
MUMOC: an Active Infrastructure for Open Video Caching

Paolo Bellavista, Antonio Corradi, Luca Foschini
Dipartimento di Elettronica Informatica e Sistemistica - Università di Bologna

Viale Risorgimento, 2 – 40136 Bologna – ITALY
Phone: +39-051-2093001; Fax: +39-051-2093073

{pbellavista, acorradi, lfoschini}@deis.unibo.it

Abstract

Advances in networking and content delivery sys-
tems are enabling new challenging provisioning sce-
narios where a growing number of users access
Video on Demand (VoD), possibly while moving
among different points of attachment to the Internet
and using different access terminals. This calls for
novel middlewares capable of supporting personal-
ized VoD access by dynamically activating interme-
diate nodes between VoD servers and clients. The
paper proposes MUMOC, a dynamic and flexible
overlay infrastructure for the distributed caching of
both VoD prefixes and VoD metadata. To achieve
openness and easy interoperability with legacy VoD
services, MUMOC adopts standard XML-based for-
mats, based on both Dublin Core and MPEG7, to
represent VoD metadata. First experimental results
show that MUMOC significantly reduces bandwidth
utilization and user perceived delays. In addition,
notwithstanding the dynamic building of the overlay
network and the application-level approach, the in-
troduced overhead is compatible with the strict re-
quirements imposed by multimedia distribution over
the best-effort Internet.

1. Introduction

The provisioning of multimedia data over the best-
effort Internet is still a very challenging service sce-
nario. Peer-to-peer file sharing applications such as
Gnutella [1], Kazaa [2] and Pastry [3] have addressed
the issue of storing large amounts of (mainly multi-
media) data in a largely decentralized way, also by
trying to provide online content preview facilities for
downloaded data, e.g., Kazaa. These solutions have
further widened the interest in multimedia data shar-
ing over the Internet, up to the current scenarios
where these applications produce most Internet traffic
[4]. The problem is significantly more complex for
Video on Demand (VoD) streaming applications over
the best-effort Internet, where, for instance, users
demand for low playback delays and for the mainte-

nance of the negotiated quality during provisioning,
notwithstanding the Internet latency and loss rates.

In addition, the diffusion of networked computing
environments at home/office/open public spaces and
the proliferation of wireless-enabled portable devices
identify novel provisioning scenarios where a huge
number of users are willing to have ubiquitous and
continuous access to streaming services. Users de-
mand the possibility not only to move among differ-
ent Internet attachment points but also to change their
access terminals, while having the service adapted to
the runtime characteristics of their access environ-
ment and while preserving their session state.

All above issues motivate novel and highly flexi-
ble middleware-level approaches to support service
provisioning [5]. Dynamic distributed infrastructures
can support multimedia content dissemination and
adaptation efficiently, with an active participation not
only of service end-points but also of some interme-
diate nodes along the path between clients and serv-
ers. In other words, middleware should support active
services, i.e., services resulting from the cooperation
of interworking middleware/service components dis-
tributed along service paths, between clients and
servers, and traversed by service flows [6]. In particu-
lar, active services can improve VoD streaming over
the best-effort Internet, to primarily support prefix
caching, i.e., the online caching of the initial part of
VoD flows at intermediate traversed nodes, to allow
fast playback startup, i.e., the reduction of user-
perceived VoD startup delays in the case of prefix
cache hit in the active infrastructure, and to achieve
interoperability, by providing open and standard rep-
resentations of the available VoD flows so to simplify
the interworking with legacy VoD systems.

The paper presents MUM Open Caching (MU-
MOC), an active infrastructure for distributed caching
that significantly extends our Mobile agent-based
Ubiquitous multimedia Middleware (MUM) with the
possibility of caching multimedia prefixes and meta-
data descriptions (for both VoD prefixes and full
VoD flows) in a highly interoperable way [6].

MUMOC automatically deploys its caching mid-

2

dleware components only where needed during provi-
sioning, depending on client location. The caching of
whole VoD flows would rapidly exhaust the storage
capacity of proxy nodes; therefore, multimedia caches
usually store only portions of VoD streams at proxies.
Similarly, the primary idea in MUMOC is to support
the distributed replication and storage of the first few
seconds (prefix) of popular VoD contents at interme-
diate nodes along client-server paths. In particular,
when a client requires a VoD flow, MUMOC routes
the request to the server, intercepts the incoming VoD
flow, and caches its prefix on a proxy node in the
locality currently providing network connectivity to
that client. In addition, MUMOC caches the metadata
describing the available VoD contents: a distributed
cache disseminates VoD metadata with the goal of
reducing the response time for VoD retrieval. MU-
MOC metadata are represented in an interoperable
XML-based format that combines the Dublin Core
standard and the MPEG7 one, to increase the open-
ness of the MUMOC solution and to simplify its inte-
gration with legacy VoD services.

