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Abstract—Vector space models (VSMs) are mathematically
well-defined frameworks that have been widely used in text pro-
cessing. In these models, high-dimensional, often sparse vectors
represent text units. In an application, the similarity of vectors—
and hence the text units that they represent—is computed by a
distance formula. The high dimensionality of vectors, however,
is a barrier to the performance of methods that employ VSMs.
Consequently, a dimensionality reduction technique is employed
to alleviate this problem. This paper introduces a new method,
called Random Manhattan Indexing (RMI), for the construction
of `1 normed VSMs at reduced dimensionality. RMI combines
the construction of a VSM and dimension reduction into an
incremental, and thus scalable, procedure. In order to attain its
goal, RMI employs the sparse Cauchy random projections.

I. INTRODUCTION

Prior to its processing, natural language text must be
converted into a format that is suitable for the method that pro-
cesses it. Vector space is an algebraic structure that is often em-
ployed to serve this purpose. Each text unit being analyzed—
such as words, phrases or documents—is represented as a
vector in a high-dimensional vector space. Each dimension
of this vector space expresses a particular characteristic of
the text units. These characteristics constitute1 statistical in-
formation about the usage of the text units in certain contexts,
depending on the objective of the task in hand. The result is a
mathematically well-defined model, known as a vector space
model (VSM). VSMs are often employed by methods that deal
with the meaning of text units, with renowned application in
distributional approaches to semantics [1].

In a VSM, a distance formula defines the similarity be-
tween vectors. Hence, the relative proximity of vectors to one
another interprets the meaning of text units that they represent.
As the number of text units that are being modelled in a
VSM increases, the number of contexts that are required to be
utilized to capture their meaning escalates. This phenomenon
is explained using power-law distributions of text units in
contexts. For example, Zipf’s law states that most words
are rare, while few words are used frequently. As a result,
extremely high-dimensional vectors, which are also sparse—
i.e. most of the elements of the vectors are zero—represent
text units. The high dimensionality of the vectors results in
setbacks, which are colloquially known as the curse of dimen-
sionality. Therefore, a dimensionality reduction technique is
often employed to alleviate these problems.

In this paper, we introduce a novel technique called Ran-
dom Manhattan Indexing (RMI). RMI merges the construction
of a VSM and dimension reduction into an incremental, and

1Usually, but not necessarily.

thus efficient and scalable, process. The proposed method is
similar to the Random Indexing (RI) technique [2,3] and Top-
Sig [4,5]. RMI, however, is the counterpart of these methods
for `1 normed vector spaces. This paper describes the method
and its underlying theory. Section II recalls the basics of
VSMs. Section III briefly reviews dimensionality reduction
techniques. The RMI method is explained in Section IV. In
Section V, we report the performance of the RMI method in
an experimental evaluation. We conclude in Section VI.

II. PRELIMINARIES

In a VSM, a collection of p text units whose meanings
are analyzed using n context elements builds a subspace of an
n-dimensional vector space Vn consisting of p vectors. In this
model, the vector ~si in the standard basis of Vn (for 1 ≤ i ≤
n)2 represents the ith context element. A text unit is denoted
by a vector ~v that can be expressed by a linear combination
of ~si

~v = w1~s1 + · · ·+ wn~sn, (1)

where wi is a real number that determines the association
of the text unit to the ith context. The coordinate of ~v, i.e.
(w1, · · · , wn), thus shows the correlations between the text
unit and the context elements in the model. A matrix Mp×n
of real numbers—in which rows and columns denote text
units and context elements, respectively—can be employed to
represent the coordinates of vectors in Vn.

Salton’s document-by-term model in information retrieval
(IR) is the most familiar example of a VSM [6]. Given a
number of documents, i.e. text units, and n distinct terms,
i.e. context elements, each document d is represented by an n-
dimensional vector ~d = (w1, · · · , wn), where wi is a numeric
value that associates the document d to the term ti. In this
model, each dimension, i.e. ~si in Equation 1, represents a
term (Fig. 1). In this document-by-term model, the values
of w may correspond to the frequency of each of the terms
in each of the documents to implement the bag of words
hypothesis: it is assumed the relevance of documents can be
assessed by counting terms that they share, regardless of their
order or syntactic usage patterns. Therefore, documents with
similar vectors are expected to have similar meaning. In IR
applications, queries are also treated as pseudo-documents;
hence, the comparison of vectors provides a method to resolve
retrieval tasks. Likewise, VSMs can implement hypotheses
other than the bag of words in order to address processing
text units other than documents, in contexts other than term
occurrences. In all these VSMs, however, the distance between
vectors measures the similarities between text units.

