On Different Perspectives of XML Data Evolution*

Martin Necasky
Dept. of Software Science and Engineering
Faculty of Electrical Engineering

Czech Technical University, Prague, Czech Rep.

E-mail: necasky@fel.cvut.cz

Abstract

XML data evolution has recently gained much inter-
est in both research and practice. However, most of the
existing works deal with separate aspects of the prob-
lem such as evolution of XML schemas or evolution
of conceptual schemas and view the problem only from
the perspective of a single application. In this paper
we show that XML data evolution has several differ-
ent levels at which it can be performed and that are
highly related. Secondly, we show that evolution is not
the problem of a single application, but multiple appli-
cations having the same problem domain can influence
each other as well. We describe the particular levels,
how they can be modified and the respective propagation
of the modifications to other levels and applications.

1 Introduction

Since XML [5] has become a de-facto standard for
data representation and manipulation, there exists a
huge amount of applications having their data repre-
sented in XML. Since most of the XML applications
are usually dynamic, sooner or later the structure of
the data needs to be changed. We usually speak about
so-called XML schema evolution, i.e. a situation that
a schema of the data is updated and we need to apply
these updates on its existing instances.

Currently there exist several works focusing on this
topic. However, most of them deal with separate as-
pects such as evolution of XML schemas or evolution of
conceptual schemas. In addition, all of them view the
problem only from the perspective of a single applica-
tion. Hence, in this paper we study the problem from a

*This paper was partially supported by the MSMT grant No.
MSM 6840770014. This research has also been partially sup-
ported by GACR grants No. 201/09/0990 and 201/09/P364.

[rena Mlynkova
Dept. of Software Engineering
Faculty of Mathematics and Physics
Charles University, Prague, Czech Rep.

E-mail: mlynkova@ksi.mff.cuni.cz

more general perspective. We show that schema evolu-
tion has several different levels at which it can be per-
formed and that are highly related. Secondly, we show
that schema evolution is not the problem of a single
application, but multiple applications having the same
problem domain can influence each other as well. We
describe the particular levels, how they can be modified
and the respective propagation of the modifications to
other levels and applications.

The paper is structured as follows: Section 2
overviews existing related works. Section 3 introduces
the given problem using a motivating example. Sec-
tion 4 describes the proposed evolution model and Sec-
tion 5 the respective transformations. Finally, Sec-
tion 6 provides conclusions and outlines future work.

2 Related Work

We can divide current approaches to XML schema
evolution into three groups depending on the level
where transformations can be specified by the designer.

Approaches in the first group consider transforma-
tions at so-called logical, i.e. XML schema level. They
differ mainly in the selected XML schema language,
ie. DTD [12, 2] or XML Schema [13, 9]. The trans-
formations are then propagated to the respective XML
documents, i.e. to so-called extensional level, to en-
sure that XML documents are valid against the evolved
XML schema. There also exists an opposite approach
that enables to evolve XML documents and propagate
the transformations to their XML schema [3].

Approaches in the second and third group consider
transformations specified at an abstraction of the log-
ical level. In particular, approaches in the second
group consider a visualization of the XML schema [8],
whereas approaches in the third group consider a UML
class diagram that models the XML schema [7]. From
our point of view, we comprehend both the cases as so-
called platform-specific model, since it directly models

the components of the XML schema but not the data
abstracted from its representation in XML. Transfor-
mations made at platform-specific level are propagated
to XML schema and then to XML documents. The
main advantage is that it is easier for a designer to
specify transformations at the abstraction level, be-
cause (s)he can concentrate more on the transforma-
tion itself rather than XML schema technical details.

Another open problem related to schema evolution
is adaptation of the respective operations, in particu-
lar XML queries. We speak about so-called operational
level. There seems to exist only a single paper [10]
dealing with this topic which states several recommen-
dations how to write queries that do not need to be
adapted for an evolving schema.

3 DMotivating Example

Let us consider a company that sells products to
customers. The information system of the company
is composed of several applications utilized by differ-
ent users for different purposes. Each application ap-
plies different XML formats that represent different
user views of the data. On the other hand, since the
applications work with the same data, e.g. customers,
products, etc., the XML formats represent the same
problem domain.