2. MUM Active Middleware Overview

MUMOC provides open caching of VoD prefixes
and metadata, and is integrated with the MUM active
middleware for dynamic Quality of Service (QoS)
tailoring and adaptation of multimedia flows. This
section gives a brief overview of MUM design guide-
lines and functions to provide the needed background
for fully understanding the MUMOC proposal. A
more detailed description of MUM is out of the scope
of the paper and can be found in [6].

The best-effort Internet lacks the infrastructure
support for the effective delivery of information
streams and much ongoing research is struggling to
solve the problem [8]. Ubiquitous computing further
complicates that scenario: possibly mobile users are
willing to access their services ubiquitously, to switch
their working sessions at runtime among terminals
with very different capabilities, and to maintain their
sessions open even while they are temporarily dis-
connected. All these issues call for a middleware-
level support capable of dynamically extending the
traditional Internet infrastructure, where and when
needed depending on the client points of attachment,
and has motivated MUM design and implementation.

A primary design guideline in MUM is to exploit
proxy middleware components that can dynamically
deploy along the client-server path, thus activating
some intermediate nodes traversed by VoD flows
(active middleware). MUM proxies participate in
service delivery by playing the dual role of client and

server, by passing in a pipeline the service data re-
ceived from the previous middleware component to
the next one along the service path. The interposition
of proxies along distribution paths starts to be recog-
nized as an effective solution for ubiquitous service
provisioning over the next generation Internet [7, 9].
The MUMOC solution for VoD caching permits to
maintain VoD prefixes and metadata locally to one
activated intermediate node, and integrates with the
dynamically deployed infrastructure of MUM prox-
ies, as better described in the following.

The MUM middleware is implemented on top of
our SOMA Mobile Agent (MA) platform [10]. The
MA-based implementation permits to move both
middleware components and session state at provi-
sion time, depending on the location of client requests
of VoD flows. The MA programming paradigm is
recognized as an effective solution for middleware
supports in mobility-enabled provisioning environ-
ments because of the MA properties of mobility,
asynchronicity, and autonomy [7, 11].

3. MUMOC Solution for Open Caching

Let us introduce the functions of the MUMOC
middleware by sketching an actual VoD streaming
usage scenario, depicted in Figure 1. Networked col-
leges and libraries in a university campus are inter-
ested in collaboratively providing a VoD streaming
service with all the recorded lessons of the last semes-
ter. For instance, imagine that one CS210 lesson has
been held in the morning in the engineering college
and stored in the college VoD server. In the after-
noon, Bob goes to the central library and would like
to access, from its Wi-Fi laptop, the recorded morn-
ing lesson he missed. Bob’s request produces the
streaming of the VoD flow from the engineering col-
lege VoD server to the network locality that currently
provides connectivity to Bob’s laptop, step 1 in the
figure. MUMOC not only enables Bob to rapidly find
the VoD flow with the suitable QoS characteristics,
but also exploits Bob’s request to operate, as a side
effect of VoD service provisioning, the prefix caching
of the lesson at the central library proxy cache.

Suppose that later in the afternoon Alice goes to
the engineering library with her Personal Digital As-
sistant (PDA) and asks for the same VoD because she
has not well understood some points of the morning
lesson. The MUMOC active middleware can browse
metadata describing the disseminated VoD prefixes
and the full VoD flows; MUMOC can discover a
node close to the client, i.e., the central library, that
holds a prefix of the requested VoD content, but with
a frame size that is too large for Alice’s limited PDA

3

display. In that case, MUMOC first commands the
prefix downscaling and streaming from the central
library proxy, and possibly activates the caching of
the downscaled prefix at the engineering library node
(step 2). Then, MUMOC downloads and downscales
the rest of the flow (suffix) from the engineering col-
lege and forwards it to Alice’s device (step 3).

S: server component
P: proxy cache component
C: client component

Central Library

P

C

Root

Colleges

Eng. College

S

Eng. Library

C

Bob

Alice

1.

1.

2., 3.

3.

