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Abstract 

 

Advances in networking and content delivery sys-
tems are enabling new challenging provisioning sce-
narios where a growing number of users access 
Video on Demand (VoD), possibly while moving 
among different points of attachment to the Internet 
and using different access terminals. This calls for 
novel middlewares capable of supporting personal-
ized VoD access by dynamically activating interme-
diate nodes between VoD servers and clients. The 
paper proposes MUMOC, a dynamic and flexible 
overlay infrastructure for the distributed caching of 
both VoD prefixes and VoD metadata. To achieve 
openness and easy interoperability with legacy VoD 
services, MUMOC adopts standard XML-based for-
mats, based on both Dublin Core and MPEG7, to 
represent VoD metadata. First experimental results 
show that MUMOC significantly reduces bandwidth 
utilization and user perceived delays. In addition, 
notwithstanding the dynamic building of the overlay 
network and the application-level approach, the in-
troduced overhead is compatible with the strict re-
quirements imposed by multimedia distribution over 
the best-effort Internet.  
 

1. Introduction 

The provisioning of multimedia data over the best-
effort Internet is still a very challenging service sce-
nario. Peer-to-peer file sharing applications such as 
Gnutella [1], Kazaa [2] and Pastry [3] have addressed 
the issue of storing large amounts of (mainly multi-
media) data in a largely decentralized way, also by 
trying to provide online content preview facilities for 
downloaded data, e.g., Kazaa. These solutions have 
further widened the interest in multimedia data shar-
ing over the Internet, up to the current scenarios 
where these applications produce most Internet traffic 
[4]. The problem is significantly more complex for 
Video on Demand (VoD) streaming applications over 
the best-effort Internet, where, for instance, users 
demand for low playback delays and for the mainte-

nance of the negotiated quality during provisioning, 
notwithstanding the Internet latency and loss rates.  

In addition, the diffusion of networked computing 
environments at home/office/open public spaces and 
the proliferation of wireless-enabled portable devices 
identify novel provisioning scenarios where a huge 
number of users are willing to have ubiquitous and 
continuous access to streaming services. Users de-
mand the possibility not only to move among differ-
ent Internet attachment points but also to change their 
access terminals, while having the service adapted to 
the runtime characteristics of their access environ-
ment and while preserving their session state. 

All above issues motivate novel and highly flexi-
ble middleware-level approaches to support service 
provisioning [5]. Dynamic distributed infrastructures 
can support multimedia content dissemination and 
adaptation efficiently, with an active participation not 
only of service end-points but also of some interme-
diate nodes along the path between clients and serv-
ers. In other words, middleware should support active 
services, i.e., services resulting from the cooperation 
of interworking middleware/service components dis-
tributed along service paths, between clients and 
servers, and traversed by service flows [6]. In particu-
lar, active services can improve VoD streaming over 
the best-effort Internet, to primarily support prefix 
caching, i.e., the online caching of the initial part of 
VoD flows at intermediate traversed nodes, to allow 
fast playback startup, i.e., the reduction of user-
perceived VoD startup delays in the case of prefix 
cache hit in the active infrastructure, and to achieve 
interoperability, by providing open and standard rep-
resentations of the available VoD flows so to simplify 
the interworking with legacy VoD systems. 

The paper presents MUM Open Caching (MU-
MOC), an active infrastructure for distributed caching 
that significantly extends our Mobile agent-based 
Ubiquitous multimedia Middleware (MUM) with the 
possibility of caching multimedia prefixes and meta-
data descriptions (for both VoD prefixes and full 
VoD flows) in a highly interoperable way [6].  

MUMOC automatically deploys its caching mid-
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dleware components only where needed during provi-
sioning, depending on client location. The caching of 
whole VoD flows would rapidly exhaust the storage 
capacity of proxy nodes; therefore, multimedia caches 
usually store only portions of VoD streams at proxies. 
Similarly, the primary idea in MUMOC is to support 
the distributed replication and storage of the first few 
seconds (prefix) of popular VoD contents at interme-
diate nodes along client-server paths. In particular, 
when a client requires a VoD flow, MUMOC routes 
the request to the server, intercepts the incoming VoD 
flow, and caches its prefix on a proxy node in the 
locality currently providing network connectivity to 
that client. In addition, MUMOC caches the metadata 
describing the available VoD contents: a distributed 
cache disseminates VoD metadata with the goal of 
reducing the response time for VoD retrieval. MU-
MOC metadata are represented in an interoperable 
XML-based format that combines the Dublin Core 
standard and the MPEG7 one, to increase the open-
ness of the MUMOC solution and to simplify its inte-
gration with legacy VoD services. 