For example we consider two particular XML for-
mats, each described by an XML schema in the XML
Schema language (XSD) depicted in Figure 1. The
first XSD PurchaseRequest.xsd describes an XML
format used by customers to send purchase requests to
the company. The second XSD SalesReport.xsd de-
scribes a format representing reports on sales of prod-
ucts in regions. Both XML schemas somehow represent
customers. While PurchaseRequest.xsd represents
only their registration numbers, SalesReport .xsd rep-
resents registration numbers as well as names.

In our first scenario we need the customers to spec-
ify their names in purchase requests. Since Purcha-
seRequest.xsd does not consider names we have to
modify it. We decide to add subelement name to el-
ement purchase-request. This transformation does
not change our interpretation of the domain since we
have already considered names of customers. It does
not therefore influence SalesReport.xsd.

Secondly, sales managers want to structure names
of customers in sales reports to first and family names.
SalesReport.xsd has only XML element name in XML
element customer. Therefore, we replace name with
first-name and family-name. This transformation,
however, changes our interpretation of the problem do-
main since we have considered a name as a single un-

<xs:schema xmlns:xs=".../XMLSchema”>
<xs:element name=“sales-report”
type="Product” />
<xs:complexType name="Product”>
<xs:sequence>
<xs:element name="name”

<xs:schema xmlns:xs=".../XMLSchema”>
<xs:element name="purchase-request”
type="Purchase” />
<xs :complexType name="Purchase”>
<xs:sequence>
<xs:choice>

<xs:element name="messenger” type=“xs:string”/>
type="Messenger” <xs:element name=“region”
minOccurs="0"/> type="Region”

minQccurs="0"
maxOccurs=“unbounded” />
</xs:sequence>
<xs:attribute name="code”
<xs:element name="item” type="xs:string”/>
type="Item" </xs:complexType>
maxOccurs="unbounded” /> <xs:complexType name="Region”>
</xs:sequence> <xs:sequence>
<xs:attribute name="issue-date” <xs:element name="customer”
type="xs:string”/> type=“Customer”
<xs:attribute name="registration” minOccurs="0"
type="xs:string”/> maxOccurs="unbounded” />
</xs:complexType> </xs:sequence>
<xs:complexType name="Messenger”> <xs:attribute name="code”
<xs:attribute name="code” type="xs:string”/>
type="xs:string”/> </xs:complexType>
</xs:compleType> <xs:complexType name="Customer”>
<xs:complexType name="Van’> <xs:sequence>
<xs:attribute name="plate-no” <xs:element name="name”
type="xs:string”/> type="xs:string”/>
</xs:compleType> <xs:element name="email”
<xs:complexType name="Item"> type="xs:string”/>
<Xs:sequence> </xs:sequence>
<xs:element name="amount” <xs:attribute name="registration”
s:string”/> type="xs:string” />
rice” </xs:complexType>
</xs:schema>

<xs:element name="van”
type="Van”
minOccurs="0"/>
</xs:choice>

<xs:element name=
type=“xs:string”/>
</xs:sequence>
<xs:attribute name="code”
type="xs:string”/>
</xs:compleType>
</xs:schema>

Figure 1. XSDs

structured value. This can influence other XSDs as
well. In particular, we need to structure XML element
name in PurchaseRequest.xsd in a similar way.

As the examples demonstrate, a transformation of
an XML schema can influence other XML schemas in
the system as well. However, managing the consis-
tency at the XML schema level is an error-prone and
time-consuming task since it must be handled manu-
ally. Therefore, a more sophisticated method for XML
schema evolution would be useful in practice.

4 Five-Level Schema Evolution

While the current approaches consider evolution on
two, resp. three levels, in this paper we consider five
levels. The introduced levels are depicted in Figure 2.

The eztensional level contains for each XML format
a set of XML documents conforming to this format.
The logical level contains an XML schema that de-
scribes structure of the XML format. The operational
level contains queries related to the XML format. If
we consider only these levels, it is hard to determine
whether a transformation of an XML format influences
other XML formats since it must be determined manu-
ally. Therefore, we add two other levels, i.e. platform-
specific and platform-independent level, that provide
their interrelation. They are adopted from the Model-
driven Architecture (MDA) terminology which consid-

Platform-Independent

PIM diagram
.