2That is, informally, the dimensions of the vector space.
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Fig. 1. Illustration of a document-by-term model consisting of 2 documents
and 3 terms. Each element of the standard basis si, i.e. each dimension,
represents each one of the 3 terms in the model. The 3-dimensional vectors
~v1 = (w11, w12, w13) and ~v2 = (w21, w22, w23) represent the two
documents in the model. The dashed line shows the Euclidean distance
between the two vectors, while the sum of dash-dotted lines is the Manhattan
distance between them.

In order to assess the similarity between vectors, V is
endowed with a structure called a norm. A norm ‖.‖ is a
function that satisfies certain axioms and maps vectors from
V to the set of non-negative real numbers, i.e. V 7→ [0,∞).
The pair of (V, ‖.‖) is then called a normed vector space. In
a normed space, the distance between vectors is defined by a
function that satisfies certain axioms and assigns a real value
to each pair of vectors:

d : V × V 7→ R, d(~v,~t) = ‖~v − ~u‖. (2)

Subsequently, the similarity between vectors can be assessed
by their distances: the smaller the distance between two
vectors, the more similar they are.

Euclidean space is the most familiar example of a normed
space. It is a vector space that is endowed by the `2 norm.
In Euclidean space, the `2 norm—also called the Euclidean
norm—of a vector ~v = (v1, · · · , vn) is defined as ‖~v‖2 =√∑n

i=1 v
2
i . Using the given definitions for the distance in

Equation 2 and the `2 norm, the Euclidean distance is measured
as d2(~v, ~u) = ‖~v−~u‖2 =

√∑n
i=1(vi − ui)2. In the `2 normed

vector spaces, various similarity metrics are defined using
different normalization of the Euclidean distance between
vectors. For example, the cosine similarity between vectors is a
similarity measure in the `2 normed spaces, which is defined by
the Euclidean distance between vectors when their length/norm
is normalized to unity.

The similarity between vectors can also be computed in
`1 normed spaces.3 The `1 norm for ~v is given by ‖~v‖1 =∑n
i=1 |vi|. The distance in `1 normed vector spaces is often

called the Manhattan or the city block distance. According
to the definition given in Equation 2, the Manhattan distance
between two vectors ~v and ~u is given by d1(~v, ~u) = ‖~v −
~u‖1 =

∑n
i=1 |vi − ui|. Similar to the `2 spaces, various

normalizations of the `1 distance4 define a family of `1 normed
similarity metrics. Depending on the distribution of vectors,
the performance of the `1 and `2 similarity measures varies
from one task to another. The `1 distance is more robust to
the presence of outliers and non-Gaussian noise than the `2
distance (e.g. see [7]). Hence, the `1 distance can be more
reliable than the `2 distance in certain applications, e.g. see [8].

3The definition of the norm is generalized to `p spaces with ‖~v‖p =(∑∞
i=1
|vi|p

)1/p
, which is beyond the scope of this paper.

4As long as the axioms in the distance definition hold.

III. DIMENSION REDUCTION

The curse of dimensionality is a common barrier in the
application of VSMs. When the number of context elements
increases, the dimension of VSMs increases and, thus, hinders
the computation of distances between vectors. In a large
number of text-based analysis applications, e.g. distributional
models of semantics, the number of context elements often
varies as a power of the number of text units: a phenomenon
known as power-law (or heavy-tailed) distribution. For in-
stance, a document collection contains a huge number of terms
that are only shared between a few of the documents. Many
of these terms are irrelevant to the content of a document.
Therefore, in a document-by-term model, adding a new doc-
ument collection to the model entails appending a large set
of terms. Consequently, the large number of terms results in
high dimensionality of the VSM; few common terms between
documents results in sparseness of the vectors and the presence
of irrelevant terms introduces noise.