 

2. MUM Active Middleware Overview  

MUMOC provides open caching of VoD prefixes 
and metadata, and is integrated with the MUM active 
middleware for dynamic Quality of Service (QoS) 
tailoring and adaptation of multimedia flows. This 
section gives a brief overview of MUM design guide-
lines and functions to provide the needed background 
for fully understanding the MUMOC proposal. A 
more detailed description of MUM is out of the scope 
of the paper and can be found in [6]. 

The best-effort Internet lacks the infrastructure 
support for the effective delivery of information 
streams and much ongoing research is struggling to 
solve the problem [8]. Ubiquitous computing further 
complicates that scenario: possibly mobile users are 
willing to access their services ubiquitously, to switch 
their working sessions at runtime among terminals 
with very different capabilities, and to maintain their 
sessions open even while they are temporarily dis-
connected. All these issues call for a middleware-
level support capable of dynamically extending the 
traditional Internet infrastructure, where and when 
needed depending on the client points of attachment, 
and has motivated MUM design and implementation. 

A primary design guideline in MUM is to exploit 
proxy middleware components that can dynamically 
deploy along the client-server path, thus activating 
some intermediate nodes traversed by VoD flows 
(active middleware). MUM proxies participate in 
service delivery by playing the dual role of client and 

server, by passing in a pipeline the service data re-
ceived from the previous middleware component to 
the next one along the service path. The interposition 
of proxies along distribution paths starts to be recog-
nized as an effective solution for ubiquitous service 
provisioning over the next generation Internet [7, 9]. 
The MUMOC solution for VoD caching permits to 
maintain VoD prefixes and metadata locally to one 
activated intermediate node, and integrates with the 
dynamically deployed infrastructure of MUM prox-
ies, as better described in the following.  

The MUM middleware is implemented on top of 
our SOMA Mobile Agent (MA) platform [10]. The 
MA-based implementation permits to move both 
middleware components and session state at provi-
sion time, depending on the location of client requests 
of VoD flows. The MA programming paradigm is 
recognized as an effective solution for middleware 
supports in mobility-enabled provisioning environ-
ments because of the MA properties of mobility, 
asynchronicity, and autonomy [7, 11]. 

 

3. MUMOC Solution for Open Caching 

Let us introduce the functions of the MUMOC 
middleware by sketching an actual VoD streaming 
usage scenario, depicted in Figure 1. Networked col-
leges and libraries in a university campus are inter-
ested in collaboratively providing a VoD streaming 
service with all the recorded lessons of the last semes-
ter. For instance, imagine that one CS210 lesson has 
been held in the morning in the engineering college 
and stored in the college VoD server. In the after-
noon, Bob goes to the central library and would like 
to access, from its Wi-Fi laptop, the recorded morn-
ing lesson he missed. Bob’s request produces the 
streaming of the VoD flow from the engineering col-
lege VoD server to the network locality that currently 
provides connectivity to Bob’s laptop, step 1 in the 
figure. MUMOC not only enables Bob to rapidly find 
the VoD flow with the suitable QoS characteristics, 
but also exploits Bob’s request to operate, as a side 
effect of VoD service provisioning, the prefix caching 
of the lesson at the central library proxy cache.  

Suppose that later in the afternoon Alice goes to 
the engineering library with her Personal Digital As-
sistant (PDA) and asks for the same VoD because she 
has not well understood some points of the morning 
lesson. The MUMOC active middleware can browse 
metadata describing the disseminated VoD prefixes 
and the full VoD flows; MUMOC can discover a 
node close to the client, i.e., the central library, that 
holds a prefix of the requested VoD content, but with 
a frame size that is too large for Alice’s limited PDA 
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display. In that case, MUMOC first commands the 
prefix downscaling and streaming from the central 
library proxy, and possibly activates the caching of 
the downscaled prefix at the engineering library node 
(step 2). Then, MUMOC downloads and downscales 
the rest of the flow (suffix) from the engineering col-
lege and forwards it to Alice’s device (step 3). 
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Figure 1. MUMOC at work in the university 

campus usage scenario 
 

As exemplified by the usage scenario, MUMOC can 
assist multimedia delivery in integrated wired-
wireless networks where wireless access points ex-
tends the accessibility of the traditional wired Internet 
infrastructure. The core of the MUMOC distribution 
network consists of a set of fixed hosts interconnected 
by wired broadband LANs; wired hosts compose an 
overlay network logically organized as a tree. Hosts 
are structured in location abstractions defined within 
the MUM framework: tree, leaves, and paths [6]. Cli-
ent terminals, with possibly differentiated (and lim-
ited) local resources, access the core overlay either 
via wired or wireless connectivity, and can only play 
the role of leaves in the VoD distribution tree. 

