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Abstract—An increasing number of information systems 

integrate semantic data stores for managing ontologies. To 

access these knowledge bases most of the available 

implementations provide application programming interfaces 

(APIs). The implementations of these APIs normally do not 

support any kind of network protocol or service interface. This 

works fine as long as a monolithic system is developed. If the 

need arises to integrate such a knowledge base into a service-

oriented architecture a different approach is needed. In this 

paper we propose an architecture to address this issue. A first 

demonstrator was fully implemented in the European project 

PESCaDO. Several services access and work on a central 

knowledge base access service which supports multi-threaded 

access for parallel instantiated ontologies. 
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I.  INTRODUCTION 

The last decade has seen a growing adoption of 
information systems with a semantic-enabled repository, 
generally in the form of the so called triple stores. Usually, 
these systems rely on knowledge base access modules tightly 
integrated into the system. Indeed, these modules usually 
offer the opportunity to directly access and manipulate their 
content through application programming interfaces (APIs). 
However, this solution has some limitations if the 
information system is based on a service-oriented 
architecture (SOA) where the knowledge base access module 
would be a service as well. In fact, the implementations of 
these APIs normally do not support any kind of network 
protocol or service interface.  

In this paper we propose an architecture supporting 
access and manipulation of the content of a knowledge base 
(KB) in service-oriented platforms. The architecture is based 
on two main pillars:  

 
1. an interface to the KB which combines service 

interface features with API ones; 
2. session-based ontology instantiation, i.e. the 

idea to instantiate a KB for each user session 
considered at the level of the information 
system, containing only the instantiated content 
relevant for the considered session. This allows 

one to limit the size of the KB on which to 
perform OWL 2 reasoning, thus enabling more 
expressive reasoning capabilities (e.g., OWL 2 
DL) than those offered by standard triple stores 
(usually, OWL 2 RL or QL).  

 
A first demonstrator of the proposed architecture was 

fully implemented in the European project PESCaDO [8]. 
Several services access and work on a central KB access 
service which supports multi-threaded access for parallel 
instantiated ontologies. 

The paper is organized as follow: Section II presents 
some related works. Section III describes the issues behind 
accessing ontologies in a SOA, while in Section IV we 
describe the idea of session-based ontology instantiation. 
Section V presents a general architecture of a KB access 
service to be used in a SOA, and Section VI describes the 
deployment of this architecture in the context of a service-
oriented system for personalized environmental decision 
support within the PESCaDO project. We then conclude with 
some final remarks. 

Note: in the following text we use the term knowledge 
base to refer to one or more ontology instantiations persisted 
in a (triple) store or kept in-memory as well. The KB is 
intended to be manipulated (i.e. dynamically instantiated) 
and not static. 

II. RELATED WORK 

Typically, information systems based on a KB rely on 
established and efficient triple store repositories. Examples 
of popular triple stores are: Sesame [2], OWLIM [1], Jena 
[3], and Virtuoso [4]. Although these stores are able to 
handle huge amounts of data (e.g., trillion of triples), their 
reasoning capabilities are usually limited to RDF/RDF(S) or 
to efficiently tractable variants of OWL 2 (e.g., OWL 2 RL 
or QL). 

Ideas for accessing ontologies in a SOA were designed 
and implemented in the European projects ORCHESTRA [5] 
and SANY [6]. In the context of both projects a repository 
for ontologies was needed. The repository was put in place 
as a service itself with operations of a broad granularity. This 
means that the service interface provided operations to read 
(A-Box and T-Box separately), write, and delete whole 
ontologies. 



If some instances had to be added to the ontology, a 
rewrite of the whole ontology was necessary. Queries on the 
content of the ontology were also not supported. 

III. SERVICE INTERFACE VS. API 

How can several services (distributed in a network) 
access a KB in parallel as depicted in the following figure 1? 

 

 
Figure 1.  How do services access a knowledge base? 

To access and manipulate ontologies there are several 
APIs available. Most of them are for the programming 
language Java and feature a fine grained and therefore 
powerful interface. The most popular is still Jena but it 
currently does not support OWL 2. For full OWL 2 support 
there is the OWL API [9]. The OWL API is a Java API and 
reference implementation for creating, manipulating and 
serializing OWL Ontologies. Starting with version 3 it 
supports the full OWL 2 standard. It is currently evolving 
into a kind of de facto standard; for example it is used by the 
most widespread ontology editor Protégé 4 (see 
http://protege.stanford.edu/).  