S: server component
P: proxy cache component
C: client component

Central LibraryCentral LibraryCentral Library

P

C

RootRoot

CollegesCollegesColleges

Eng. CollegeEng. CollegeEng. College

S

Eng. LibraryEng. LibraryEng. Library

C

BobBob

AliceAlice

1.

1.

2., 3.

3.

Figure 1. MUMOC at work in the university

campus usage scenario

As exemplified by the usage scenario, MUMOC can
assist multimedia delivery in integrated wired-
wireless networks where wireless access points ex-
tends the accessibility of the traditional wired Internet
infrastructure. The core of the MUMOC distribution
network consists of a set of fixed hosts interconnected
by wired broadband LANs; wired hosts compose an
overlay network logically organized as a tree. Hosts
are structured in location abstractions defined within
the MUM framework: tree, leaves, and paths [6]. Cli-
ent terminals, with possibly differentiated (and lim-
ited) local resources, access the core overlay either
via wired or wireless connectivity, and can only play
the role of leaves in the VoD distribution tree.

MUMOC aims at reducing server-proxy transmis-
sion costs (primarily bandwidth consumption and
client-perceived delay for VoD startup) not only via
prefix caching in the client vicinity, as sketched
above in the example, but also via an original batch-
ing solution. Traditional batching techniques are
server-side and batch consecutive requests received
within a specified time interval [12]. MUMOC, in-
stead, employs a proxy-based batching technique that
takes advantage of cached VoD prefixes at proxy
nodes. In the following, we will indicate this tech-
nique as Suffix Batching (SBatch). [13] proposes a
similar solution based on SBatch and proxies; it also
shares with MUMOC the assumption that, in a gen-
eral Internet service provisioning scenario, service

paths are usually only unicast-enabled, in contrast
with many other batching techniques that require the
ubiquitous availability of multicast support [12].

SBatch activates when a proxy node receives a
request for a prefix stored locally and, before the pre-
fix streaming to that client ends, it receives requests
from other clients located in the same locality. By
referring to the university usage scenario, suppose
that a first request for the CS210 lesson is received by
the central library node. In case of cache hit, the pre-
fix caching node in the client locality immediately
starts streaming the VoD prefix to the client, and
properly schedules suffix download from the server to
avoid client-side visualization discontinuity when the
prefix terminates. For successive requests of the same
VoD flow from clients in the same locality, SBatch
suggests providing those clients immediately with the
locally cached prefix and anticipating the suffix
transmission to them (on a separate channel) as soon
as the suffix starts to be received at the proxy node.
Let us rapidly note that this approach focuses on re-
ducing transmission costs on the server-proxy path,
by assuming that local proxy-client transmission costs
are significantly lower, as it is in wired-wireless inte-
grated networks as the one of the campus-wide
streaming scenario. However, the SBatch solution
proposed in [13] requires large storage capacity at
client devices to buffer suffixes and is unsuitable for
wired-wireless deployment environments. Section 4.2
details the original extensions that MUMOC proposes
to the traditional SBatch strategy.

Finally, MUMOC implements a distributed and
replicated VoD metadata repository both to provide
high metadata availability and to reduce the client-
perceived delay for the startup of the requested VoD
flow. In fact, VoD metadata are crucial in the MU-
MOC middleware: for instance, anytime a client re-
quires a multimedia presentation, MUMOC looks for
the corresponding metadata in the distributed reposi-
tory to determine where the VoD flow is available
and with which QoS characteristics; VoD metadata
are also exploited to guide service adaptation and to
support session continuity [6, 7]. Given the frequent
usage of VoD metadata in MUMOC operations, our
middleware decides to perform metadata caching
potentially at any wired node of the overlay infra-
structure and to maintain a high replication degree for
metadata of frequently requested VoD flows, as better
explained in Section 4.2.

4. MUMOC Design and Implementation

This section first presents the architecture of the
MUMOC active middleware and, then, describes its

4

primary design and implementation choices. Addi-
tional implementation details and the code of the
MUMOC prototype are available at http://lia.
deis.unibo.it/Research/MUM/

4.1. The MUMOC Architecture

The MUMOC middleware is organized in two
main modules, local prefix cache and metadata
browser, organized in two layers (mechanisms and
facilities), as depicted in Figure 2.