MUMOC aims at reducing server-proxy transmis-
sion costs (primarily bandwidth consumption and 
client-perceived delay for VoD startup) not only via 
prefix caching in the client vicinity, as sketched 
above in the example, but also via an original batch-
ing solution. Traditional batching techniques are 
server-side and batch consecutive requests received 
within a specified time interval [12]. MUMOC, in-
stead, employs a proxy-based batching technique that 
takes advantage of cached VoD prefixes at proxy 
nodes. In the following, we will indicate this tech-
nique as Suffix Batching (SBatch). [13] proposes a 
similar solution based on SBatch and proxies; it also 
shares with MUMOC the assumption that, in a gen-
eral Internet service provisioning scenario, service 

paths are usually only unicast-enabled, in contrast 
with many other batching techniques that require the 
ubiquitous availability of multicast support [12].  

SBatch activates when a proxy node receives a 
request for a prefix stored locally and, before the pre-
fix streaming to that client ends, it receives requests 
from other clients located in the same locality. By 
referring to the university usage scenario, suppose 
that a first request for the CS210 lesson is received by 
the central library node. In case of cache hit, the pre-
fix caching node in the client locality immediately 
starts streaming the VoD prefix to the client, and 
properly schedules suffix download from the server to 
avoid client-side visualization discontinuity when the 
prefix terminates. For successive requests of the same 
VoD flow from clients in the same locality, SBatch 
suggests providing those clients immediately with the 
locally cached prefix and anticipating the suffix 
transmission to them (on a separate channel) as soon 
as the suffix starts to be received at the proxy node. 
Let us rapidly note that this approach focuses on re-
ducing transmission costs on the server-proxy path, 
by assuming that local proxy-client transmission costs 
are significantly lower, as it is in wired-wireless inte-
grated networks as the one of the campus-wide 
streaming scenario. However, the SBatch solution 
proposed in [13] requires large storage capacity at 
client devices to buffer suffixes and is unsuitable for 
wired-wireless deployment environments. Section 4.2 
details the original extensions that MUMOC proposes 
to the traditional SBatch strategy. 

Finally, MUMOC implements a distributed and 
replicated VoD metadata repository both to provide 
high metadata availability and to reduce the client-
perceived delay for the startup of the requested VoD 
flow. In fact, VoD metadata are crucial in the MU-
MOC middleware: for instance, anytime a client re-
quires a multimedia presentation, MUMOC looks for 
the corresponding metadata in the distributed reposi-
tory to determine where the VoD flow is available 
and with which QoS characteristics; VoD metadata 
are also exploited to guide service adaptation and to 
support session continuity [6, 7]. Given the frequent 
usage of VoD metadata in MUMOC operations, our 
middleware decides to perform metadata caching 
potentially at any wired node of the overlay infra-
structure and to maintain a high replication degree for 
metadata of frequently requested VoD flows, as better 
explained in Section 4.2. 

 

4. MUMOC Design and Implementation 

This section first presents the architecture of the 
MUMOC active middleware and, then, describes its 
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primary design and implementation choices. Addi-
tional implementation details and the code of the 
MUMOC prototype are available at http://lia. 
deis.unibo.it/Research/MUM/ 

 
4.1. The MUMOC Architecture 

The MUMOC middleware is organized in two 
main modules, local prefix cache and metadata 
browser, organized in two layers (mechanisms and 
facilities), as depicted in Figure 2. 

Given a multimedia title, description, and possibly 
hints about the desired VoD quality, the Metadata 
Browser (MB) module returns the full metadata about 
the available multimedia presentations that match the 
searching criteria. The module offers functions for 
metadata querying, inserting, and deleting. Any MB 
component locally hosts a partial replica of XML-
based metadata for the available VoD contents (see 
Section 4.4) and can coordinate with other distributed 
MB browser components to retrieve the needed VoD 
description. In particular, local MUMOC metadata 
repositories extend MUM repositories with new func-
tions to store metadata according to standard, open, 
and extensible formats [6]. 

