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Abstract—An increasing number of information systems
integrate semantic data stores for managing ontologies. To
access these knowledge bases most of the available
implementations provide application programming interfaces
(APIs). The implementations of these APIs normally do not
support any kind of network protocol or service interface. This
works fine as long as a monolithic system is developed. If the
need arises to integrate such a knowledge base into a service-
oriented architecture a different approach is needed. In this
paper we propose an architecture to address this issue. A first
demonstrator was fully implemented in the European project
PESCaDO. Several services access and work on a central
knowledge base access service which supports multi-threaded
access for parallel instantiated ontologies.
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l. INTRODUCTION

The last decade has seen a growing adoption of
information systems with a semantic-enabled repository,
generally in the form of the so called triple stores. Usually,
these systems rely on knowledge base access modules tightly
integrated into the system. Indeed, these modules usually
offer the opportunity to directly access and manipulate their
content through application programming interfaces (APIs).
However, this solution has some limitations if the
information system is based on a service-oriented
architecture (SOA) where the knowledge base access module
would be a service as well. In fact, the implementations of
these APIs normally do not support any kind of network
protocol or service interface.

In this paper we propose an architecture supporting
access and manipulation of the content of a knowledge base
(KB) in service-oriented platforms. The architecture is based
on two main pillars:

1. an interface to the KB which combines service
interface features with APl ones;

2. session-based ontology instantiation, i.e. the
idea to instantiate a KB for each user session
considered at the level of the information
system, containing only the instantiated content
relevant for the considered session. This allows
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one to limit the size of the KB on which to
perform OWL 2 reasoning, thus enabling more
expressive reasoning capabilities (e.g., OWL 2
DL) than those offered by standard triple stores
(usually, OWL 2 RL or QL).

A first demonstrator of the proposed architecture was
fully implemented in the European project PESCaDO [8].
Several services access and work on a central KB access
service which supports multi-threaded access for parallel
instantiated ontologies.

The paper is organized as follow: Section Il presents
some related works. Section 1l describes the issues behind
accessing ontologies in a SOA, while in Section 1V we
describe the idea of session-based ontology instantiation.
Section V presents a general architecture of a KB access
service to be used in a SOA, and Section VI describes the
deployment of this architecture in the context of a service-
oriented system for personalized environmental decision
support within the PESCaDO project. We then conclude with
some final remarks.

Note: in the following text we use the term knowledge
base to refer to one or more ontology instantiations persisted
in a (triple) store or kept in-memory as well. The KB is
intended to be manipulated (i.e. dynamically instantiated)
and not static.

Il.  RELATED WORK

Typically, information systems based on a KB rely on
established and efficient triple store repositories. Examples
of popular triple stores are: Sesame [2], OWLIM [1], Jena
[3], and Virtuoso [4]. Although these stores are able to
handle huge amounts of data (e.g., trillion of triples), their
reasoning capabilities are usually limited to RDF/RDF(S) or
to efficiently tractable variants of OWL 2 (e.g., OWL 2 RL
or QL).

Ideas for accessing ontologies in a SOA were designed
and implemented in the European projects ORCHESTRA [5]
and SANY [6]. In the context of both projects a repository
for ontologies was needed. The repository was put in place
as a service itself with operations of a broad granularity. This
means that the service interface provided operations to read
(A-Box and T-Box separately), write, and delete whole
ontologies.



If some instances had to be added to the ontology, a
rewrite of the whole ontology was necessary. Queries on the
content of the ontology were also not supported.

I1l.  SERVICE INTERFACE VS. API

How can several services (distributed in a network)
access a KB in parallel as depicted in the following figure 1?
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Figure 1. How do services access a knowledge base?

To access and manipulate ontologies there are several
APIs available. Most of them are for the programming
language Java and feature a fine grained and therefore
powerful interface. The most popular is still Jena but it
currently does not support OWL 2. For full OWL 2 support
there is the OWL API [9]. The OWL API is a Java API and
reference implementation for creating, manipulating and
serializing OWL Ontologies. Starting with version 3 it
supports the full OWL 2 standard. It is currently evolving
into a kind of de facto standard; for example it is used by the
most widespread ontology editor Protégé 4 (see
http://protege.stanford.edu/).

All of these APIs are designed for direct integration into
a system and do not provide a network abstraction.