Given a multimedia title, description, and possibly
hints about the desired VoD quality, the Metadata
Browser (MB) module returns the full metadata about
the available multimedia presentations that match the
searching criteria. The module offers functions for
metadata querying, inserting, and deleting. Any MB
component locally hosts a partial replica of XML-
based metadata for the available VoD contents (see
Section 4.4) and can coordinate with other distributed
MB browser components to retrieve the needed VoD
description. In particular, local MUMOC metadata
repositories extend MUM repositories with new func-
tions to store metadata according to standard, open,
and extensible formats [6].

The local prefix cache module maintains prefixes
at intermediate nodes along the client-server paths. At
the mechanisms layer, the module consists of two
different components devoted to the caching of VoD
prefixes and to the SBatch enforcement.

Let us rapidly observe that MUMOC modules are
implemented in terms of MAs and this implementa-
tion permits to achieve extreme flexibility and exten-
sibility. For instance, as better detailed in the follow-
ing section, MUMOC extends the base SBatch strat-
egy to support also client devices with limited mem-
ory capabilities (insufficient for suffix buffering) by
dynamically interposing an MA between the client
and its prefix caching proxy; that MA, called SBatch
Shadow Proxy (SBSP), acts over the fixed network
on behalf of the limited client device and performs
the needed suffix buffering in the client vicinity.

4.2. Content Cache

The content cache module offers functions for the
online VoD prefix download, enforces VoD prefix
replacement strategies, and implements SBatch and
the different original extensions to it proposed in
MUMOC. The caching-enabled proxy is the content
cache core. MUMOC dynamically deploys it; there is
one caching-enabled proxy for each served VoD flow
to achieve per-flow adaptation and tailoring. The
caching-enabled proxy exploits three main compo-
nents, as shown in Figure 2: cache manager, cache

writer, and transmission scheduler. In addition, the
Proxy Agent, which is a middleware component part
of the MUM architecture [6], realizes the necessary
signaling between client, proxy, and server, e.g., dur-
ing SBatch execution it sends to the caching-enabled
proxy the endpoint of the communication channel
used by the served client to receive the suffix.

Cache Manager

Cache
Writer

Transmission
Scheduler

Caching Enabled
Proxy

Prefix
Store

Proxy Agent

Signaling Path

Stream Path

Pr1

Pr2

Pr3 Prefix
List

Cache Manager

Cache
Writer

Transmission
Scheduler

Caching Enabled
Proxy

Prefix
Store
Prefix
Store

Proxy Agent

Signaling Path

Stream Path

Signaling Path

Stream Path

Pr1

Pr2

Pr3

Pr1

Pr2

Pr3 Prefix
List

Figure 2. The architecture of the MUMOC

content cache

The cache manager offers its APIs to the caching-
enabled proxy. In particular, apart from methods for
cache writer access, the cache manager exposes call-
backs to notify the caching-enabled proxy of relevant
events, such as the arrival of the suffix flow at the
proxy. The transmission scheduler handles requests
and schedules both server-proxy and proxy-client
transmissions. The cache writer intercepts incoming
VoD flows and saves them to the prefix store in the
local file system. Let us note that MUMOC intercepts
the VoD flow transmitted from the server to the client
and does not require any additional transmission.

As demonstrated from both analytical and experi-
mental results, prefix caching, especially when used
in conjunction with reactive transmission schemes,
reduces client perceived startup delay and bandwidth
occupation [14]. Prefix length does not significantly
influence the reduction of transmission costs [13].
Therefore, MUMOC chooses to adopt a fixed prefix
length of 10 seconds, while the minimum cache slot
at caching-enabled proxies is of 3 seconds. In fact,
previous experiments accomplished within the MUM
project have demonstrated that an interval of 3 sec-
onds is sufficient to configure proxy-server service
path within most common application scenarios [6].
About cache replacement, MUMOC implements the
Proportional Priority strategy, a greedy algorithm
assigning to each prefix a number of cache slots pro-
portional to the product of the VoD size and its popu-
larity. This strategy achieves sub-optimal results, but

5

requires very simple processing based on a very lim-
ited set of information [13].

SBatch requires client devices to open two com-
munication channels with the proxy: one is used to
get the prefix, while the other pre-fetches the suffix
flow and buffers it locally at the client node. When
the prefix visualization has ended, the client goes on
with suffix download and starts employing the buff-
ered VoD data to continue the multimedia visualiza-
tion without interruptions. MUMOC proposes and
implements a significant original extension to the
above technique in order to support client devices
with limited storage capabilities, as introduced by the
example at the end of Section 4.1. In the case that the
VoD flow request can be served by employing
SBatch, MUMOC first deploys and activates the
SBSP agent on a wired node in the network locality
where the client is currently connected; then, MU-
MOC builds the extended service flow pipeline in-
cluding, in this case, the server, the proxy, the SBSP
agent, and the client; finally, it commands to start the
prefix streaming. Then, when the suffix starts to be
received at the proxy, the suffix is also forwarded to
SBSP in charge of its buffering; before the end of the
prefix transmission to the client, SBSP merges prefix
and suffix in order to avoid perceivable interruptions
of the VoD flow at the client. Note that this original
extension to SBatch does not require client buffering
at all and that the client device requires only one
transmission channel towards SBSP.