The local prefix cache module maintains prefixes 
at intermediate nodes along the client-server paths. At 
the mechanisms layer, the module consists of two 
different components devoted to the caching of VoD 
prefixes and to the SBatch enforcement.  

Let us rapidly observe that MUMOC modules are 
implemented in terms of MAs and this implementa-
tion permits to achieve extreme flexibility and exten-
sibility. For instance, as better detailed in the follow-
ing section, MUMOC extends the base SBatch strat-
egy to support also client devices with limited mem-
ory capabilities (insufficient for suffix buffering) by 
dynamically interposing an MA between the client 
and its prefix caching proxy; that MA, called SBatch 
Shadow Proxy (SBSP), acts over the fixed network 
on behalf of the limited client device and performs 
the needed suffix buffering in the client vicinity. 

 
4.2. Content Cache 

The content cache module offers functions for the 
online VoD prefix download, enforces VoD prefix 
replacement strategies, and implements SBatch and 
the different original extensions to it proposed in 
MUMOC. The caching-enabled proxy is the content 
cache core. MUMOC dynamically deploys it; there is 
one caching-enabled proxy for each served VoD flow 
to achieve per-flow adaptation and tailoring. The 
caching-enabled proxy exploits three main compo-
nents, as shown in Figure 2: cache manager, cache 

writer, and transmission scheduler. In addition, the 
Proxy Agent, which is a middleware component part 
of the MUM architecture [6], realizes the necessary 
signaling between client, proxy, and server, e.g., dur-
ing SBatch execution it sends to the caching-enabled 
proxy the endpoint of the communication channel 
used by the served client to receive the suffix. 
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Figure 2. The architecture of the MUMOC 

content cache 
 

The cache manager offers its APIs to the caching-
enabled proxy. In particular, apart from methods for 
cache writer access, the cache manager exposes call-
backs to notify the caching-enabled proxy of relevant 
events, such as the arrival of the suffix flow at the 
proxy. The transmission scheduler handles requests 
and schedules both server-proxy and proxy-client 
transmissions. The cache writer intercepts incoming 
VoD flows and saves them to the prefix store in the 
local file system. Let us note that MUMOC intercepts 
the VoD flow transmitted from the server to the client 
and does not require any additional transmission. 

As demonstrated from both analytical and experi-
mental results, prefix caching, especially when used 
in conjunction with reactive transmission schemes, 
reduces client perceived startup delay and bandwidth 
occupation [14]. Prefix length does not significantly 
influence the reduction of transmission costs [13]. 
Therefore, MUMOC chooses to adopt a fixed prefix 
length of 10 seconds, while the minimum cache slot 
at caching-enabled proxies is of 3 seconds. In fact, 
previous experiments accomplished within the MUM 
project have demonstrated that an interval of 3 sec-
onds is sufficient to configure proxy-server service 
path within most common application scenarios [6]. 
About cache replacement, MUMOC implements the 
Proportional Priority strategy, a greedy algorithm 
assigning to each prefix a number of cache slots pro-
portional to the product of the VoD size and its popu-
larity. This strategy achieves sub-optimal results, but 
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requires very simple processing based on a very lim-
ited set of information [13]. 

SBatch requires client devices to open two com-
munication channels with the proxy: one is used to 
get the prefix, while the other pre-fetches the suffix 
flow and buffers it locally at the client node. When 
the prefix visualization has ended, the client goes on 
with suffix download and starts employing the buff-
ered VoD data to continue the multimedia visualiza-
tion without interruptions. MUMOC proposes and 
implements a significant original extension to the 
above technique in order to support client devices 
with limited storage capabilities, as introduced by the 
example at the end of Section 4.1. In the case that the 
VoD flow request can be served by employing 
SBatch, MUMOC first deploys and activates the 
SBSP agent on a wired node in the network locality 
where the client is currently connected; then, MU-
MOC builds the extended service flow pipeline in-
cluding, in this case, the server, the proxy, the SBSP 
agent, and the client; finally, it commands to start the 
prefix streaming. Then, when the suffix starts to be 
received at the proxy, the suffix is also forwarded to 
SBSP in charge of its buffering; before the end of the 
prefix transmission to the client, SBSP merges prefix 
and suffix in order to avoid perceivable interruptions 
of the VoD flow at the client. Note that this original 
extension to SBatch does not require client buffering 
at all and that the client device requires only one 
transmission channel towards SBSP. 