All of these APIs are designed for direct integration into 
a system and do not provide a network abstraction. 

A brute force approach to design a service interface could 
be to create a 1:1 mapping from e.g., the OWL API. There 
are several drawbacks with such an attempt: 

 

 In a SOA the communication should be kept 
minimal because it is time consuming and slows 
down the overall system. For example if one 
would add some instances to the ontology, 
many operations must be called and therefore 
much communication takes place. 

 The available APIs are mostly designed object-
oriented which often means that if you call a 
function you get back an object on which you 
call further functions (e.g., get a concept and 
then get its object properties). In contrast, 
service interfaces tend to be not object-oriented 
and have a flat set of operations. However it 
could be done by using complex data structures 
which would be complicated to implement and 
difficult to use (and again causes a lot of 
communication). 

 
Instead of using an API there is the possibility to use 

query languages (QLs) for Semantic Web ontologies. An 
example of such a language is SPARQL [10]. With its 

extension SPARQL Update it can cover most API 
functionality. A drawback is that modifications to the 
ontology which are fairly simple via an API tend to get quite 
complex if formulated in SPARQL. SPARQL acts on the 
same level as SQL for relational databases and has as well 
the possibility to be used via a network with the Remote 
SPARQL specification (compares to JDBC or ODBC for 
SQL). 

In our suggested system architecture (presented in section 
V below) we tried to combine both approaches of API and 
query language to limit the drawbacks. 

IV. SESSION BASED ONTOLOGY INSTANTIATION 

A further aspect to be considered when developing an 
information system exploiting an ontology-based KB is the 
tradeoff between size and reasoning capabilities supported, 
especially in real time and interactive systems: reasoning 
performance falls with the size of the KB. Typically, this 
aspect is tackled by supporting restricted profiles of the used 
ontology language (e.g., OWL 2 QL), thus limiting the 
reasoning capabilities of the system. 

However, there are situations in which alternative 
strategies could also be considered. Indeed, in various 
applications, it may happen that the inferred content to be 
produced via reasoning may be limited to a specific user 
session or to limited content of the KB. A typical example is 
a decision support system which is regularly (e.g., hourly or 
every few minutes) fed with new data (e.g., economic data, 
stock market data, environmental data, news): only a fraction 
of the huge quantity of data collected is usually relevant for a 
single user decision support request. In such situations, one 
can think of extracting from the general data repository only 
the data which are relevant for the considered user session, to 
instantiate a user session specific KB with the relevant data, 
and to perform reasoning on this smaller KB. This approach, 
which we refer to as session-based ontology instantiation, 
allows an efficient exploitation of the reasoning capabilities 
offered by more expressive variants of the ontology language 
used (e.g., OWL 2 DL), due to the limited size of the session 
specific KB. 

A further benefit of the session-based ontology 
instantiation approach is that, due to its limited size, it 
enables to work with an in-memory implementation of the 
session specific KB instead of a persistent one, thus favoring 
a further improvement of the performance of the system (see 
Section VI for some details on the performance improvement 
we observed in a concrete situation). 

Another positive side effect of this concept is that we 
could work around a limitation of most reasoners. The 
reasoners tested during the implementation of the first non-
session-based approach namely HermiT (http://hermit-
reasoner.com/) and Pellet (http://clarkparsia.com/pellet) 
turned out to not (fully) support multi-threaded access. 
Because of this a synchronized handling of queries was 
necessary with a huge drawback on performance. 

An evident disadvantage of the session-based ontology 
instantiation approach is that the ontology has to be created 
and instantiated each time a user session starts, thus 
producing some computational overhead to be considered. 



However, the impact of this can be reduced by setting up an 
ontology pooling system, where multiple ontology pools are 
in place, each one containing a single ontology. As soon as a 
new session starts, the first unused ontology is allocated to 
that session, and disposed at its end, so that the ontology 
pool becomes available for a new starting session. No 
synchronization or reconciliation is needed as the session 
ontology is in place (and used) only for a single user session. 

To successfully apply the session-based ontology 
instantiation approach an important precondition must be 
met: the data relevant for the session must be known and 
much less than all available data. In PESCaDO we modeled 
in the ontology the data types required for a specific request 
(user profile/type of request), whereby the amount of data is 
limited by a spatial and temporal selection. 