A brute force approach to design a service interface could
be to create a 1:1 mapping from e.g., the OWL API. There
are several drawbacks with such an attempt:

e In a SOA the communication should be kept
minimal because it is time consuming and slows
down the overall system. For example if one
would add some instances to the ontology,
many operations must be called and therefore
much communication takes place.

e The available APIs are mostly designed object-
oriented which often means that if you call a
function you get back an object on which you
call further functions (e.g., get a concept and
then get its object properties). In contrast,
service interfaces tend to be not object-oriented
and have a flat set of operations. However it
could be done by using complex data structures
which would be complicated to implement and
difficult to use (and again causes a lot of
communication).

Instead of using an API there is the possibility to use
query languages (QLs) for Semantic Web ontologies. An
example of such a language is SPARQL [10]. With its

extension SPARQL Update it can cover most API
functionality. A drawback is that modifications to the
ontology which are fairly simple via an API tend to get quite
complex if formulated in SPARQL. SPARQL acts on the
same level as SQL for relational databases and has as well
the possibility to be used via a network with the Remote
SPARQL specification (compares to JDBC or ODBC for
SQL).

In our suggested system architecture (presented in section
V below) we tried to combine both approaches of API and
query language to limit the drawbacks.

IVV.  SESSION BASED ONTOLOGY INSTANTIATION

A further aspect to be considered when developing an
information system exploiting an ontology-based KB is the
tradeoff between size and reasoning capabilities supported,
especially in real time and interactive systems: reasoning
performance falls with the size of the KB. Typically, this
aspect is tackled by supporting restricted profiles of the used
ontology language (e.g., OWL 2 QL), thus limiting the
reasoning capabilities of the system.

However, there are situations in which alternative
strategies could also be considered. Indeed, in various
applications, it may happen that the inferred content to be
produced via reasoning may be limited to a specific user
session or to limited content of the KB. A typical example is
a decision support system which is regularly (e.g., hourly or
every few minutes) fed with new data (e.g., economic data,
stock market data, environmental data, news): only a fraction
of the huge quantity of data collected is usually relevant for a
single user decision support request. In such situations, one
can think of extracting from the general data repository only
the data which are relevant for the considered user session, to
instantiate a user session specific KB with the relevant data,
and to perform reasoning on this smaller KB. This approach,
which we refer to as session-based ontology instantiation,
allows an efficient exploitation of the reasoning capabilities
offered by more expressive variants of the ontology language
used (e.g., OWL 2 DL), due to the limited size of the session
specific KB.

A further benefit of the session-based ontology
instantiation approach is that, due to its limited size, it
enables to work with an in-memory implementation of the
session specific KB instead of a persistent one, thus favoring
a further improvement of the performance of the system (see
Section VI for some details on the performance improvement
we observed in a concrete situation).

Another positive side effect of this concept is that we
could work around a limitation of most reasoners. The
reasoners tested during the implementation of the first non-
session-based approach namely HermiT (http://hermit-
reasoner.com/) and Pellet (http://clarkparsia.com/pellet)
turned out to not (fully) support multi-threaded access.
Because of this a synchronized handling of queries was
necessary with a huge drawback on performance.

An evident disadvantage of the session-based ontology
instantiation approach is that the ontology has to be created
and instantiated each time a user session starts, thus
producing some computational overhead to be considered.



However, the impact of this can be reduced by setting up an
ontology pooling system, where multiple ontology pools are
in place, each one containing a single ontology. As soon as a
new session starts, the first unused ontology is allocated to
that session, and disposed at its end, so that the ontology
pool becomes available for a new starting session. No
synchronization or reconciliation is needed as the session
ontology is in place (and used) only for a single user session.

To successfully apply the session-based ontology
instantiation approach an important precondition must be
met: the data relevant for the session must be known and
much less than all available data. In PESCaDO we modeled
in the ontology the data types required for a specific request
(user profile/type of request), whereby the amount of data is
limited by a spatial and temporal selection.

V. THE KNOWLEDGE BASE ACCESS SERVICE

The Knowledge Base Access Service (KBAS) should
fulfill the following functional requirements:

e Storing, updating or deleting available ontology
modules;

e Retrieving (partially or fully) a stored ontology
module;

e Getting high-level information about some
ontology modules, such as the list of concepts, or
the list of supported properties for a given concept;

e Inserting actual data in the KB;

e  Querying one or more ontology modules.

The difficult part was to find a good balance between
fine grained API functionality and a very broad one as in the
SANY project which allowed only the storage and retrieval
of a full ontology. Furthermore, a query language like
SPARQL should be supported as well because many users of
the service are already familiar with it.

Therefore we decided to start with SPARQL (and
SPARQL Update as well). After that we added operations
which were either hard to formulate in a SPARQL query or
took a lot of processing time. All operations can work on the
main (persisted) ontology or one of the session-based
ontology instances kept in memory.