Finally, let us observe that, when in ubiquitous 
computing middleware-based VoD transformations 
are needed along the client-server path, e.g., to dy-
namically downscale a VoD flow to fit the specific 
hardware/software characteristics of the served client 
terminal, it would be desirable to cache a prefix of the 
adapted VoD flow to allow fast playback startup in 
the case of new requests from similar client terminals. 
MUMOC recognizes such opportunity and is capable 
of locally caching also adapted prefixes, by exploiting 
the on-the-fly VoD transcoding functionality pro-
vided by MUM [6]. In addition, in that way MUMOC 
can take advantage of the cached adapted prefix to 
begin suffix adaptation in advance, thus smoothing 
the issues due to long service path configuration and 
complex VoD transcoding. 

 

4.3. Metadata Browser 

The distributed MUMOC Metadata Browser 
(MB) exploits the node organization in location ab-
stractions. One MB component runs on each tree 
node and may communicate with other MBs on par-
ent and children nodes, as depicted in Figure 3. Each 

node maintains metadata for all the VoD presenta-
tions stored in its sub-tree. For instance, metadata 
stored at A1 include all metadata replicated at nodes 
from B1 to Bn. As a consequence, the root node 
caches metadata for all the presentations stored in the 
system. Let us observe that this does not generate an 
excessive load for the root node because VoD meta-
data have very limited size, especially if compared 
with VoD prefixes. For instance, the size of a 10-
second prefix of an MPEG4 VoD flow, frame size 
350x240 and frame rate 14 frames/second, is about 
800kB, while the associated metadata does not ex-
ceed 2kB.  
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Figure 3. The MUMOC Metadata Browser 

 

In addition, MUMOC stores the root node metadata 
by exploiting a Lightweight Directory Access Proto-
col (LDAP) service, which may be deployed over 
different distributed nodes in case of large number of 
available VoD flows and consequent large size of the 
corresponding metadata. MUMOC clients, instead, 
exploit a lightweight client, called Metadata Browser 
Client (MBC), simply to access disseminated VoD 
metadata, with no possibility of locally hosting a 
metadata repository, in order to minimize the utiliza-
tion of usually limited client storage. 

A MUMOC client looking for a specific VoD title 
initiates a metadata query. If the VoD title is not pre-
sent at the metadata repository on the wired node 
where the client is currently attached, the query is 
propagated recursively up in the MUMOC tree until 
one MB component can respond. Thus, both network 
traffic and response time are reduced in case of meta-
data cache hit, and that contributes to accelerate play-
back startup.  

When a VoD prefix elimination occurs, all corre-
sponding VoD metadata must be discarded over the 
MB distributed implementation. The removal proto-
col proceeds as follows: first, VoD metadata are dis-
carded from the node where the VoD prefix was 
stored; then, the delete request is forwarded up to the 
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root. In the case of insertion of new VoD metadata, 
MUMOC immediately propagates the metadata from 
the node where the VoD flow has been added to the 
LDAP-enabled root node. This increases VoD meta-
data availability, by making the new metadata rapidly 
visible in all the deployment environment. 

In addition, MB offers functions to evaluate the 
convenience of caching a specified VoD prefix at one 
node. In particular, the browser controls if another 
VoD prefix with the same characteristics is already 
present in any proxy cache node reachable within n 
hops. For instance, if a request for a specified VoD 
prefix occurs at node B1 and n=1, the browser checks 
whether the associated prefix is already stored at 
nodes B1 and A1. Only if there is no already cached 
prefix, the VoD prefix is replicated and saved at B1. 
The VoD metadata in the MB distributed repository 
are represented according to a standard and interop-
erable format, which is illustrated in the next section. 

 
4.4. Metadata Implementation 

The high heterogeneity of multimedia formats, 
transport protocols, and storage solutions motivates 
the definition and adoption of standards that can de-
scribe multimedia contents independently of any spe-
cific technology and commercial product. For sake of 
openness and interoperability, MUMOC combines 
MPEG7 by Multimedia Picture Experts Group 
(MPEG) [15] and Dublin Core (DC) [16] representa-
tion formats to describe the VoD flows available in 
the distribution network. On the one hand, the DC 
adoption permits to be largely interoperable with a 
large set of Web library resources and to maintain 
backward compatibility with solutions we have de-
veloped in the past for museum-oriented information 
retrieval [7]. On the other hand, since DC is not suffi-
cient to describe complex multimedia content, MU-
MOC conjugates it with the more recent multimedia-
specific MPEG7 standard, similarly to some first re-
search efforts in the area [17, 21]. 