Dimension reduction, which usually follows the construc-
tion of a VSM, alleviates the problems listed above by reducing
the number of context elements that are employed for the
construction of the VSM. In its simple form, dimension
reduction is performed as a selection process: choose a subset
of context elements and eliminate the rest using a heuristic.
Alternatively, transformation methods can be employed. A
transformation method maps a vector space Vn onto a Vm
of lowered dimension, i.e. τ : Vn 7→ Vm, m � n. The
vector space at reduced dimension, i.e. Vm, is often the best
approximation of the original Vn in a sense.

One category of transformation methods employ matrix
factorization techniques. In this group of methods, truncated
singular value decomposition (SVD), which is often identified
by the latent semantic indexing technique in IR [9], is a
well-known example. Matrix factorization methods such as
truncated SVD are data-sensitive: if the structure of the data
being analyzed changes, i.e. when either the text units or
context elements are updated, e.g. some are removed or new
ones are added, the transformation needs to be recomputed
and reapplied to the whole VSM to reflect the updates. For
example, when using truncated SVD in a document-by-term
model, a change in either the document collection or the
terms demands the recalculation of the SVD. In addition, in
these methods, a VSM at the original high dimension must be
first constructed. Following the construction of the VSM, the
dimension of the VSM is reduced in an independent process.
Therefore, the VSM at reduced dimension is available for
processing only after the whole sequence of these processes.
Construction of the VSM at its original dimension is computa-
tionally expensive and a delay in access to the VSM at reduced
dimension is not desirable. Therefore, these methods are not
suitable in several applications, particularly when dealing with
frequently updated big text-data such as applications in the
web context.

A family of dimensionality reduction techniques addresses
the above-mentioned problems of the matrix factorization-
based methods using the principles of random projections
(RP). In RP, a high-dimensional vector space is mapped onto
a random subspace of lowered dimension expecting that—
with a high probability—relative distances between vectors are
approximately preserved. Hence, RP avoids the high compu-



tational complexity of the matrix factorization process. Using
the matrix notation, this projection can be given by

M′p×m = Mp×n ×Rn×m, m� p, n, (3)

where R is often called the random matrix, and M and M′

denote p vectors in the original n-dimensional and reduced
m-dimensional vectors spaces, respectively. Unlike methods
that first construct a VSM at its original high dimension and
conduct a dimensionality reduction afterwards, a category of
RP-based methods—such as TopSig and RI as well as its
variants, e.g. [10]—avoid the construction of the original high-
dimensional VSM. Instead, using the distributive property of
matrix multiplication, these methods combine the construction
of a vector space and the dimensionality reduction process (i.e.
the right-hand side of Equation 3) to generate a VSM directly
at reduced dimension (i.e. M′ in Equation 3). As a result, these
methods significantly enhance the computational complexity of
deriving a VSM of lowered dimensionality from text.

The procedure of the construction of a VSM at reduced
dimension (i.e. M′p×m) in these methods is best described by
the two-step procedure in the RI algorithm: (a) the creation
of index vectors and (b) the construction of context vectors
[3]. In the first step, each context element is assigned exactly
to one index vector. An index vector is high dimensional and
randomly generated; most of the elements are 0 and only a few
are set to 1 and −1. In the second step, each target text unit is
assigned to a vector, called a context vector. Context vectors
have the same dimension as index vectors have, and all of
their elements, initially, are set to 0. For each encountered co-
occurrence of a text unit and a context element—e.g. through a
sequential scan of an input text collection—the context vector
~vc that represents the text unit is accumulated by the index
vector ~ri that represents the context element, i.e. ~vc = ~vc+ ~ri.
The result is M′ that represents the text units at reduced
dimension. As can be inferred, the first step refers to the
construction of R: index vectors are the row vectors of R.
And, the second step refers to the computation of M×R.

For example, in the construction of a document-by-term
model using the RI method, each ‘term’ is assigned exactly
to one index vector. In the second step, each ‘document’
is allocated to a context vector. The context vector of a
document is then updated by the accumulation of the index
vectors of all the terms that occurred in the document. The
first and the second step of the process can be arranged in
sequences different to that described here. For example, new
terms can be added to the model at any time by defining new
index vectors. To reflect the change in the model, the context
vectors of documents that contain newly added terms should be
updated by the accumulation of the newly added index vectors.
Similarly, for adding a new document to the model, a new
context vector is created and will be added to the VSM.