V. THE KNOWLEDGE BASE ACCESS SERVICE 

The Knowledge Base Access Service (KBAS) should 
fulfill the following functional requirements: 

 

 Storing, updating or deleting available ontology 

modules; 

 Retrieving  (partially or fully) a stored ontology 

module; 

 Getting high-level information about some 

ontology modules, such as the list of concepts, or 

the list of supported properties for a given concept; 

 Inserting actual data in the KB; 

 Querying one or more ontology modules. 
 
The difficult part was to find a good balance between 

fine grained API functionality and a very broad one as in the 
SANY project which allowed only the storage and retrieval 
of a full ontology. Furthermore, a query language like 
SPARQL should be supported as well because many users of 
the service are already familiar with it. 

Therefore we decided to start with SPARQL (and 
SPARQL Update as well). After that we added operations 
which were either hard to formulate in a SPARQL query or 
took a lot of processing time. All operations can work on the 
main (persisted) ontology or one of the session-based 
ontology instances kept in memory. 

The most relevant query operations of the KBAS 
interface are: 

 

 queryOntology: Submits a query to the 
ontologies stored in the KB (can work on the 
main ontology and session-based ontologies). 
The query has to be formulated in a query 
language (e.g., SPARQL) compatible with the 
knowledge representation model used by the 
KB (e.g., RDF/OWL). 

 getRestrictionsFor: Get all restrictions between 
two classes and a specific property. In 
PESCaDO these restrictions were used to 
describe the input parameters required for 
specific user queries and allowed to dynamically 
generate the user interface. This gives us the 

opportunity to add new query types without 
having to adjust the user interface at a later 
stage. Retrieving this information via SPARQL 
requires a lot of SPARQL calls and additional 
post-processing of the responses. 
 

For manipulating the KB there are the operations: 
 

 setOntology: Creates a new session-ontology 
instance based on a configurable base ontology. 
It returns an identifier for further operation calls. 

 deleteOntology: Removes an existing session-
ontology instance from the KB. 

 addABoxStatements: This function allows data 
to be inserted into the KB. It can work on the 
main ontology and session-ontology instances. 
It is easier to use than SPARQL Update. 

 removeABoxStatements: This function allows 
factual knowledge (data) to be deleted from the 
KB (it can also work on the main ontology and 
session-ontology instances). It is easier to use 
than SPARQL Update. 
 

In PESCaDO we noticed that the expressive power of 
OWL 2 and DL reasoning was not enough to implement 
the Decision Support required in the project. Indeed, one 
of the requirements of the Decision Support module was 
to be able to instantiate new individuals in the ontology 
as a direct result of reasoning, something unfeasible with 
OWL DL reasoning. To deal with this we added support 
to use rules which is handled by the following operation: 
 

 applyRules: Applies an arbitrary set of rules to a 
session-ontology instance. The newly reasoned 
statements are automatically added to the 
ontology. 
 

VI. INFORMATION TECHNOLOGY IMPLEMENTED FOR THE 

PESCADO DEMONSTRATOR 

A. The PESCaDO project 

Citizens are increasingly aware of the influence of 
environmental and meteorological conditions on the quality 
of their life. The consequence of this awareness is the 
demand for personalized environmental information, i.e., 
information that is tailored to citizens' specific context and 
background. In PESCaDO (Personalized Environmental 
Service Configuration and Delivery Orchestration) an 
environmental information system that addresses this 
demand in its full complexity is being developed. More 
precisely, it aims to develop a system supporting the user in 
questions related to environmental conditions by searching 
for reliable data on the web. These data are processed and 
converted into knowledge stored in an ontology-based KB, 
from which information relevant to the specific user is 
deduced and communicated in the language of his / her 
preference. 



B. Architecture of the KBAS 

The internal architecture of the KBAS is depicted in 
Figure 2. The interface of the KBAS is defined in the Web 
Services Description Language (WSDL) [11]. The WSDL 
file is available from the public PESCaDO web server 
(http://pescado-project.eu/). We preferred WSDL over REST 
[13] because the strict interface typing makes integration in a 
distributed project easier. 

As Java was set as the programming language we chose 
the JAX-WS framework (which is the reference 
implementation for building web services in Java; see 
http://jax-ws.java.net/) as the basis of the implementation. 

To implement the queryOntology operation we chose 
SPARQL. A publicly available processor for SPARQL is 
ARQ which is a part of Jena. 

 

 
Figure 2.  Architecture of the Knowledge Base Access Service 

As we wanted to use the OWL API for full OWL 2 
support (we recall that the standard Jena Ontology API 
supports OWL 1.0/1.1), there was the need for an adapter 
which could be plugged into the Jena framework. Fraunhofer 
IOSB has already implemented such an adaptor called Pythia 
(http://theseus-programm.de). Pythia provides a Jena 
ontology model by extending a Jena GraphBase class. The 
calls to the graphBaseFind function of the class are 
converted into the corresponding calls of the OWL API. 