DC is a widely adopted XML-based standard to 
maintain library and museum bibliographic metadata. 
Being DC developed when networked resources were 
mainly texts or still images, it does not support the 
representation of multimedia-specific metadata to 
describe possibly complex, articulated, and composed 
multimedia contents. For instance, DC does not dis-
tinguish still images from moving ones, and uses poor 
expressive Internet Media Types (MIME) to describe 
multimedia object formats. MPEG7, instead, provides 
a rich and complete set of items to describe audiovis-
ual data. For instance, it defines several types of mul-
timedia content (image, video, audio, audiovisual, 

and multimedia) and, for each type, supports addi-
tional descriptions of the exploited data format, such 
as medium type, file format, and type of coding. An 
exhaustive description of the MUMOC DC-extended 
schema is available at http://lia.deis.unibo. 
it/Research/MUM/ 

The adoption of open and interoperable metadata 
in MUMOC has a twofold objective: first, it simpli-
fies the dynamic selection of the most suitable one 
among different versions of the same VoD content 
with different QoS levels, depending on user/terminal 
characteristics specified in terms of other standard 
profile metadata [18]; second, it facilitates the inte-
gration with legacy VoD systems and services, thus 
potentially accelerating the acceptance and the diffu-
sion of the MUMOC middleware proposal. 

 

5. Experimental Results  

The section presents experimental results about 
MUMOC performance while executing a simple VoD 
lesson streaming service, built on top of the MUMOC 
caching middleware, in the actual deployment envi-
ronment of our network lab. We have considered a 
usage scenario similar to the one presented in Section 
3, where many students are willing to access VoD 
flows of registered lessons. Each participating node 
hosting the MUMOC middleware may publish VoD 
contents for downloading simply by registering them 
at the MUMOC MB. Client nodes only host a simple 
MUMOC-based application client that can look for 
the requested flow, command its delivery, and starts 
playing it as soon as possible during the download. 

The used testbed consists of a set of Sun Blade 
2000 workstations equipped with a 900 MHz proces-
sor and 1024MB RAM and connected by a 100 Mbps 
Ethernet LAN. The workstations are equipped with 
the SunOS 5.9 operating system, the Java Virtual 
Machine (JVM) version 1.4.2_03-b02, and exploit 
the Java Media Framework (JMF) Performance Pack 
for Solaris version 2.1.1e as the multimedia streaming 
library. Heterogeneous clients with more limited 
hardware/software capabilities are represented by 
Asus laptops exploiting IEEE 802.11b connectivity 
and equipped with Windows 2000, the same JVM 
version, and the JMF Performance Pack for Win-
dows. The experiments presented in the following 
have mainly intended to measure user-perceived de-
lays in different situations, in order to evaluate the 
feasibility of the approach and to quantitatively 
measure the benefits/overhead due to the MUMOC 
middleware and, in particular, to its exploitation of 
the JMF multimedia streaming library. All reported 
results are average values over a set of 100 runs. 
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In the first experiment, we have disabled all MU-
MOC caching functions to evaluate the configuration 
and activation time of our middleware components 
for metadata querying, VoD flow retrieval, and VoD 
streaming. The average value for the time interval 
between the metadata-based VoD flow request and 
the visualization start at the client has shown to be 
824 ms in the case of nodes organized in a 3-level 
tree. This interval has demonstrated to be mainly 
composed by: a) video frame activation at the client = 
179 ms, b) metadata query = 90 ms, c) RTP session 
configuration (including server endpoint signaling 
and RTP client creation) = 341 ms, d) player initiali-
zation = 121 ms, and e) rendering initialization = 72 
ms. Moreover, with MUMOC disabled, that time in-
terval has shown to linearly grow with the client-
server distance (N in Table 1), with additional 179 ms 
for each traversed node in the MUMOC overlay net-
work. The second experiment had the objectives of 
evaluating the MUMOC content cache activation time 
and the startup delay increase in the case of activated 
cache and cache miss. In this case, the MUMOC sig-
naling and the RTP client/server activation has shown 
to be of 339 ms, while the CacheWriter creation re-
quires 36 ms. In the third experiment, we have acti-
vated the distributed caching of MUMOC metadata, 
by experiencing a startup time increase of about 100 
ms per hop in the distance from the requesting client 
node to the MB component that maintains matching 
metadata (M in the table). When MUMOC MB 
works, the fixed threshold measured for service path 
activation in the first experiment decreases to 780 ms, 
because part of that time was due to metadata brows-
ing. Finally, we considered a fourth case with users 
exploiting access terminals with limited capabilities. 
The only specific performance figure of this case is 
the SBSP activation time, which has demonstrated to 
be 339 ms, 329 ms of which spent for additional 
MUMOC signaling and RTP client/server activation 
due to the added traversed middleware component. 