Finally, let us observe that, when in ubiquitous
computing middleware-based VoD transformations
are needed along the client-server path, e.g., to dy-
namically downscale a VoD flow to fit the specific
hardware/software characteristics of the served client
terminal, it would be desirable to cache a prefix of the
adapted VoD flow to allow fast playback startup in
the case of new requests from similar client terminals.
MUMOC recognizes such opportunity and is capable
of locally caching also adapted prefixes, by exploiting
the on-the-fly VoD transcoding functionality pro-
vided by MUM [6]. In addition, in that way MUMOC
can take advantage of the cached adapted prefix to
begin suffix adaptation in advance, thus smoothing
the issues due to long service path configuration and
complex VoD transcoding.

4.3. Metadata Browser

The distributed MUMOC Metadata Browser
(MB) exploits the node organization in location ab-
stractions. One MB component runs on each tree
node and may communicate with other MBs on par-
ent and children nodes, as depicted in Figure 3. Each

node maintains metadata for all the VoD presenta-
tions stored in its sub-tree. For instance, metadata
stored at A1 include all metadata replicated at nodes
from B1 to Bn. As a consequence, the root node
caches metadata for all the presentations stored in the
system. Let us observe that this does not generate an
excessive load for the root node because VoD meta-
data have very limited size, especially if compared
with VoD prefixes. For instance, the size of a 10-
second prefix of an MPEG4 VoD flow, frame size
350x240 and frame rate 14 frames/second, is about
800kB, while the associated metadata does not ex-
ceed 2kB.

Client B1.1

MBC

Node Root

Node A1 Node Am

Node Bn

MB

MB

MB

MB

MB

Node B1

Client B1.2

MBC

Client B1.1

MBC

Client B1.1Client B1.1

MBC

Node RootNode RootNode Root

Node A1Node A1Node A1 Node AmNode AmNode Am

Node BnNode BnNode Bn

MB

MB

MB

MB

MB

Node B1Node B1Node B1

Client B1.2

MBC

Client B1.2Client B1.2

MBC

Figure 3. The MUMOC Metadata Browser

In addition, MUMOC stores the root node metadata
by exploiting a Lightweight Directory Access Proto-
col (LDAP) service, which may be deployed over
different distributed nodes in case of large number of
available VoD flows and consequent large size of the
corresponding metadata. MUMOC clients, instead,
exploit a lightweight client, called Metadata Browser
Client (MBC), simply to access disseminated VoD
metadata, with no possibility of locally hosting a
metadata repository, in order to minimize the utiliza-
tion of usually limited client storage.

A MUMOC client looking for a specific VoD title
initiates a metadata query. If the VoD title is not pre-
sent at the metadata repository on the wired node
where the client is currently attached, the query is
propagated recursively up in the MUMOC tree until
one MB component can respond. Thus, both network
traffic and response time are reduced in case of meta-
data cache hit, and that contributes to accelerate play-
back startup.

When a VoD prefix elimination occurs, all corre-
sponding VoD metadata must be discarded over the
MB distributed implementation. The removal proto-
col proceeds as follows: first, VoD metadata are dis-
carded from the node where the VoD prefix was
stored; then, the delete request is forwarded up to the

6

root. In the case of insertion of new VoD metadata,
MUMOC immediately propagates the metadata from
the node where the VoD flow has been added to the
LDAP-enabled root node. This increases VoD meta-
data availability, by making the new metadata rapidly
visible in all the deployment environment.

In addition, MB offers functions to evaluate the
convenience of caching a specified VoD prefix at one
node. In particular, the browser controls if another
VoD prefix with the same characteristics is already
present in any proxy cache node reachable within n
hops. For instance, if a request for a specified VoD
prefix occurs at node B1 and n=1, the browser checks
whether the associated prefix is already stored at
nodes B1 and A1. Only if there is no already cached
prefix, the VoD prefix is replicated and saved at B1.
The VoD metadata in the MB distributed repository
are represented according to a standard and interop-
erable format, which is illustrated in the next section.