RI employs a random projection matrix R that has inde-
pendent and identically distributed (i.i.d) entries ri such that

ri =


−1 with probability s

2

0 with probability 1− s
1 with probability s

2

, (4)

where s determines the number of non-zero elements. Using
this information and the mathematical proofs given in [11]

and [12], it can be verified that RI is a RP technique for
Euclidean spaces—i.e. `2 normed. In Euclidean spaces, RPs
are elucidated using the Johnson–Lindenstrauss lemma (JL
lemma) [13].

In the original proof of the JL lemma, R is an orthogonal
matrix, and the lemma, thus, is proved for an orthogonal
projection. However, the computation of an orthogonal ma-
trix is difficult. Subsequent studies simplified the method by
showing that an orthogonal R can be replaced by a randomly
generated matrix of standard Gaussian distribution (see [14]
for proofs and references). Particularly, [11] and [12] show that
R can be a matrix with the asymptotic distribution described
in Equation 4. Therefore, using R with the stated asymptotic
distribution in Equation 4 is only valid for RPs in the `2
normed spaces. It has been proved that using these projections
causes large distortions in the `1 distance between vectors [15].
Hence, if the similarities are computed using the `1 distance,
then RI and other techniques that are based on the JL lemma
are not suitable for the VSM construction. The proposed RMI
technique extends the presented idea to the `1 normed spaces.

IV. RANDOM MANHATTAN INDEXING

We propose the Random Manhattan Indexing (RMI)
method: a novel technique for the construction of `1 normed
vector spaces at reduced dimensionality. RMI is motivated by
Cauchy random projections. Theorem 3 in [16] suggests an
embedding for `1 normed spaces similar to the one that is
proposed by the JL lemma for `2 normed spaces. It is shown
that for an m ≥ m0 = log(1/δ)O(1/ε), where δ > 0 and
ε ≤ 1/2, there exists a mapping from a real vector space Rn
onto Rm, m� n, that guarantees the `1 distance between any
pair of vectors in Rn after the mapping does not increase by a
factor more than 1 + ε with constant probability δ, and it does
not decrease by more than 1− ε with probability 1− δ. This
projection is proved to be obtained using a random matrix R
that has a Cauchy distribution—i.e. for rij ∈ R, rij ∼ C(0, 1).
Since R has a Cauchy distribution, for every two vectors ~u
and ~v in Rn, the projected differences x = ~̂u− ~̂v in Rm also
have Cauchy distribution, with the scale parameter being the
`1 distances, i.e. x ∼ C(0,

∑n
i=1 |ui − vi|). As a result, in

Cauchy random projections, estimating the `1 distances boils
down to the estimation of the Cauchy scale parameter from
i.i.d. samples x. Because the expected value of the Cauchy
random variable does not exist (i.e. infinite), [16] suggests
using the sample median in order to estimate the `1 distance
between vectors. Subsequent research improved the proposed
projection in [16]. In [17], it is shown that R with Cauchy
distribution can be substituted by a sparse R that has a mixture
of symmetric 1-Pareto distribution. In [18], it is shown that the
`1 distance can be estimated using non-linear estimators such
as the geometric mean other than the sample median.

Accordingly, RMI is a two-step procedure. First, each
context element is assigned exactly to one index vector. Index
vectors are generated randomly such that entries ri of index
vectors have the following distribution:

ri =


−1
U1

with probability s
2

0 with probability 1− s
1
U2

with probability s2

, (5)



where U1 and U2 are independent uniform random variables
in (0,1). The second step of RMI is identical to that in RI and
TopSig. Each text unit is assigned to a context vector ~vc where
initially all the elements of the vector are set to 0. Context
vectors are then updated incrementally by the accumulation of
the index vector ~ri of the encountered context elements. The
result is a VSM at reduced dimensionality that can be used to
estimate the `1 distances between text units in the model.