Table 1 sums up the average times registered for 
user-perceived startup delays in the different situa-
tions. Most of the delay is directly related to the low 
performance of JMF libraries to create and initialize 
Java-based processor/player objects and to establish 
RTP sessions. On the contrary, the overhead intro-
duced by the distributed coordination of the MUMOC 
middleware itself has demonstrated to be limited and 
acceptable in all the examined cases. The experimen-
tal results also confirm the feasibility of the SBSP 
interposition proposal: its added delay is largely com-
pensated by the possibility to exploit SBatch also 
when serving access terminals with limited buffering 
capabilities, thus reducing bandwidth consumption. 

Table 1. Average times for user-perceived 
startup delays 

Infrastructure 
Configuration 

Required time (msec) 

Service path activation 179 x N + 824 

Cache-miss 385 

Metadata browser on and 
service  path activation  

100 x M + 179 x N + 780 

SBSP activation 339 

Metadata browser on and 
VoD lesson cached at one-

hop reachable node 
100 + 179 + 780 = 1084 

 

Most important, as showed in the last row of Table 1, 
prefix cache hits significantly reduce the playback 
delays perceived by end users. In addition, also in the 
case of cache miss, the overhead introduced by the 
MUMOC prefix caching middleware is limited. 
Moreover, the MUMOC guideline of pervasively 
distributing network/processing workload at different 
localities in the distribution tree permits to limit the 
overhead and to achieve good scalability. In sum-
mary, first experimental results about the MUMOC 
performance have shown to be encouraging: the 
MUMOC active middleware imposes user-perceived 
delay of less than 3s in most common application 
scenarios (for usual N and M values), thus ensuring 
performance results at all compatible with the con-
straints of soft real-time VoD distribution at the usual 
Internet transmission rates. 
 

6. Related Work 

The distribution of multimedia content over the 
Internet significantly changes the usual Web caching 
scenario. Peer-to-peer file sharing and content net-
works, together with high bandwidth availability for 
end users, are imposing workloads never experienced 
before by the Internet infrastructure [4]. The exploita-
tion of distributed caching has already shown its po-
tential in improving service performance and client-
experienced response times; several research activi-
ties have focused on proposing interesting and effec-
tive solutions for caching replacement, positioning, 
and distributed cache coordination [13, 19]. 

About the specific aspect of distributing replicas 
of VoD flow parts on a set of nodes, a few solutions 
have started to investigate the usage of VoD prefixes 
[13, 14] and of collaborative caching of VoD seg-
ments [20]. In particular, [14] proposes a caching 
solution at the frame granularity level, by showing the 
effectiveness of prefix exploitation. Recent work 
from the same research group has investigated how to 
achieve optimal prefix positioning in a server-based 
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batching architecture [13]. The collaborative caching 
solution presented in [20], instead, exploits a peer-to-
peer organization to cache video segments over dif-
ferent peers. The MUMOC approach is similar to 
[20] from the points of view of cache distribution and 
application-level overlaying. However, MUMOC 
aims at disseminating replicas of VoD prefixes and 
metadata not only to minimize overall network traffic 
but also to reduce VoD starting delay and to improve 
scalability via decentralized local access. 

Finally, nowadays there is a growing research and 
industrial interest in enhancing expressiveness and 
interoperability of multimedia content descriptions 
[21]. MUMOC exploits the results obtained in these 
researches by integrating DC and MPEG7 to provide 
an open extensible format for VoD metadata. To the 
best of our knowledge, the MUMOC middleware is 
original in implementing the caching of both VoD 
prefixes and metadata, and in integrating with an ac-
tive overlay infrastructure for mobile access to VoD 
flows adapted on-the-fly. 