Platform-Specific

]

AAS

i
&

Logical XML schema 1 XML schema i
! u
e | e [
Ex 1 XML XML
al documents

Figure 2. Five-level evolution architecture

ers modeling data at different levels of abstraction. The
platform-independent level contains a conceptual dia-
gram of the problem domain. It provides a descrip-
tion of the problem domain abstracted from the log-
ical level. The platform-specific level interrelates the
platform-independent and logical level. It provides a
mapping of each XML schema to the conceptual dia-
gram. This mapping enables automatic transformation
propagation since a transformation of an XML schema
can be propagated to the conceptual diagram and from
here to other XML schemas.

Figure 2 depicts in bold rectangles that a transfor-
mation can occur at any level L except the operational
level. From L, the transformation is firstly propagated
to the upper levels. This propagation is therefore called
upward propagation and is depicted in Figure 2 by solid
arrows. After the upward propagation, the transfor-
mation is propagated back to the lower levels as de-
picted in Figure 2 by dashed arrows. This propagation
is therefore called downward propagation.

The upward propagation means that a transforma-
tion specified at L implies a corresponding transfor-
mation at the upper level L — 1. This propagation
does not occur in every case. There are transforma-
tions whose impact depends on a designer or that have
no impact at all. The upward propagation can end
up at any level from where the downward propagation
continues. If the upward propagation ends up at the
platform-specific or lower level, the downward propa-
gation continues only in the scope of the correspond-
ing XML format. If the propagation ends up at the
platform-independent level, our interpretation of the
problem domain has changed and a downward propa-
gation to other XML formats can be therefore required.

Platform-Independent Level The platform-
independent level contains a conceptual diagram
of the problem domain. It describes the domain

independently of the considered XML formats. To
design such a diagram we use a conceptual modeling
language which is called Platform-Independent Model
(PIM) in the MDA terminology. The diagram is
then called PIM diagram. As PIM, we consider the
well-known UML class model. We consider only basic
modeling constructs, i.e. classes for modeling concepts
and binary associations for modeling relationships
between the concepts.

Example 1 Figure 8 shows a sample PIM diagram
modeling the domain of the company introduced in Sec-
tion 3 designed in a tool called XCase [1] we have devel-
oped for conceptual modeling of XML schemas. There
is a class Customer modeling customers. It has at-
tributes registration, name, email and phone modeling
relevant customer characteristics. A sample associa-
tion is the one connecting Customer and Purchase. It
models that customers make purchases.

=2 XCase editor - E:\Documents and Settings\martin\Wy Documents__ Work\Papers\paper_2009_caise_evolution\pomocnelxcaseproject.xmi* (=)(E1)(X]

New project New PIM disgram

S A Commenry 5 Ascton s
2N dsmepoee | New) () M osscom doom i B 1 ad operstion 9 Genersaston 2 scgregaton
Open [sove s (zmiee=s || w0 / hssociation @ Composition

proict et PIM digram elements i

“Navigtor v @ X [Company] 1 SalesRepart v X Propetties w8 X

PIM Class

Demo. PSM Demo
Neme | purchase
Supply supplier Attributes
O code
0 issue-date
O exped-date
Operations

Appearance
Width default

amount (1}

Figure 3. PIM diagram

Platform-Specific Level The platform-specific
level contains for each XML format a diagram that
models the XML format in terms of the PIM diagram.
It serves as a mapping between the corresponding
XML schema and the PIM diagram. For this, we use
a modeling language which is called Platform-Specific
Model (PSM) in the MDA terminology. The resulting
diagram is called PSM diagram. As PSM, we consider
the UML class model extended with some constructs
covering XML-specific features. In this paper, we
introduce only some of the constructs. For their full
description, we refer to [11].