Using the sample median, for given vectors ~v and ~u, the
approximate `1 distance between vectors, which we denote by
L̂1, can be estimated by L̂1(~u,~v) = median{|vi − ui|, i =
1, 2, · · · ,m}, where m is the dimension of the VSM con-
structed by RMI, and |.| denotes the modulus. Alternatively,
as suggested above, L̂1 can be computed using the geometric
mean, i.e. L̂1 = (

∏m
i=1 |ui − vi|)1/m. In order to avoid

overflow during the calculation of geometric mean, we use the
arithmetic mean of logarithm-transformed values of |ui− vi|:

L̂1(~u,~v) = exp
( 1

m

m∑
i=1

ln(|ui − vi|)
)
. (6)

In order to employ RMI for the construction of a VSM
at reduced dimension, two model parameters should be de-
cided: (a) the dimension of the VSM, which is shown by m,
and (b) the number of non-zero elements in index vectors,
which is determined by s in Equation 5. In contrast to the
classic one-dimension-per-context-element methods of VSM
construction,5 the value of m in RPs and thus in RMI is
chosen independently of the number of context elements n in
the model. In RMI, as shown in [18], m is established by the
probability and the maximum expected amount of distortions
ε in pairwise distances and the number of vectors p in the
model: a larger m yields to lower bounds on the distortion
with a higher probability, i.e. m = O( log(p)

ε2 ). While a small
m is desirable from the computational complexity outlook,
the choice of m is often a trade-off between accuracy and ef-
ficiency. According to our experiment, m > 400 is suitable for
most applications. The number of non-zero elements in index
vectors, however, is decided by the number of context elements
n and the sparseness of the VSM at its original dimension
α. The proofs stated in [17] suggest O(

√
αn) as the value

of s in Equation 5. In text-based applications, the sparsity of
VSMs is considered to be around 0.01–0.0001. As the original
dimension of VSM n is very large—otherwise there would
be no need for dimensionality reduction—the index vectors
are often very sparse. Similar to m, larger s produces smaller
errors; however, it imposes higher computational complexity.

V. EVALUATION AND EXPERIMENTAL RESULTS

The purpose of our reported evaluation is not to show the
superiority of the `1 distance (thus RMI) to another similarity
measure (e.g. the `2 distance, which is estimated in RI-
constructed VSMs6) in a specific task. As a result, instead of
a task-specific evaluation, we report the performance of RMI
with respect to its ability to preserve the relative `1 distances
between text units in a VSM. As stated earlier, the performance
of the `1 distance for similarity measurement varies from one

5That is, n context elements are modelled in an n-dimensional VSM.
6Or, VSMs that are obtained after SVD truncation.

application to another, depending on the structure of the data
that are being analyzed and the objective of the task in hand.
We thus show that the relative `1 distance between a set of
documents in a document-by-term model remains intact when
using RMI with the suggested parameters.

In the designed experiment, a VSM is first constructed
from the INEX-Wikipedia 2009 collection at its original high
dimension. The corpus is a collection of 2,666,190 documents
(articles) from a Wikipedia snapshot of October 2008 [19].7
A pre-processing of the articles—i.e. white-space tokenization
followed by the elimination of non-alphabetic tokens—results
in a vocabulary of 2,533,854 terms. Each article in the dataset
is represented by a high-dimensional vector; each dimen-
sion represents an entry in the obtained vocabulary. Hence,
the constructed VSM using this one-dimension-per-context-
element method has a dimensionality of 2.53 million. In order
to keep the experiments tractable, we choose a list of 1000
random articles from the corpus. In the performed experiment,
a document from the list is taken as the reference and using
the constructed high-dimensional VSM, its `1 distance to
the remaining 999 documents in the list is calculated. These
documents are then sorted in ascending order by the calculated
`1 distance to obtain a ranked list of documents. The process is
repeated for all other documents in the list, which consequently
gives 1000 lists of ranked documents.