The most relevant query operations of the KBAS
interface are:

e queryOntology: Submits a query to the
ontologies stored in the KB (can work on the
main ontology and session-based ontologies).
The query has to be formulated in a query
language (e.g., SPARQL) compatible with the
knowledge representation model used by the
KB (e.g., RDF/OWL).

e getRestrictionsFor: Get all restrictions between
two classes and a specific property. In
PESCaDO these restrictions were used to
describe the input parameters required for
specific user queries and allowed to dynamically
generate the user interface. This gives us the

opportunity to add new query types without
having to adjust the user interface at a later
stage. Retrieving this information via SPARQL
requires a lot of SPARQL calls and additional
post-processing of the responses.

For manipulating the KB there are the operations:

e setOntology: Creates a new session-ontology
instance based on a configurable base ontology.
It returns an identifier for further operation calls.

e deleteOntology: Removes an existing session-
ontology instance from the KB.

e addABoxStatements: This function allows data
to be inserted into the KB. It can work on the
main ontology and session-ontology instances.
It is easier to use than SPARQL Update.

e removeABoxStatements: This function allows
factual knowledge (data) to be deleted from the
KB (it can also work on the main ontology and
session-ontology instances). It is easier to use
than SPARQL Update.

In PESCaDO we noticed that the expressive power of
OWL 2 and DL reasoning was not enough to implement
the Decision Support required in the project. Indeed, one
of the requirements of the Decision Support module was
to be able to instantiate new individuals in the ontology
as a direct result of reasoning, something unfeasible with
OWL DL reasoning. To deal with this we added support
to use rules which is handled by the following operation:

o applyRules: Applies an arbitrary set of rules to a
session-ontology instance. The newly reasoned
statements are automatically added to the
ontology.

VI. INFORMATION TECHNOLOGY IMPLEMENTED FOR THE
PESCADO DEMONSTRATOR

A. The PESCaDO project

Citizens are increasingly aware of the influence of
environmental and meteorological conditions on the quality
of their life. The consequence of this awareness is the
demand for personalized environmental information, i.e.,
information that is tailored to citizens' specific context and
background. In PESCaDO (Personalized Environmental
Service Configuration and Delivery Orchestration) an
environmental information system that addresses this
demand in its full complexity is being developed. More
precisely, it aims to develop a system supporting the user in
questions related to environmental conditions by searching
for reliable data on the web. These data are processed and
converted into knowledge stored in an ontology-based KB,
from which information relevant to the specific user is
deduced and communicated in the language of his / her
preference.



B. Architecture of the KBAS

The internal architecture of the KBAS is depicted in
Figure 2. The interface of the KBAS is defined in the Web
Services Description Language (WSDL) [11]. The WSDL
file is available from the public PESCaDO web server
(http://pescado-project.eu/). We preferred WSDL over REST
[13] because the strict interface typing makes integration in a
distributed project easier.

As Java was set as the programming language we chose
the JAX-WS framework (which is the reference
implementation for building web services in Java; see
http://jax-ws.java.net/) as the basis of the implementation.

To implement the queryOntology operation we chose
SPARQL. A publicly available processor for SPARQL is
ARQ which is a part of Jena.
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Figure 2. Architecture of the Knowledge Base Access Service

As we wanted to use the OWL API for full OWL 2
support (we recall that the standard Jena Ontology API
supports OWL 1.0/1.1), there was the need for an adapter
which could be plugged into the Jena framework. Fraunhofer
10SB has already implemented such an adaptor called Pythia
(http://theseus-programm.de). Pythia provides a Jena
ontology model by extending a Jena GraphBase class. The
calls to the graphBaseFind function of the class are
converted into the corresponding calls of the OWL API.

All other operations of the KBAS are directly realized
with the functionality of the OWL API. Indeed, this was also
needed to access the ontology of the KB at a conceptual
level, such as for instance to dynamically access restrictions
imposed on classes. This is problematic (and in some cases
even impossible) with SPARQL, as a static graph pattern to
be matched has to be encoded in the query.

The reference implementation delivered with the OWL
API is an in-memory only implementation, which means that
the data is lost after a restart of the system. Also, the
ontology size is limited to the main memory of the computer.

To overcome this problem, a persistence solution called
owldb [7] was built in parallel to Pythia (available under the
LGPL from http://owldb.sourceforge.net/).