4.4. Metadata Implementation

The high heterogeneity of multimedia formats,
transport protocols, and storage solutions motivates
the definition and adoption of standards that can de-
scribe multimedia contents independently of any spe-
cific technology and commercial product. For sake of
openness and interoperability, MUMOC combines
MPEG7 by Multimedia Picture Experts Group
(MPEG) [15] and Dublin Core (DC) [16] representa-
tion formats to describe the VoD flows available in
the distribution network. On the one hand, the DC
adoption permits to be largely interoperable with a
large set of Web library resources and to maintain
backward compatibility with solutions we have de-
veloped in the past for museum-oriented information
retrieval [7]. On the other hand, since DC is not suffi-
cient to describe complex multimedia content, MU-
MOC conjugates it with the more recent multimedia-
specific MPEG7 standard, similarly to some first re-
search efforts in the area [17, 21].

DC is a widely adopted XML-based standard to
maintain library and museum bibliographic metadata.
Being DC developed when networked resources were
mainly texts or still images, it does not support the
representation of multimedia-specific metadata to
describe possibly complex, articulated, and composed
multimedia contents. For instance, DC does not dis-
tinguish still images from moving ones, and uses poor
expressive Internet Media Types (MIME) to describe
multimedia object formats. MPEG7, instead, provides
a rich and complete set of items to describe audiovis-
ual data. For instance, it defines several types of mul-
timedia content (image, video, audio, audiovisual,

and multimedia) and, for each type, supports addi-
tional descriptions of the exploited data format, such
as medium type, file format, and type of coding. An
exhaustive description of the MUMOC DC-extended
schema is available at http://lia.deis.unibo.
it/Research/MUM/

The adoption of open and interoperable metadata
in MUMOC has a twofold objective: first, it simpli-
fies the dynamic selection of the most suitable one
among different versions of the same VoD content
with different QoS levels, depending on user/terminal
characteristics specified in terms of other standard
profile metadata [18]; second, it facilitates the inte-
gration with legacy VoD systems and services, thus
potentially accelerating the acceptance and the diffu-
sion of the MUMOC middleware proposal.

5. Experimental Results

The section presents experimental results about
MUMOC performance while executing a simple VoD
lesson streaming service, built on top of the MUMOC
caching middleware, in the actual deployment envi-
ronment of our network lab. We have considered a
usage scenario similar to the one presented in Section
3, where many students are willing to access VoD
flows of registered lessons. Each participating node
hosting the MUMOC middleware may publish VoD
contents for downloading simply by registering them
at the MUMOC MB. Client nodes only host a simple
MUMOC-based application client that can look for
the requested flow, command its delivery, and starts
playing it as soon as possible during the download.

The used testbed consists of a set of Sun Blade
2000 workstations equipped with a 900 MHz proces-
sor and 1024MB RAM and connected by a 100 Mbps
Ethernet LAN. The workstations are equipped with
the SunOS 5.9 operating system, the Java Virtual
Machine (JVM) version 1.4.2_03-b02, and exploit
the Java Media Framework (JMF) Performance Pack
for Solaris version 2.1.1e as the multimedia streaming
library. Heterogeneous clients with more limited
hardware/software capabilities are represented by
Asus laptops exploiting IEEE 802.11b connectivity
and equipped with Windows 2000, the same JVM
version, and the JMF Performance Pack for Win-
dows. The experiments presented in the following
have mainly intended to measure user-perceived de-
lays in different situations, in order to evaluate the
feasibility of the approach and to quantitatively
measure the benefits/overhead due to the MUMOC
middleware and, in particular, to its exploitation of
the JMF multimedia streaming library. All reported
results are average values over a set of 100 runs.