A PSM diagram contains classes from the PIM dia-
gram and organizes them into the hierarchical structure
of the modeled XML format by associations. There is a

formal background that maps associations in PSM dia-
grams to associations in a PIM diagram. However, we
omit it in this paper. A label displayed above a class is
called element label and specifies a name of an XML el-
ement that represents instances of the class in the XML
format. Attributes of a class model XML attributes.
They can be separated to so-called attribute container
displayed by a box beneath the class. In that case they
model XML elements. We can also model variants in
the content of a PSM class by so-called content choice.
It is displayed by a circle with an inner | and models
that only one of its components can be instantiated for
each its instance.

Example 2 Figure 4 shows two sample PSM diagrams
modeling the XML formats for purchase requests and
sales reports from Section 3. Both model the respec-
tive XML format in terms of the PIM diagram depicted
in Figure 8. The PSM diagrams were designed in the
XCase tool [1].

To explain the PSM constructs, consider the dia-
gram on the left. It models that purchases are rep-
resented in the corresponding XML format as roots
since Purchase is a root class. Because the root
PSM class Purchase has an element label purchase-
request, a purchase is represented as an XML element
purchase-request. The associations going from Pur-
chase model that a purchase has a customer, delivery
information and list of items as children whose repre-
sentation is modeled by the children of Purchase. The
diagram utilizes an attribute container to specify that
attributes amount and price of Item model XML ele-
ments. It also utilizes a content choice to specify that
each purchase contains a messenger or van, that deliv-
ers the purchase, but not both.

purchase-request salesreport
Product
code {1}

Purchase

0.
CD T item name {1} region

Customer | Item Region
regstration (1} | 01 0.1 name {1}
messenger Van 1
Van prosic
code {1} plate-na {1} price {1} Product customer
cade {1} name {1} Customer
email {0..%} registration {1}

Figure 4. PSM diagrams

Logical, Extensional and Operational Level
The logical level contains for each considered XML
format its XML schema. In particular we consider
the XML Schema language [14, 4]. The extensional

level contains for each XML format a set of XML doc-
uments. And, finally, the operational level contains for
each XML format queries that are evaluated over the
XML documents of that format. There exist several
XML query languages, however they all exploit XPath
[6] to navigate in the structure of XML documents.
Therefore, especially XPath expressions must be con-
sidered during evolution since a change in the structure
of an XML format can have an impact on them.

5 Transformations and Propagation

Having the described levels, we can now specify the
set of transformations a user may invoke at each of
them. Similarly to existing works [9] we can distinguish
atomic transformations and high-level transformations
(i.e. sequences of atomic transformations). We further
adopt more specific types of transformations [10]:

e Structural:

— Adding — adds a new item
— Remowal — removes a new item

e Sedentary:

— Faxtension — adds a new item that does not
change structure

— Renaming — renames an item

— Renumbering — changes the cardinality of an
item

— Retyping — changes the data type of an item

— Resetting — changes the value of an item

— Mapping — maps an item to an item from
another level

— Unmapping — removes a mapping between
levels

e Migratory:

— Mowving — moves an item
— Reordering — changes the order of items

— Transformation — transforms an item to an
item of a different type

Note that not all types of the transformations exist
at all five levels. For instance, retyping does not oc-
cur at the platform-independent level, since we restrict
ourselves only to classes, attributes and associations.
Since the propagation of transformations can be either
upwards or downwards, the transformations at partic-
ular levels need to be propagated to all neighboring
levels. In general the propagation needs to be done
if the XML data become invalid. However, in all the

other cases it remains user’s decision if the respective
propagations should be done.

Let us consider the transformation propagation for
the transformations introduced in Section 3. The first
transformation was adding of new subelement name to
purchase-request. We initiate the transformation at
the extensional level by modifying an XML document.
It must be then propagated to the logical level and
the corresponding XML schema must be extended with
the element declaration. Next, it must be propagated
to the corresponding PSM diagram where we add a
new attribute name to the class Customer. Finally,
the transformation is propagated to the PIM diagram.
Since customer names are already modeled by attribute
name of Customer we just map the name PSM at-
tribute to the existing name PIM attribute and no
transformation is needed. Therefore, our interpreta-
tion of the domain has not been changed by the initial
requirement and no downward propagation is required.