The procedure described above is repeated to obtain the
lists of ranked documents using the `1 distances that are
computed in RMI-constructed VSMs. In these reiterations, the
RMI’s parameters, i.e. the dimension and the number of non-
zero elements in index vectors, are set to different values.
We expect the relative `1 distances between documents in
RMI-constructed VSMs to be the same as in the original
high-dimensional VSM. Hence, the obtained sorted lists of
ranked documents from the RMI-constructed VSMs must be
identical to the corresponding lists that are derived from the
original high-dimensional VSM. Consequently, for each RMI-
constructed VSM, the resulting sorted lists are compared with
the obtained sorted lists from the original high-dimensional
VSM using Spearman’s rank correlation coefficient measure
(ρ). We report the average of ρ over the 1000 lists of sorted
documents (ρ̄) to indicate the performance of RMI with respect
to its ability in distance preservation: the closer ρ̄ is to 1, the
higher the performance of RMI.8

As shown in Figure 2a, when the dimension of the VSM is
above 400 and the number of non-zero elements is more than
12, the relative distances obtained from the VSM constructed
by RMI start to be analogous to the relative distances that
are observed in the original VSM, i.e. a high correlation
(ρ̄ > 0.93). As suggested in Section IV, when the dimension
of the VSM increases, the probability of preserving distances
increases. As a result, RMI at high dimension shows more
stable performance than that at lower dimension. The models
at lower dimension, however, converge faster than models of
higher dimension; i.e. with less non-zero elements, VSMs
of low dimension start to show a high correlation to the
`1 distances in the original high-dimensional VSM. Figure
2b shows the same results presented in Figure 2a, however,

7The corpus can be obtained from http://goo.gl/E0mw7k.
8In all the above experiments, the raw frequency of terms in documents is

used to indicate weights in corresponding vectors.

http://goo.gl/E0mw7k
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Fig. 2. The ability of RMI to preserve the `1 distance is assessed by the observed average Spearman correlation ρ̄ between the ranking of 1000 documents
in the original high-dimensional VSM and RMI-construed VSMs at reduced dimensionality. Figure 2a shows the overall observed result when the dimension
and the number of non-zero elements in index vectors (i.e. the RMI’ parameters) are set differently. Figure 2b shows the same results only when the dimension
of VSM is 200 (the red triangle markers). In this figure, the minimum value of ρ̄-axis is set to the best observed correlation ρ = 0.1375 when distances are
generated randomly (first baseline). The + and − marks (green marks) show ρ̄ when `1 distance is estimated in RI-constructed VSMs of dimensionality 1600.
Figure 2c, the same observed results are plotted only for RMI-constructed VSMs at the dimensionality of 200 (red triangles), 400 (blue diamonds) and 800
(black squares). It can be verified that an increase in the dimension of VSM results in an increase in ρ̄.

only when the dimension of RMI-constructed VSM is 200.
In this figure, we show two baselines. To generate the first
baseline, the selected 1000 documents in the experiment are
assigned to randomly generated distances and then sorted and
compared by the calculated distances in the original high-
dimensional VSM. This process is repeated 1000 times. We
report the highest observed correlation of ρ = 0.137 as the first
baseline. For these randomly generated distances, expectedly,
the average correlation is almost zero, i.e. ρ̄ = 0.00003. For the
second baseline, in order to support the earlier claim that RI-
constructed VSMs do not preserve the `1 distances, we use RI
to construct VSMs at the reduced dimension of 1600 and for
various numbers of non-zero elements. In the RI-constructed
VSMs, the `1 distances are then computed using the standard∑n
i=1 |vi − ui| as well as Equation 6 (‘+’ and ‘−’ marks in

Figure 2b, respectively). The observed ρ̄ when documents are
sorted using these calculated distances are shown as the second
baseline. Figure 2c shows the presented ρ̄ in Figure 2a only
for VSMs of reduced dimensionality 200, 400 and 800.

VI. CONCLUSION

We introduced the RMI method, a novel technique for the
construction of `1 normed VSMs at reduced dimensionality.
RMI merges the construction of a VSM with the dimension-
ality reduction process. Hence, it creates a VSM directly at
reduced dimension. RMI, therefore, alleviates the curse of
dimensionality when similarity between text units is measured
in `1 normed spaces. The RMI technique employs Cauchy
random projections and a non-linear estimator to attain its goal.
It can be seen as the peer of RI (used to measure similarity
using the `2 distance) and TopSig (used to measure similarity
using the Hamming distance), however, when similarity be-
tween text units is measured using the `1 distance. We further
validated the ability of RMI-constructed VSMs to preserve the
`1 distances in an experiment.
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