 

7. Conclusions and Future Work 

MUMOC realizes, in an open and interoperable 
way, an overlay network for distributed caching, also 
capable of reducing client-experienced response time 
via prefix-based techniques. The experimental 
evaluation of the MUMOC prototype has shown that, 
notwithstanding the flexible, MA-based, and applica-
tion-level approach, the introduced overhead is 
widely compatible with the usual requirements of 
Internet VoD distribution. 

These first encouraging results are stimulating fur-
ther investigation and the extension of our current 
MUMOC prototype. In particular, we are working on 
fully supporting user roaming mobility, i.e., to guar-
antee that mobile users with Wi-Fi access terminals 
continue to receive the served VoD flow without no-
ticeable interruptions even during the handoff be-
tween IEEE 802.11 cells. The primary idea is to ex-
ploit, on the one hand, original lightweight techniques 
to predict the next cells visited by mobile users and, 
on the other hand, proactive anticipated buffering in 
the predicted localities. 

 

Acknowledgements 
This work is partially supported by the Italian MIUR 
within the FIRB WEB-MINDS Project and by the 
Italian CNR within the Strategic IS-MANET Project. 
 

References 
[1] www.gnutella.org 

[2] www.kazaa.org 
[3] A. Rowstron, P. Druschel, “Pastry: Scalable, distrib-

uted object location and routing for large-scale peer-
to-peer systems”. ACM Conference on Distributed 
Systems Platforms, 2001. 

[4] S. Saroiu et alii, “An Analysis of Internet Content 
Delivery Systems”, USENIX Operating Systems De-
sign and Implementation, 2002. 

[5] H. J. Wang et alii, “ICEBERG: An Internet-core Net-
work Architecture for Integrated Communications”, 
IEEE Personal Communications, Vol. 7, No. 4, 2000. 

[6] P. Bellavista, A. Corradi, L. Foschini, “MUM: a Mid-
dleware for the Provisioning of Continuous Services 
to Mobile Users”, IEEE International Symposium on 
Computers and Communications, 2004.  

[7] P. Bellavista, A. Corradi, C. Stefanelli, “The Ubiqui-
tous Provisioning of Internet Services to Portable De-
vices”, IEEE Pervasive Computing, Vol. 1, No. 3, 
2002. 

[8] Y. Bai, M.R. Ito, “QoS Control for Video and Audio 
Communication in Conventional and Active Net-
works: Approaches and Comparison”, IEEE Commu-
nication Surveys, Vol.6, No.1, 2004. 

[9] B. Zenel, D. Duchamp, “General Purpose Proxies: 
Solved and Unsolved Problems”, IEEE Hot Topics in 
Operating Systems, 1997. 

[10] P. Bellavista, A. Corradi, C. Stefanelli, “Mobile Agent 
Middleware for Mobile Computing”, IEEE Computer, 
Vol. 34, No. 3, 2001. 

[11] A. Fuggetta, G.P. Picco, G. Vigna, “Understanding 
Code Mobility”, IEEE Transactions on Software En-
gineering, Vol. 24, No. 5, 1998. 

[12] H. Ma, K. G. Shin, “Multicast Video-on-Demand 
services”, ACM Computer Communication Review , 
Vol. 32, No. 1, 2002. 

[13] W. Bing et alii, “Optimal proxy cache allocation for 
efficient streaming media distribution”, IEEE INFO-
COM, 2002. 

[14] S. Sen, J. Rexford, D. Towsley, “Proxy prefix caching 
for multimedia streams”, IEEE INFOCOM, 1999. 

[15] http://archive.dstc.edu.au/mpeg7-ddl/ 
[16] http://dublincore.org/ 
[17] http://www.acmi.net.au/dctypeproposal/index.html 
[18] http://www.w3.org/Mobile/CCPP 
[19]  W. Lau, M. Kumar, S. Venkatesh, “A Generalised 

Cost-aware Caching Scheme for Caching Continuous 
Media Objects in Best-effort Network Environments”, 
IEEE International Workshop on Distributed Com-
puting, 2002. 

[20] W.J. Jeon, K. Nahrstedt, “QoS-aware middleware 
support for collaborative multimedia streaming and 
caching service”, Elsevier Microprocessors and Mi-
crosystems, Vol. 27, No. 2, 2003. 

[21] J. Hunter, “Enhancing the Semantic Interoperability of 
Multimedia through a Core Ontology”, IEEE Transac-
tions on Circuits and Systems for Video Technology, 
Vol. 13, No. 1, 2003. 

  