For the persistence of OWL ontologies, owldb uses a
relational database. To store the OWL API entities and
axioms, an object relational approach is used. This
component guarantees that only the entities currently in use
are kept in memory. This facilitates the use of even large
ontologies. Once stored, the axioms and entities of an
ontology can be retrieved directly from the database and the
ontology can be directly manipulated within the database.
Furthermore, it is possible to perform format conversions
from all ontology formats currently supported by the OWL
API to the new database format and vice versa.

C. Support for Rules in the KBAS

We researched how to use rule sets on top of the OWL
ontology in order to achieve a richer expressiveness.
Although current state-of-the-art OWL DL reasoners support
the definition and firing of rules represented in SWRL [12],
its expressive power and its DL-safeness was not sufficient
to encode the rules envisaged in PESCaDO. For instance,
PESCaDO rules required the ability to instantiate new
individuals in the ontology as a direct result of the inference
phase, something not supported in SWRL and by DL
reasoners (would break decidability). Therefore, for the
realization of the operation applyRules (and not to start from
scratch) we looked into extending Pythia to additionally
adapt Jena rules to the OWL API.

Jena already includes a general purpose rule-based
reasoner which is used to implement both the RDFS and
OWL reasoners, but is also available for general use. This
reasoner supports rule-based inference over RDF graphs and
provides forward chaining, backward chaining and a hybrid
execution model.
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Figure 3. Architecture of the Rules implementation of the KBAS
The goal was reached by wrapping the Jena Model
provided by Pythia into a InferredModel which uses the
GenericRuleReasoner and a DeductionsModel (see figure 3).
We conclude this section by reporting on an example of a
rule defined in PESCaDO, according to the Jena rule syntax:

[ruleAbundantPollen:
(?request rdf:type AnyHealthIssue)
(?request hasUser ?user)


http://pescado-project.eu/
http://owldb.sourceforge.net/

(?user isSensitiveTo birchPollen)
(?pollen rdf:type PollenDataType)
(?request hasGeoArea ?geoArea)
(?geoArea hasAggregatedData ?dataAggregated)
(?dataAggregated hasEnvDataType birchPollen)
(?dataAggregated hasAggregationType max)
(?dataAggregated hasRating ?rating)
(?rating hasRatingValue abundantPollen)

makeTemp (?rec)

->
(?rec rdf:type Recommendation)
(?rec hasRecommendationType:rec_abundantPollen) ]

This rule is used to generate a recommendation due to
abundant birch pollen concentration in case the user who
asks for decision support is sensitive to this pollen.

D. Facilitation in PESCaDO

The main ontology instance of the system contains the
basic ontology schema and data which need to be persisted
such as for example user profiles. This main ontology
instance is stored in a database via owldb. Based on this
ontology the KBAS manages specific ontology instances for
each user session of the PESCaDO system. Such a session-
ontology instance is created as a clone of the base ontology
and kept in memory. All data required to answer a user’s
query is added to this instance (e.g., weather, pollen and air
quality information in the region and time of the user’s
interest). This data is only required for a single query and
there is no need to make it persistent. Therefore we do not
have the need to synchronize changes made in the session-
ontology back to the base ontology.

In the first version of our demonstrator all queries were
working on the main ontology instance which led to a
processing time in the range of 2 to 4 minutes which is
absolutely inacceptable for a real world information system.
By switching to the per session-ontology instance approach
the time was reduced to the range of 10 to 30 seconds (on a
current computer with Intel i5 Processor and 4GB of main
memory). More detailed measurements will be taken in the
next step of the project. About 95% of that remaining time is
spent in data retrieval, data fusion, and the final text
generation of the answer for the user and is out of the scope
of the KBAS.

VII. SUMMARY AND FUTURE WORK

In this paper we discussed the differences between
service interfaces and APIs for accessing an ontological KB.
After that we presented the KBAS interface which tries to
combine the advantages and limit the drawbacks of fine vs.
broad grained interfaces.

The ideas explained could be evaluated in the PESCaDO
project and shown to function. Nevertheless, more work
needs to be done to fine tune the concepts. The ontology
pooling system mentioned in section IV is not yet in place. In
the final version of the KBAS implementation we want to
improve the handling of session-ontology instances by
implementing this idea which should work similarly to a
database connection pool. This will completely remove the
time for providing a newly initialized session-ontology

instance. After that task is finished we want to conduct some
final performance measurements.

Another drawback is that the in-memory implementation
combining Jena, Pythia and the OWL API shows a slower
performance than the Jena only in-memory implementation.
We need to investigate if the way how Pythia plugs into Jena
is not optimal and/or if the OWL APl in-memory
implementation is weaker than the Jena one. If this concept
cannot be improved, alternatives such as OWLIM will be
considered as well (with the disadvantage of losing some
OWL 2 features).
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