All other operations of the KBAS are directly realized 
with the functionality of the OWL API. Indeed, this was also 
needed to access the ontology of the KB at a conceptual 
level, such as for instance to dynamically access restrictions 
imposed on classes. This is problematic (and in some cases 
even impossible) with SPARQL, as a static graph pattern to 
be matched has to be encoded in the query. 

The reference implementation delivered with the OWL 
API is an in-memory only implementation, which means that 
the data is lost after a restart of the system. Also, the 
ontology size is limited to the main memory of the computer. 

To overcome this problem, a persistence solution called 
owldb [7] was built in parallel to Pythia (available under the 
LGPL from http://owldb.sourceforge.net/). 

For the persistence of OWL ontologies, owldb uses a 
relational database. To store the OWL API entities and 
axioms, an object relational approach is used. This 
component guarantees that only the entities currently in use 
are kept in memory. This facilitates the use of even large 
ontologies. Once stored, the axioms and entities of an 
ontology can be retrieved directly from the database and the 
ontology can be directly manipulated within the database. 
Furthermore, it is possible to perform format conversions 
from all ontology formats currently supported by the OWL 
API to the new database format and vice versa. 

C. Support for Rules in the KBAS 

We researched how to use rule sets on top of the OWL 
ontology in order to achieve a richer expressiveness. 
Although current state-of-the-art OWL DL reasoners support 
the definition and firing of rules represented in SWRL [12], 
its expressive power and its DL-safeness was not sufficient 
to encode the rules envisaged in PESCaDO. For instance, 
PESCaDO rules required the ability to instantiate new 
individuals in the ontology as a direct result of the inference 
phase, something not supported in SWRL and by DL 
reasoners (would break decidability). Therefore, for the 
realization of the operation applyRules (and not to start from 
scratch) we looked into extending Pythia to additionally 
adapt Jena rules to the OWL API. 

Jena already includes a general purpose rule-based 
reasoner which is used to implement both the RDFS and 
OWL reasoners, but is also available for general use. This 
reasoner supports rule-based inference over RDF graphs and 
provides forward chaining, backward chaining and a hybrid 
execution model. 

 

 
Figure 3.   Architecture of the Rules implementation of the KBAS 

The goal was reached by wrapping the Jena Model 
provided by Pythia into a InferredModel which uses the 
GenericRuleReasoner and a DeductionsModel (see figure 3). 
We conclude this section by reporting on an example of a 
rule defined in PESCaDO, according to the Jena rule syntax: 

 
[ruleAbundantPollen: 

    (?request rdf:type AnyHealthIssue) 

    (?request hasUser ?user) 

http://pescado-project.eu/
http://owldb.sourceforge.net/


    (?user isSensitiveTo birchPollen) 

    (?pollen rdf:type PollenDataType) 

    (?request hasGeoArea ?geoArea) 

    (?geoArea hasAggregatedData ?dataAggregated) 

    (?dataAggregated hasEnvDataType birchPollen) 

    (?dataAggregated hasAggregationType max) 

    (?dataAggregated hasRating ?rating) 

    (?rating hasRatingValue abundantPollen) 

  makeTemp(?rec) 

-> 

  (?rec rdf:type Recommendation) 

  (?rec hasRecommendationType:rec_abundantPollen)] 
 
This rule is used to generate a recommendation due to 
abundant birch pollen concentration in case the user who 
asks for decision support is sensitive to this pollen. 

D. Facilitation in PESCaDO 

The main ontology instance of the system contains the 
basic ontology schema and data which need to be persisted 
such as for example user profiles. This main ontology 
instance is stored in a database via owldb. Based on this 
ontology the KBAS manages specific ontology instances for 
each user session of the PESCaDO system. Such a session-
ontology instance is created as a clone of the base ontology 
and kept in memory. All data required to answer a user’s 
query is added to this instance (e.g., weather, pollen and air 
quality information in the region and time of the user’s 
interest). This data is only required for a single query and 
there is no need to make it persistent. Therefore we do not 
have the need to synchronize changes made in the session-
ontology back to the base ontology. 