The second transformation was replacement of XML
element name with new elements first-name and
family-name. We initiate this transformation in
SalesReport.xsd, i.e. at the logical level. In the
corresponding PSM diagram, it means to replace the
attribute name of Customer with new attributes first-
name and family-name. Since these attributes have no
equivalents in the PIM diagram, our interpretation of
the domain has changed and in the PIM diagram the
attribute name of Customer must be replaced with new
attributes first-name and family-name. Consequently,
the downward propagation must follow. It means to
propagate the transformation to the XML documents
with sales reports and, moreover, to the other XML
formats, i.e. purchase requests. Since there can be
queries for each XML format querying names of cus-
tomers, they can be influenced as well.

6 Conclusion

The aim of this paper was to show that the problem
of XML schema evolution has been highly marginal-
ized so far. We have showed that the schema evolu-
tion problem must be viewed from the perspective of
multiple applications and we have defined five levels
of XML schema evolution that cover all the existing
works. Next, we have described use cases related to
the problem that cannot occur unless we consider all
the evolution levels. Currently, we are dealing with
a throughout implementation of the proposed system.
For this purpose we extend system XCase [1] which
enables to design conceptual diagrams and map them
to respective XML schemas.

Apparently, there also exist several open issues:

Similarly to the existing works we need to make the
adaptation at all levels efficient, i.e. we need to be able
to find the least expensive sequence of transformations.
Secondly, to perform the transformations we want to
output a set of XSLT scripts that can be applied on
the respective XML data. Naturally, this approach re-
quires the existence of an XML representation of the
non-XML levels. And, having such a robust system, it
is quite natural that there are multiple users to work
with it, i.e. multi-user access and transactions need to
be incorporated as well.

References

[1] XCase — A Tool for XML Data Modeling. 2008. http:
//www.ksi.mff.cuni.cz/~necasky/xcase/.

[2] L. Al-Jadir and F. El-Moukaddem. Once Upon a
Time a DTD Evolved into Another DTD... In Object-
Oriented Information Systems, pages 3-17, Berlin,
Heidelberg, 2003. Springer.

[3] B. Bouchou et al. Schema Evolution for XML: A
Consistency-Preserving Approach. In Mathematical
Foundations of Computer Science, pages 876-888,
Prague, Czech Republic, 2004. Springer-Verlag.

[4] P. V. Biron and A. Malhotra. XML Schema Part 2:
Datatypes (Second Edition). W3C, October 2004.

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. Eztensible Markup Language (XML)
1.0 (Fourth Edition). W3C, September 2006.

[6] J. Clark and S. DeRose. XML Path Language (XPath)
Version 1.0. W3C, November 1999.

[7] E. Dominguez, J. Lloret, A. L. Rubio, and M. A. Za-
pata. Evolving XML Schemas and Documents Using
UML Class Diagrams. In DEXA 05, pages 343-352,
Berlin, Heidelberg, 2005. Springer.

[8] M. Klettke. Conceptual XML Schema Evolution - the
CoDEX Approach for Design and Redesign. In BTW
Workshops, pages 53—63. Aachen, 2007.

[9] M. Mesiti, R. Celle, M. A. Sorrenti, and G. Guerrini.
X-Evolution: A System for XML Schema Evolution
and Document Adaptation. In EDBT ’06, pages 1143—
1146, Berlin, Heidelberg, 2006. Springer.

[10] M. M. Moro, S. Malaika, and L. Lim. Preserving XML
Queries During Schema Evolution. In WWW 07,
pages 1341-1342, New York, NY, USA, 2007. ACM.

[11] M. Necasky. Conceptual Modeling for XML. PhD the-
sis, Charles University, 2008. http://www.ksi.mff.
cuni.cz/~necasky/thesis.pdf.

[12] H. Su, D. K. Kramer, and E. A. Rundensteiner.
XEM: XML Evolution Management. Technical Report
WPI-CS-TR-02-09, Worcester Polytechnnic Institute,
Worcester, Massachusetts, 2002.

[13] M. Tan and A. Goh. Keeping Pace with Evolving
XML-Based Specifications. In EDBT 04 Workshops,
pages 280—288, Berlin, Heidelberg, 2005. Springer.

[14] H. S. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. XML Schema Part 1: Structures (Sec-
ond Edition). W3C, October 2004.