7

In the first experiment, we have disabled all MU-
MOC caching functions to evaluate the configuration
and activation time of our middleware components
for metadata querying, VoD flow retrieval, and VoD
streaming. The average value for the time interval
between the metadata-based VoD flow request and
the visualization start at the client has shown to be
824 ms in the case of nodes organized in a 3-level
tree. This interval has demonstrated to be mainly
composed by: a) video frame activation at the client =
179 ms, b) metadata query = 90 ms, c) RTP session
configuration (including server endpoint signaling
and RTP client creation) = 341 ms, d) player initiali-
zation = 121 ms, and e) rendering initialization = 72
ms. Moreover, with MUMOC disabled, that time in-
terval has shown to linearly grow with the client-
server distance (N in Table 1), with additional 179 ms
for each traversed node in the MUMOC overlay net-
work. The second experiment had the objectives of
evaluating the MUMOC content cache activation time
and the startup delay increase in the case of activated
cache and cache miss. In this case, the MUMOC sig-
naling and the RTP client/server activation has shown
to be of 339 ms, while the CacheWriter creation re-
quires 36 ms. In the third experiment, we have acti-
vated the distributed caching of MUMOC metadata,
by experiencing a startup time increase of about 100
ms per hop in the distance from the requesting client
node to the MB component that maintains matching
metadata (M in the table). When MUMOC MB
works, the fixed threshold measured for service path
activation in the first experiment decreases to 780 ms,
because part of that time was due to metadata brows-
ing. Finally, we considered a fourth case with users
exploiting access terminals with limited capabilities.
The only specific performance figure of this case is
the SBSP activation time, which has demonstrated to
be 339 ms, 329 ms of which spent for additional
MUMOC signaling and RTP client/server activation
due to the added traversed middleware component.

Table 1 sums up the average times registered for
user-perceived startup delays in the different situa-
tions. Most of the delay is directly related to the low
performance of JMF libraries to create and initialize
Java-based processor/player objects and to establish
RTP sessions. On the contrary, the overhead intro-
duced by the distributed coordination of the MUMOC
middleware itself has demonstrated to be limited and
acceptable in all the examined cases. The experimen-
tal results also confirm the feasibility of the SBSP
interposition proposal: its added delay is largely com-
pensated by the possibility to exploit SBatch also
when serving access terminals with limited buffering
capabilities, thus reducing bandwidth consumption.

Table 1. Average times for user-perceived
startup delays

Infrastructure
Configuration

Required time (msec)

Service path activation 179 x N + 824

Cache-miss 385

Metadata browser on and
service path activation

100 x M + 179 x N + 780

SBSP activation 339

Metadata browser on and
VoD lesson cached at one-

hop reachable node
100 + 179 + 780 = 1084

Most important, as showed in the last row of Table 1,
prefix cache hits significantly reduce the playback
delays perceived by end users. In addition, also in the
case of cache miss, the overhead introduced by the
MUMOC prefix caching middleware is limited.
Moreover, the MUMOC guideline of pervasively
distributing network/processing workload at different
localities in the distribution tree permits to limit the
overhead and to achieve good scalability. In sum-
mary, first experimental results about the MUMOC
performance have shown to be encouraging: the
MUMOC active middleware imposes user-perceived
delay of less than 3s in most common application
scenarios (for usual N and M values), thus ensuring
performance results at all compatible with the con-
straints of soft real-time VoD distribution at the usual
Internet transmission rates.

6. Related Work

The distribution of multimedia content over the
Internet significantly changes the usual Web caching
scenario. Peer-to-peer file sharing and content net-
works, together with high bandwidth availability for
end users, are imposing workloads never experienced
before by the Internet infrastructure [4]. The exploita-
tion of distributed caching has already shown its po-
tential in improving service performance and client-
experienced response times; several research activi-
ties have focused on proposing interesting and effec-
tive solutions for caching replacement, positioning,
and distributed cache coordination [13, 19].

About the specific aspect of distributing replicas
of VoD flow parts on a set of nodes, a few solutions
have started to investigate the usage of VoD prefixes
[13, 14] and of collaborative caching of VoD seg-
ments [20]. In particular, [14] proposes a caching
solution at the frame granularity level, by showing the
effectiveness of prefix exploitation. Recent work
from the same research group has investigated how to
achieve optimal prefix positioning in a server-based

8

batching architecture [13]. The collaborative caching
solution presented in [20], instead, exploits a peer-to-
peer organization to cache video segments over dif-
ferent peers. The MUMOC approach is similar to
[20] from the points of view of cache distribution and
application-level overlaying. However, MUMOC
aims at disseminating replicas of VoD prefixes and
metadata not only to minimize overall network traffic
but also to reduce VoD starting delay and to improve
scalability via decentralized local access.

Finally, nowadays there is a growing research and
industrial interest in enhancing expressiveness and
interoperability of multimedia content descriptions
[21]. MUMOC exploits the results obtained in these
researches by integrating DC and MPEG7 to provide
an open extensible format for VoD metadata. To the
best of our knowledge, the MUMOC middleware is
original in implementing the caching of both VoD
prefixes and metadata, and in integrating with an ac-
tive overlay infrastructure for mobile access to VoD
flows adapted on-the-fly.