In the first version of our demonstrator all queries were 
working on the main ontology instance which led to a 
processing time in the range of 2 to 4 minutes which is 
absolutely inacceptable for a real world information system. 
By switching to the per session-ontology instance approach 
the time was reduced to the range of 10 to 30 seconds (on a 
current computer with Intel i5 Processor and 4GB of main 
memory). More detailed measurements will be taken in the 
next step of the project. About 95% of that remaining time is 
spent in data retrieval, data fusion, and the final text 
generation of the answer for the user and is out of the scope 
of the KBAS. 

VII. SUMMARY AND FUTURE WORK 

In this paper we discussed the differences between 
service interfaces and APIs for accessing an ontological KB. 
After that we presented the KBAS interface which tries to 
combine the advantages and limit the drawbacks of fine vs. 
broad grained interfaces. 

The ideas explained could be evaluated in the PESCaDO 
project and shown to function. Nevertheless, more work 
needs to be done to fine tune the concepts. The ontology 
pooling system mentioned in section IV is not yet in place. In 
the final version of the KBAS implementation we want to 
improve the handling of session-ontology instances by 
implementing this idea which should work similarly to a 
database connection pool. This will completely remove the 
time for providing a newly initialized session-ontology 

instance. After that task is finished we want to conduct some 
final performance measurements. 

Another drawback is that the in-memory implementation 
combining Jena, Pythia and the OWL API shows a slower 
performance than the Jena only in-memory implementation. 
We need to investigate if the way how Pythia plugs into Jena 
is not optimal and/or if the OWL API in-memory 
implementation is weaker than the Jena one. If this concept 
cannot be improved, alternatives such as OWLIM will be 
considered as well (with the disadvantage of losing some 
OWL 2 features). 

ACKNOWLEDGMENT 

Running from January 2010 to December 2012, 
PESCaDO is partially funded by the European Commission 
in its 7th Framework Programme under the contract number 
ICT-259486. 

Pythia and owldb were developed in THESEUS, a 
research program initiated by the German Federal Ministry 
of Economy and Technology (BMWi). 

 

REFERENCES 

[1] B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev, R. 
Velkov, “OWLIM: A family of scalable semantic repositories,” 
Semantic Web, 2011 

[2] J. Broekstra, A. Kampman, F. van Harmelen, “Sesame: A Generic 
Architecture for Storing and Querying RDF and RDF Schema,” 
International Semantic Web Conference, 2002, pp. 54-68. 

[3] J. J. Caroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, K. 
Wilkinson, “Jena: implementing the semantic web recommen-
dations,” Digital Media, 2004, pp. 74-83. 

[4] O. Erling, I. Mikhailov, “Virtuoso: RDF Support in a Native 
RDBMS,” Semantic Web Information Management, 2009, pp. 501-
519. 

[5] T. Usländer (ed.), “Reference Model for the ORCHESTRA 
Architecture (RM-OA) V2 (Rev 2.1),” Open Geospatial Consortium 
Inc., 2007. 

[6] T. Usländer, “Specification of the sensor service architecture Version 
3.0 (Rev. 3.1),” OGC Discussion Paper 09-132r1, Deliverable D2.3.4 
of the European Integrated Project SANY, FP6-IST-033564, 2009.  

[7] J. Henss, J. Kleb and S. Grimm, “A database backend for OWL,” 
Proceedings of the 5th International Workshop on OWL: Experiences 
and Directions (OWLED), 2009. 

[8] L. Wanner, et al., “Building an Environmental Information System 
for Personalized Content Delivery,” Environmental Software 
Systems. Frameworks of eEnvironment. Volume 359/2011, 2011, pp. 
169-176. 

[9] M. Horridge, S. Bechhofer, “The OWL API: A Java API for working 
with OWL 2 ontologies,“ OWLED, volume 529, Proceedings of 
CEUR Workshop, 2008. 

[10] E. Prud’hommeaux, A. Seaborne, “Sparql query language for rdf,” 
W3C Working Draft, http://www.w3.org/TR/rdf-sparql-query/, 2006. 

[11] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana, "Web 
Services Description Language (WSDL) 1.1," World Wide Web 
Consortium (W3C) note, 2001. 

[12] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. 
Dean, “SWRL: A Semantic Web Rule Language Combining OWL 
and RuleML,” W3C Member Submission, 2004. 

[13] S. Vinoski, "REST Eye for the SOA Guy," IEEE Internet Computing, 
vol. 11, no. 1, pp. 82-84, Jan.-Feb. 2007, doi:10.1109/MIC.2007. 

 

http://www.w3.org/TR/rdf-sparql-query/

