository The repository contains all meta data required
for the operation of the wrapper component and the inter-
action with the mediation layer and the data source. This
includes configurations and properties, data source descrip-
tors, login information, and access control lists. The repos-
itory is managed exclusively by the controller of the wrap-
per, but it is stored directly in the local data source. Thus,
requests to data and meta data in the repository can be pro-
cessed in a uniform manner by the query manager. The
query manager provides the controller and event monitor
with query functions for repository management and ac-
cess. The main advantage is the homogeneous storage of
both, data and meta data, and the centralized access via the
query manager.

Event Monitor The event monitor is the active compo-
nent of the event detection subsystem. It detects data modi-
fications in data sources that are not able to actively propa-
gate events to the wrapper, like for example active database
systems without enhanced activity. The event monitor ob-
tains information about the data items to be scanned from
the repository. Using this information it periodically scans
relevant parts of the data stock for modifications. In the
case of a relational database a monitoring schedule in the
repository could contain the name of a relation and the time
period in which the relation should be scanned. The overall
meta data required for monitoring data modifications de-



pends on the change detection algorithm implemented by
the event monitor, which in turn depends on the type of lo-
cal data source. The event monitor is executed as a subpro-
cess (thread) at startup of the wrapper and does not provide
any operational interface to the remaining wrapper compo-
nents. Like the controller, the event monitor uses the query
functions of the query manager to access the data source. If
a relevant data modification is detected, the modified data
items are extracted from the data source and reported to the
event processor.

Notification Interface The notification interface is the
passive component of the event detection subsystem of our
wrapper architecture. It receives all update notifications di-
rectly from an EADBS via an external notification program
(see 4.2 for details). It consists of a source specific set of
functions, which are called by the underlaying EADBS. Af-
ter a change has been signaled to the notification interface,
the modified data items are reported to the event processor.
Event Processor All events, monitored by the event mon-
itor or signaled by the notification interface, are processed
by the event processor. It receives modified data items and
converts them into the exchange format using the converter
component. Afterwards, it forwards the changes directly to
the wrapper controller.

4 Event Detection

The architecture presented in this paper comprises compo-
nents for the detection and notification of events, i.e. mainly
modifications of the data stock. The detection and propa-
gation of data modifications is the basis for many research
projects (e.g. [1, 2]) which deal with the interconnection of
heterogeneous and autonomous data sources to share infor-
mation. A common characteristic of these approaches is
the use of a notification mechanism which somehow noti-
fies a mediating component (e.g. a constraint manager) of
an event occurring in the local data source to trigger a cer-
tain subsequent operation. Such notification mechanisms
are often based on the active capabilities of an underlaying
database management system, but there is so far no detailed
description of this interaction available.

The event detection subsystem of our architecture con-
sists of two main parts: event monitoring, for data sources
without enhanced activity, and active event notification.
They are described in the following sections.

4.1 Event Monitoring

Up to now, there are many types of data source that do
not have the enhanced activity which is required to actively
notify the wrapper of data modifications. Usually, flat or
XML files are unable to monitor transactions or to main-
tain integrity constraints, so for these sources it is impos-
sible to detect changes in their own data themselves. This

also applies to database systems: as long as the database
management system do not provide the enhanced activity,
it are unable to interact with its environment, even if trig-
gers are provided. Thus, the active event notification to the
wrapper component is simply impossible with these types
of data sources. To detect events in these data sources, we
have included an event monitor into our architecture. It ac-
cesses the data source via a specific set of query functions
provided by the query manager. The information about the
entities and attributes to be scanned are created by the con-
troller and stored as monitoring schedules in the repository.
A monitoring schedule contains the entities and attributes
which are monitored and the time period in which the scan
has to be repeated. Additional information depends on the
specific algorithm of the monitoring process.

There are several approaches for change detection in dif-
ferent kinds of data sources that can be applied to this part of
the subsystem. Changes to flat files can be detected using
string comparison algorithms, like presented in [4]. Solu-
tions for relational data and hierarchically structured data,
such as nested-objects, are presented in [5] and [3] respec-
tively. Due to the popularity of XML there is a number
of algorithms which deal with the comparison and change
detection in XML files, e.g. [9]. After changes have been
identified by the event monitor, it propagates the modified
data items to the notification interface, where they are trans-
formed into an internal representation format and sent to the
controller. The processing of the updates depends on the
implementation. The updates could be used to check global
integrity constraints, to accumulate changes for future syn-
chronization as needed for mobile databases, or to actively
replicate data items to corresponding data sources via the
mediation layer.

4.2 Active Event Notification

The active propagation of events occurring in the data stock
can be realized using EADBSs. As mentioned above this
type of database systems is able to interact with its envi-
ronment using external program calls from within triggers.
The external programs are generally written in a standalone
programming language and stored as functions inside the
database system. Since Java is supported in most com-
mercial database systems with enhanced activity, we exem-
plify the active event notification process using concepts of
object-oriented programming languages. The concept pro-
posed certainly adapts to other languages and data models.