7. Conclusions and Future Work

MUMOC realizes, in an open and interoperable
way, an overlay network for distributed caching, also
capable of reducing client-experienced response time
via prefix-based techniques. The experimental
evaluation of the MUMOC prototype has shown that,
notwithstanding the flexible, MA-based, and applica-
tion-level approach, the introduced overhead is
widely compatible with the usual requirements of
Internet VoD distribution.

These first encouraging results are stimulating fur-
ther investigation and the extension of our current
MUMOC prototype. In particular, we are working on
fully supporting user roaming mobility, i.e., to guar-
antee that mobile users with Wi-Fi access terminals
continue to receive the served VoD flow without no-
ticeable interruptions even during the handoff be-
tween IEEE 802.11 cells. The primary idea is to ex-
ploit, on the one hand, original lightweight techniques
to predict the next cells visited by mobile users and,
on the other hand, proactive anticipated buffering in
the predicted localities.

Acknowledgements
This work is partially supported by the Italian MIUR
within the FIRB WEB-MINDS Project and by the
Italian CNR within the Strategic IS-MANET Project.

References
[1] www.gnutella.org

[2] www.kazaa.org
[3] A. Rowstron, P. Druschel, “Pastry: Scalable, distrib-

uted object location and routing for large-scale peer-
to-peer systems”. ACM Conference on Distributed
Systems Platforms, 2001.

[4] S. Saroiu et alii, “An Analysis of Internet Content
Delivery Systems”, USENIX Operating Systems De-
sign and Implementation, 2002.

[5] H. J. Wang et alii, “ICEBERG: An Internet-core Net-
work Architecture for Integrated Communications”,
IEEE Personal Communications, Vol. 7, No. 4, 2000.

[6] P. Bellavista, A. Corradi, L. Foschini, “MUM: a Mid-
dleware for the Provisioning of Continuous Services
to Mobile Users”, IEEE International Symposium on
Computers and Communications, 2004.

[7] P. Bellavista, A. Corradi, C. Stefanelli, “The Ubiqui-
tous Provisioning of Internet Services to Portable De-
vices”, IEEE Pervasive Computing, Vol. 1, No. 3,
2002.

[8] Y. Bai, M.R. Ito, “QoS Control for Video and Audio
Communication in Conventional and Active Net-
works: Approaches and Comparison”, IEEE Commu-
nication Surveys, Vol.6, No.1, 2004.

[9] B. Zenel, D. Duchamp, “General Purpose Proxies:
Solved and Unsolved Problems”, IEEE Hot Topics in
Operating Systems, 1997.

[10] P. Bellavista, A. Corradi, C. Stefanelli, “Mobile Agent
Middleware for Mobile Computing”, IEEE Computer,
Vol. 34, No. 3, 2001.

[11] A. Fuggetta, G.P. Picco, G. Vigna, “Understanding
Code Mobility”, IEEE Transactions on Software En-
gineering, Vol. 24, No. 5, 1998.

[12] H. Ma, K. G. Shin, “Multicast Video-on-Demand
services”, ACM Computer Communication Review ,
Vol. 32, No. 1, 2002.

[13] W. Bing et alii, “Optimal proxy cache allocation for
efficient streaming media distribution”, IEEE INFO-
COM, 2002.

[14] S. Sen, J. Rexford, D. Towsley, “Proxy prefix caching
for multimedia streams”, IEEE INFOCOM, 1999.

[15] http://archive.dstc.edu.au/mpeg7-ddl/
[16] http://dublincore.org/
[17] http://www.acmi.net.au/dctypeproposal/index.html
[18] http://www.w3.org/Mobile/CCPP
[19] W. Lau, M. Kumar, S. Venkatesh, “A Generalised

Cost-aware Caching Scheme for Caching Continuous
Media Objects in Best-effort Network Environments”,
IEEE International Workshop on Distributed Com-
puting, 2002.

[20] W.J. Jeon, K. Nahrstedt, “QoS-aware middleware
support for collaborative multimedia streaming and
caching service”, Elsevier Microprocessors and Mi-
crosystems, Vol. 27, No. 2, 2003.

[21] J. Hunter, “Enhancing the Semantic Interoperability of
Multimedia through a Core Ontology”, IEEE Transac-
tions on Circuits and Systems for Video Technology,
Vol. 13, No. 1, 2003.