To detect data modifications we create triggers on the
entities and attributes we want to monitor. The triggers
can easily be adjusted to react on insertions, deletions, or
updates on the data stock. After such an event has been
detected, the trigger calls an external notification program
(ENP), which is responsible for the notification of the wrap-
per. As parameters it passes the data items affected and cor-



responding meta data (e.g. the type of modification). The
ENP is executed by the database system and connects to the
notification interface of the wrapper, whereupon it transmits
the changed data items. The notification interface in turn re-
ports to the event processor.

The main challenge in this process is the communication
between the external program of the data source and the
notification interface of the wrapper. During the implemen-
tation we face the problem that the wrapper component and
the ENP are two different processes which are initiated and
executed independently from each other. A wrapper com-
ponent is installed and started once for each data source as a
standalone application. An ENP is initialized and executed
by the database system whenever a corresponding trigger is
activated by a database transaction. An ENP can be used by
one or more triggers, but we are also able to implement a
single ENP for each trigger. After the notification, the ex-
ternal program process terminates and resources are freed
again. In fact, we have one instance of the notification in-
terface and many instances of one or more ENPs.

In our architecture the interaction of ENPs and the wrap-
per is based on the event notification pattern [7], which is
closely related to the observer pattern of Gamma et al. The
wrapper controller (observer) wants to be informed about
specific state changes of the database (subject) as soon as
possible. A change of state is encapsulated in an instance
of an ENP. The ENPs forward the event to the notification
interface, which acts like an observer’s event stub or event
listener. The event stub calls the required operations of the
observer to react on the event. All events, detected by the
event monitor or notification interface, are both signaled to
the controller via the event processor. The event monitor en-
capsulates changes of the database state and reports to the
event processor in the same way as the ENPs.

As already mentioned, the notification interface and the
notifiers (excluding the event monitor) are separate executa-
bles and they do not necessarily have to reside on the same
node of the network. In the case of Java as an interpreted
language, they do not even have to be executed by the same
Java Virtual Machine, since recent database systems usually
ship with their own Java interpreter. Thus, the communica-
tion between the ENPs and the notification interface has to
be established via sockets, a distributed object protocol such
as CORBA, or a Remote Method Execution protocol such
as Java RML. In the case of Java we suggest Java RMI for
communication between the components. Please note that
an EADBS can also be monitored by the event monitor like
passive data sources, if the creation of triggers would im-
pose unacceptable restrictions to local autonomy.

5 Conclusion and Future Work

In this paper we have presented a universal wrapper archi-
tecture for the use in heterogeneous information systems

with autonomous component systems. Besides the query in-
terface it comprises an event detection subsystem to detect
modifications of data in the underlaying source. The archi-
tecture especially supports Enhanced Active Database Sys-
tems, which are able to actively notify their corresponding
wrapper about events occurring in the database. The com-
munication between EADBSs and the wrapper is realized
using a Remote Method Execution Protocol implementing
the event notification design pattern.

In the next steps we finish the implementation of proto-
types for a set of different relational databases and evaluate
the wrapper architecture in the context of the DIGAME ar-
chitecture [6] for a real world scenario. Concurrently we are
developing a framework for the implementation and deploy-
ment of event notification programs for diverse EADBSs,
which shall later be included into a toolbox to assist the
creation and setup of wrapper components. We furthermore
plan to create prototypes for other types of data sources (e.g.
XML) and evaluate different change detection algorithms
for event monitoring.

References

[1] S.Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Pa-
pakonstantinou, J. D. Ullman, and J. Widom. The TSIMMIS
Project: Integration of Heterogeneous Information Sources.
In 16th Meeting of the Information Processing Society of
Japan, pages 7-18, 1994.

[2] S. Chawathe, H. Garcia-Molina, and J. Widom. A Toolkit For
Constraint Management In Heterogeneous Information Sys-
tems. In Proc. of the Int. Conf. on Data Engineering, pages
56-65, 1996.

[3] S. S. Chawathe and H. Garcia-Molina. Meaningful Change
Detection In Structured Data. In Proc. of the 1997 ACM SIG-
MOD Int. Conf. on Management of Data, pages 26-37. ACM
Press, 1997.

[4] J. W. Hunt and T. G. Szymanski. A fast Algorithm for Com-
puting Longest Common Subsequences. Commun. ACM,
20(5):350-353, 1977.

[5] W. Labio and H. Garcia-Molina. Efficient Snapshot Differen-
tial Algorithms for Data Warehousing. In Proc. of the 22th
Int. Conf. on Very Large Data Bases, pages 63—74. Morgan
Kaufmann Publishers Inc., 1996.

[6] C. Pérez de Laborda, C. Popfinger, and S. Conrad. Dynamic
Intra- and Inter-Enterprise Collaboration Using an Enhanced
Multidatabase Architecture. In /6th Int. Conf. and Workshop
on Database and Expert Systems Applications. IEEE Com-
puter Society Press, 2005.

[7] D. Riehle. The Event Notification Pattern - Integrating Im-
plicit Invocation with Object-Orientation. Theory and Prac-
tice of Object Systems, 2(1):43-52, 1996.

[8] H. Wang, J. Li, and Z. He. An Effective Wrapper Architec-
ture to Heterogeneous Data Source. In AINA, pages 565-569,
2003.

[9] Y. Wang, D. J. DeWitt, and J. Cai. X-Diff: An Effective
Change Detection Algorithm for XML Documents. In /ICDE,
pages 519-530, 2003.



